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Abstract

This paper describes Guided Search 6.0 (GS6), a revised model of visual search. When we 

encounter a scene, we can see something everywhere. However, we cannot recognize more than 

a few items at a time. Attention is used to select items so that their features can be ‘bound’ into 

recognizable objects. Attention is ‘guided’ so that items can be processed in an intelligent order. 

In GS6, this guidance comes from five sources of preattentive information: (1) top-down and 

(2) bottom-up feature guidance, (3) prior history (e.g. priming), (4) reward, and (5) scene syntax 

and semantics. These sources are combined into a spatial “priority map”, a dynamic attentional 

landscape that evolves over the course of search. Selective attention is guided to the most active 

location in the priority map approximately 20 times per second. Guidance will not be uniform 

across the visual field. It will favor items near the point of fixation. Three types of functional 

visual field (FVFs) describe nature of these foveal biases. There is a resolution FVF, an FVF 

governing exploratory eye movements, and an FVF governing covert deployments of attention. 

To be identified as targets or rejected as distractors, items must be compared to target templates 

held in memory. The binding and recognition of an attended object is modeled as a diffusion 

process taking > 150 msec/item. Since selection occurs more frequently than that, it follows that 

multiple items are undergoing recognition at the same time, though asynchronously, making GS6 

a hybrid of serial and parallel processes. In GS6, if a target is not found, search terminates when 

an accumulating quitting signal reaches a threshold. Setting of that threshold is adaptive, allowing 

feedback about performance to shape subsequent searches. Simulation shows that the combination 

of asynchronous diffusion and a quitting signal can produce the basic patterns of response time 

and error data from a range of search experiments.

Visual search has been a major topic of research for decades. There are a number of reasons 

for this. To begin, we spend a great deal of time doing search tasks. Many of these are 

so fast and seemingly trivial that we don’t tend to think of them as searches. Think, for 

example, about eating dinner. You search for the fork, then the potatoes, then the salt, then 

the potatoes again, then your drink, then the napkin, and so forth. As you drive, you look for 

specific items like the exit sign at the same time as you are searching for broad categories 

like “danger”. In more specialized realms, radiologists search images for signs of cancer, 

transportation security officers search carry-on baggage for threats, and so forth. Search 

is a significant, real-world task. At the same time, it has proven to be a very productive 

experimental paradigm in the lab. In a classic laboratory search task, observers might be 
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asked to look for a target that is present on 50% of trials among some variable number 

of distractors. The number of items in the display is known as the “set size” and very 

systematic and replicable functions relate response time (or “reaction time”, “RT” in either 

case) and/or accuracy to that set size (Wolfe, 2014).

For some tasks (as shown in Figure 1a-b), the number of distractors has little or no impact. 

The target seems to simply “pop-out” of the display (Egeth, Jonides, & Wall, 1972) and, 

indeed, may “capture” attention, even if it is not the target of search (Jonides & Yantis, 1988; 

Theeuwes, 1994). The slope of the RT x set size functions will be near (but typically a little 

greater than) 0 msec/item (Buetti, Xu, & Lleras, 2019). For other tasks, the time required to 

find the target increases (typically, more or less linearly) with the set size. In some cases, this 

reflects underlying limits on visual resolution. Thus, if the task is to find “TLT” among other 

triplets composed of Ts and Ls, a combination of acuity and crowding limits (Levi, Klein, & 

Aitsebaomo, 1985; Whitney & Levi, 2011) will require that each triplet be foveated in series 

until the target is found or the search is abandoned (Figure 1c-d). Since the eyes fixate on 

3-4 items per second, the slope of the RT x set size functions will be ~250-350 msec/item 

for target-absent trials (when all items need to be examined in order to be sure that the target 

is not present). Slopes for target-present trials will be about half that because observers will 

need to examine about half of the items on average before stumbling on the target. Figure 

1e-f shows a more interesting case. Here the target, a digital “2” is presented among digital 

5s. The items are large and the display sparse enough to avoid most effects of crowding. 

Nevertheless, slopes of the target-absent trials will tend to be around 90 msec/item on absent 

trials and, again, about half that on target-present trials (Wolfe, Palmer, & Horowitz 2010). 

This will be true, even if the eyes do not move (Zelinsky & Sheinberg, 1997).

These patterns in the data were uncovered in the ‘60s and ‘70s (Kristjansson & Egeth, 

2020) and formed the basis of Anne Treisman’s enduringly influential Feature Integration 

Theory (FIT) (Treisman & Gelade, 1980). Building on an architecture proposed by Neisser 

(1967), Treisman held that there was an initial, “preattentive” stage of processing, in which 

a limited set of basic features like color and orientation could be processed in parallel across 

the visual field. In this, she was inspired by the then-novel physiological findings showing 

cortical cells and areas that appeared to be specialized for these features (e.g. Zeki, 1978). In 

behavioral experiments, a unique feature, if it was sufficiently different from its neighbors, 

would pop-out and be detected, independent of the number of distractor items.

Basic features might be processed in parallel in separate cortical maps, but we do not see 

separate features. We see objects whose features are bound together. Treisman proposed 

that this “binding” required selective attention to connect isolated features to a single 

representation (Roskies, 1999; Treisman, 1996; Wolfe & Cave, 1999). This attention was 

capacity limited, meaning that only one or a very few items could be attended and bound 

at any given time. As a result, while a salient unique feature could be found in parallel, 

all other types of targets would require serial, selective attention from item to item. This 

proposed serial/parallel dichotomy and FIT more generally have proven to be extremely 

influential and persistent (~14,000 citations for Treisman and Gelade, 1980, in Google 

Scholar at last check).
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Influential or not, it became clear over the course of the 1980s that FIT was not quite correct. 

The core empirical challenge came from searches for conjunctions of two features. For 

example, observers might be asked to search for a red vertical target among red horizontal 

and green vertical distractors. Identification of this target would require binding of color 

and orientation and, thus, it should require serial search. However, it became clear that 

conjunction searches were often more efficient than FIT would predict (Egeth, Virzi, & 

Garbart, 1984; McLeod, Driver, & Crisp, 1988; Nakayama & Silverman, 1986; Quinlan & 

Humphreys, 1987; Wolfe, Cave, & Franzel, 1989). The explanation can be illustrated by a 

version of a conjunction search used by Egeth, Virzi, and Garbart (1984). If we return to 

Figure 1e-f, suppose you knew that the “2” was purple. It should be intuitively obvious that, 

while search may still be necessary, it will be unnecessary to attend to green items. If just 

half the items are purple, then just half the items are relevant to search and the slopes of 

the RT x set size functions will be cut in half, relative to the case where there is no color 

information.

In 1989, Wolfe, Cave, & Franzel (1989) proposed that the preattentive feature information 

could be used to “guide” the serial deployment of attention; hence the name of the model, 

“Guided Search” (GS). The original version of GS was otherwise quite similar to FIT. The 

core difference was that, while FIT proposed a dichotomy between parallel and serial search 

tasks, GS proposed a continuum based on the effectiveness of guidance. Pop-out search 

(Fig 1a-b) arose when preattentive feature information guided attention to the target the 

first time, every time. A search for a 2 among 5s would be unguided because both target 

and distractors contained the same basic features. Results for conjunction searches lay in 

between, reflecting different amounts of guidance.

Treisman recognized the problem with the original FIT and proposed her own accounts 

in subsequent papers (e.g. Treisman & Sato, 1990). It was a subject of some annoyance 

to her that she continued to get taken to task for theoretical positions that she no longer 

held. Indeed, to this day, 40 years after FIT appeared, a simple two-stage, parallel-serial 

dichotomy is asserted in textbooks and by many research papers, especially outside the core 

disciplines of Experimental Psychology/Cognitive Science. To avoid this fate, when the time 

came to revise Guided Search in the light of new research, the paper was entitled “Guided 

Search 2.0: A revised model of visual search.” (Wolfe, 1994a). Subsequent revisions have 

also been given version numbers. GS2 remains the most cited of the versions. GS3 (Wolfe 

& Gancarz, 1996) was something of a dead end and GS4 (Wolfe, 2007) was published as a 

book chapter and thus, less widely known. GS5 (Wolfe, Cain, Ehinger, & Drew, 2015) did 

not get beyond being a conference talk before being derailed by new data. The goal of the 

present paper is to describe Guided Search 6 (GS6). Since GS2 is the best known version 

of GS, this paper will frame GS6 in terms of the major changes from GS2. GS6 is needed 

because we know a lot more about search than we knew in 1980 or 1994. Still, this model 

presented here is an evolution and not a repudiation of the core ideas of FIT and the earlier 

versions of GS. Though some would disagree (Di Lollo, 2012; Hulleman & Olivers, 2017; 

Kristjansson, 2015, Zelinsky et al., 2020), the basic ideas from 40 years ago have proven 

very durable.
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Guided Search 2.0

Figure 2 offers an illustration of GS2. The numbers are referred to in the summary of the key 

ideas, presented below:

1. Information from the world….

2. … is represented in the visual system. The nature of that representation will 

depend on the position of items in the visual field, properties of early visual 

channels, etc. In the early stages of processing, this will involve extraction of 

information about basic features like color and orientation.

3. Capacity limitations require that many activities, notably object recognition, can 

only be performed on one or a very few items at a time. Thus, there is a tight 

bottleneck that passes only the current object of attention for capacity-limited 

processing (e.g. “binding”).

4. An item, selected by attention, is bound, recognized, and tested to determine 

if it is a target or a distractor. If it is a match, search can end. If there are no 

matches, search will terminate when a quitting threshold (not diagrammed here) 

is reached.

5. Importantly, selection is rarely random. Access to the bottleneck is guided by 

a “priority map” that represents the system’s best guess as to where to deploy 

attention next. Attention will be deployed to the most active location in the map.

6. One source of priority map guidance comes from “bottom-up” salience: Salience 

is based on coarse representations of a limited number of basic features like 

color, size, etc. Bottom-up is defined as “stimulus-driven”.

7. Attentional priority is also determined by “top-down” guidance. “Top-down” 

guidance represents the implicit or explicit goals of the searcher. Top-down 

guidance is based on the basic features of the target as represented in memory. 

That is, if the observer was searching for a red vertical line, the red color and 

vertical orientation of that target could be used to guide attention.

8. Both of these sources of guidance are combined in a weighted manner to direct 

attention to the next item/location. If that item is a distractor, that location 

is suppressed (perhaps via “inhibition of return” IOR (R. Klein, 1988)), and 

attention is deployed to the next highest peak in the map. This guided search 

continues until the target is found or the search terminates.

From GS2 to GS6

The core ideas of GS have remained relatively constant over time, but new data requires 

modifications of each of the main components: preattentive features, guidance, serial vs 

parallel processing, & search termination. In addition, the model requires consideration 

of topics that were not discussed in GS2; notably, the contribution of “non-selective” 

processing, the role of eccentricity (functional visual fields – FVF), the role of non-selective 
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processing (scene gist, ensembles, etc.), and the nature of the search template (or templates) 

and their relationship to working memory and long-term memory.

Here, in the same format as the GS2 diagram and description, Figure 3 illustrates GS6. This 

diagram and description will introduce the topics for the bulk of the paper.

1. Information from the world is represented in the visual system. The nature of that 

representation will depend on the position in the visual field relative to fixation 

(eccentricity effects, crowding, etc.). Thus, an item near fixation will be more 

richly represented than one further away. These eccentricity constraints define 

one of three types of functional visual field (FVF) that are relevant for search 

(see #10, below).

2. Some representation of the visual input is available to visual awareness at all 

points in the field, in parallel, and via a non-selective pathway that was not 

considered in GS2. Thus, you see something everywhere. Ensemble statistics, 

scene gist, and other rapidly extracted attributes generally do not require 

selective attention and can be attributed to this non-selective pathway (Wolfe, 

Vo, Evans, & Greene, 2011).

3. There are capacity limits that require that many tasks can only be performed on 

one (or a very few) item/s at a time. Notably, for present purposes, this includes 

object recognition. Selective attention, as used here, refers to the processes that 

determine which items or regions of space will be passed through the bottleneck. 

Items are selected by attention at a rate of ~20 Hz, though this will vary with task 

difficulty (Wolfe, 1998).

4. Access to the bottleneck (i.e. attentional selection) is “guided” (hence Guided 
Search).

5. In GS6, there are five types of guidance that combine to create an attentional 

“Priority Map.” Bottom-up (salience) and top-down (user/template-driven) 

guidance by preattentive visual features are retained from all previous versions of 

GS. Newer data support guidance by the history of prior attention (e.g. priming), 

value (e.g. rewarded features), and, very importantly, guidance from the structure 

and meaning of scenes.

6. The selected object of attention is represented in working memory 

(Speculatively, the limits on what can be selected at any given time may be 

related to the limits on the capacity of WM). The contents of WM can prime 

subsequent deployments of attention. WM also holds the top-down “guiding 

template” (i.e. the template that guides toward target attributes like “yellow” and 

“curved” if you are looking for a banana).

7. A second template is held in “activated long-term memory” (ALTM), a term 

referring to a piece of LTM relevant to the current task. This “target template” 

can be matched against the current object of attention in WM in order to 

determine if that object of attention is a target item. Thus, the target template 

is used to determine that this item is not just yellow and curve. Is it, in fact, the 
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specific banana that is being looked for? In contrast to the one or two guiding 

templates in WM, ALTM can hold a very large number of target templates (as 

in Hybrid Search tasks having as many as 100 possible targets (Wolfe, 2012)). 

Those target templates might be highly specific (this banana in this pose) or 

much more general (e.g. any fruit).

8. The act of determining if an item, selected by attention, and represented in WM, 

is a target can be modeled as a diffusion process, with one diffuser for every 

target template that is held in ALTM. If a target is found, it can be acted upon.

9. A separate diffuser accumulates toward a quitting threshold. This will, 

eventually, terminate search if a target is not found before the quitting threshold 

is reached.

10. Not shown: In addition to a resolution Functional Visual Field (FVF), mentioned 

in #1 above, two other FVFs govern search. An attentional FVF governs covert 

deployments of attention during a fixation. That is, if you are fixated at one 

point, your choice of items to select is constrained by this attentional FVF. An 

explorational FVF constrains overt movements of the eyes as they explore the 

scene in search of a target.

A short-hand for capturing the main changes in GS6 might be that there are now 2 pathways, 

2 templates, 2 diffusion mechanisms, 3 FVFs, and 5 sources of guidance. The paper is 

divided into six sections: 1) Guidance, 2) The Search Process, 3) Simulation of the Search 

Process, 4) Spatial Constraints and Functional Visual Fields, 5) Search Templates, and 6) 

Other Search Tasks.

Five Forms of Guidance

In this section, we will review the two “classic” forms of guidance: top-down and bottom-up 

feature guidance. Then we will argue for the addition of three other types of guidance: 

history (e.g. priming), value, and, the most important of these, scene guidance. The division 

of guidance into exactly five forms is less important than the idea that there are multiple 

sources of guidance that combine to create an attention-directing landscape here called a 

“priority map”.

What do we know about classic top-down and bottom-up guidance by preattentive 
features?

To begin, “preattentive” is an unpopular term in some circles; in part, because it can be 

used, probably incorrectly, to propose that some pieces of the brain are “preattentive” or to 

propose that preattentive processing occurs for the first N msec and then ends. The term 

is useful in the following sense. If we accept the existence of selective attention and if 

we accept that, by definition, we cannot selectively attend to everything at once, it follows 

that, when a stimulus appears, some aspects have not been selected yet. To the extent 

that they are being processed, that processing is tautologically preattentive. A stimulus 

feature that can be processed in this way is, thus, a preattentive feature. This is not the 

end of the discussion. For instance, if an item is attended and then attention is deployed 
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elsewhere, is its “post-attentive” state similar to its preattentive state (Rensink, 2000; Wolfe, 

Klempen, & Dahlen, 2000)? For the present, if selective attention is a meaningful term, 

then preattentive is a meaningful term as well. Some information (e.g. aspects of texture 

and scene processing) can be thought of as “non-selective” [Wolfe, 2011 #10142] in the 

sense that, not only are they available before attentional selection but they have an impact on 

visual awareness without the need for attentional selection.

Preattentive Feature Guidance

A preattentive feature is a property capable of guiding the deployment of attention. 

These features are derived from but are not identical to early visual processing stages. 

Orientation serves as a clear example of the difference between early vision (#1 in Fig 

3) and preattentive guidance (#5) because it has been the subject of extensive research. 

For instance, early visual processes allow for very fine differentiation of the orientation of 

lines. A half degree tilt away from vertical is not hard to detect (Olzak & Thomas, 1986). 

That detectable difference will not guide attention. The difference between an item and its 

neighbors must be much greater if an attention-guiding priority signal is to be generated 

(roughly 10-15 deg. It will depend on the stimulus parameters; see Foster & Ward, 1991a, 

1991b; Foster & Westland, 1998). Similar effects occur in color (Nagy & Sanchez, 1990) 

and, no doubt, they would be found in other features if tested. Guidance is based on a coarse 

representation of a feature. That coarse representation is not simply the fine representation 

divided by some constant. Using orientation, again, as an example, geometrically identical 

sets of orientations do not produce identical guidance of attention. The categorical status of 

the items is important. Thus, a −10 deg target among +50 and −50 deg distractors is easier to 

find than a 10 deg target among −30 and 70 deg distractors. The second set of lines is simply 

a 20 deg rotation of the first. Thus, the angular relations between the target and distractor 

lines are the same. However, in the first set, the target is the only steep line whereas in the 

second set, it is merely the steepest (Wolfe, Friedman-Hill, Stewart, & O'Connell, 1992). A 

target of a unique category is easier to find (see also Kong, Alais, & Van der Berg, 2017). 

Again, there are similar effects in color (Nagy & Sanchez, 1990).

Fine discriminations, like the discrimination that half degree tilt from vertical, rely on 

information encoded in early vision and require attention. This can be seen as an example 

of reentrant processing (Di Lollo,, Enns, & Rensink, 2000) and/or support for the Reverse 

Hierarchy Theory (Hochstein & Ahissar, 2002). In both cases, the idea is that attention 

makes it possible to reach down from later stages of visual processing of the visual system to 

make use of fine-grain information represented in early vision.

Preattentive guidance is complex

It would be lovely if top-down and bottom-up feature guidance could be calculated in 

a straight-forward manner from the stimulus, using rules that generalize across different 

featural dimensions. Bottom-up salience maps are based on something like this assumption 

(e.g. Bisley & Mirpour, 2019; Itti & Koch, 2000; Li, 2002) and, certainly, there are 

important general rules. Duncan and Humphreys (1989) gave a clear articulation of some of 

the most basic principles. In general, guidance to a target will be stronger when the featural 

differences between target (T) and distractor (D) are larger (TD differences) and guidance 
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to a target will be stronger when the featural differences amongst distractors are smaller 

(DD similarity). Other, more quantitative rules about combining signals across features are 

appearing (Buetti et al., 2019; Lleras et al., 2020). That said, TD and DD distances are not 

simple functions of the distance from the one feature value to another in some unit of the 

physical stimulus or some unit of perceptual discriminability like a just noticeable difference 

(Nagy & Sanchez, 1990; Nagy, Sanchez, & Hughes, 1990). Moreover, it is an unfortunate 

fact that rules that apply to one guiding feature do not necessarily apply to another guiding 

feature, or even to the same feature in a different situation. For example, it seems quite clear 

that color and orientation both guide attention in simple searches for conjunctions of color 

and orientation (e.g. Friedman-Hill & Wolfe, 1995). One would like to imagine that any time 

that half of the items in a display had a guiding feature like a specific color or orientation, 

the other half of the items would be treated as irrelevant to search. However, that does not 

appear to be consistently true. Orientation information can fail to guide and can even make 

search less efficient (Hulleman, 2020; Hulleman, Lund, & Skarratt, 2019). When guidance 

is provided by previewing one feature, different features (color, size, orientation) can show 

very different patterns of guidance, even if the feature differences have been equated (Olds 

& Fockler, 2004). Here, too, orientation information can actually make search less efficient. 

For modeling purposes, using basic salience measures and basic rules about TD and DD 

similarity is a decent approximation but not a full account.

Preattentive processing takes time

Earlier versions of GS (and other accounts of feature guidance) tended to treat the 

preattentive, feature processing stage as a single, essentially instantaneous step in which 

the features were processed in parallel across the entire stimulus. If the target was “red” 

and “vertical”, that color and orientation information was immediately available in a priority 

map, ready to guide attention. That is not correct. Palmer et al. (2019) showed that it takes 

200-300 msec for even very basic guidance by color to be fully effective. Lleras and his 

colleagues (2020) have produced important insights into the mechanics of this “parallel”, 

“preattentive” stage of processing in a series of experiments that show that RTs in basic 

feature searches increase with the log of the set size. Even the most basic of feature searches 

do not appear to have completely flat, 0 msec/item slopes (Buetti, Cronin, Madison, Wang, 

& Lleras, 2016; Madison, Lleras, & Buetti, 2018). Lleras et al. (2020) offer an interesting 

account of the cause of this log function in their “target contrast signal theory (TCS)”. They 

argue that a diffusion process (Ratcliff, 1978) accumulates information about the difference 
between each item and the designated target. Other diffusion models (including GS, see 

below) typically ask how long it takes for information to accumulate to prove that an item 

is a target. TCS emphasizes how long it takes to decide that attention does not need to 

be directed to a distractor item. The TCS model envisions a preattentive stage that ends 

when all the items that need to be rejected have been rejected. The remaining items (any 

targets as well as other “lures” or “candidates”) are then passed to the next stage. Since 

diffusion has a random walk component, some items will take longer than others to finish. 

Leite and Ratcliff (2010) have shown that the time required to end a process with multiple 

diffusers will be a log function of the number of diffusers and, in TCS, this explains the 

log functions in the data. In more recent work, Heaton et al. (2020) make the important 

point that it is a mistake to think of preattentive processing as something that stops after 
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some time has elapsed. Preattentive and/or non-selective processing must be ongoing when a 

stimulus is visible. Deployment of attention will be dependent on the priority map generated 

by the current state of that preattentive processing and that current state will be continually 

evolving especially as the eyes and/or the observer move.

TCS does not explain some important aspects of preattentive processing (nor is it intended 

to do so). For example, what is happening when the target is simply an odd item that 

“pops-out” because it is unique? Thus, in Figure 4 (which we will discuss for other purposes 

in a moment), the intended targets are orange. Nevertheless, attention is attracted to the blue 

items even though the blue items can be easily rejected as not orange. They are sufficiently 

different from their neighbors to attract attention in a ‘bottom-up’, stimulus-driven manner. 

Regardless, the TCS model and its associated data make the clear point that the preattentive 

processing stage will take some amount of time and that this time will be dependent on the 

number of items in the display, even if all items are processed in parallel.

TCS also raises the possibility that guidance could be as much about rejecting distractors as 

it is about guiding toward targets (Treisman and Sato, 1990); a topic that has seen a recent 

burst of interest (e.g. Conci, Deichsel, Müller, & Töllner, 2019; Cunningham & Egeth, 2016; 

Stilwell & Vecera, 2019). In thinking about distractor rejection, it is important to distinguish 

two forms of rejection. One could reject items that do not have the target feature (e.g. in Fig 

4, reject items that are not orange) or one could reject items that have a known distractor 

feature (e.g. reject items that are red). Friedman-Hill and Wolfe (Exp 4, 1995) and Kaptein, 

Theeuwes, & Van der Heijden (1995) found evidence that observers could not suppress a set 

of items on the basis of its defining feature. In a study of priming effect, Wolfe, Butcher, 

Lee, & Hyle (2003) found that the effects of repeating target features were much greater 

than those of repeating distractors. Still, the distractor effects were present and subsequent 

work, suggests that distractor inhibition is a contributor to guidance even if it may take 

longer to learn and establish (Cunningham and Egeth, 2016, Stillwell & Vecera, 2020).

Feature guidance can be relational

Over the past decade, Stefanie Becker’s work has emphasized the role of relative feature 

values in the guidance of attention (Becker, 2010; Becker, Harris, York, & Choi, 2017). 

This is also illustrated in Figure 4, where, on the left, the orange targets are the yellower 

items while on the right, the same targets are the redder items. Attention can be guided by 

a filter that is not maximally sensitive to the feature(s) of the target. On the right side of 

Figure 4, for example, it might be worth using a filter maximally sensitive to “red” even 

though the target is not red. The most useful filter will be the one that reveals the greatest 

difference between target and distractors (Yu & Geng, 2019). Targets and distractors that 

can be separated by a line, drawn in some feature space, are said to be “linearly separable” 

(Bauer, Jolicoeur, & Cowan, 1998; Bauer, Jolicreur, & Cowan, 1996). If, as in the middle 

of Figure 4, no line in color space separates targets and distractors, search is notably more 

difficult (look for the same orange squares). Some of this is due to the inability to use 

Becker’s relational guidance when targets are not linearly separable from distractors, and 

some of the difficulty is due to added bottom-up (DD similarity) noise produced by the 

highly salient contrast between the two types of yellow and red distractors. Note, however, 
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that attention can still be guided to the orange targets, showing that top-down guidance is 

not based entirely on a single relationship (for more, see Kong, Alais, & Van der Berg, 

2016; Lindsey et al., 2010). Moreover, Buetti et al. (2020) have cast doubt on the whole 

idea of linear separability, arguing that performance in the inseparable case can be explained 

as a function of performance on each of the component simple feature searches. In their 

argument, the middle of Figure 4 would be explained by the two flanking searches without 

the need for an additional effect of linear separability.

Spatial relations are at least as important as featural relations in feature guidance. Figure 5 

illustrates this point using density. In the figure, the orange targets and yellow distractors on 

the left are the same as those on the right but those orange targets are less salient and guide 

attention less effectively because they are not as physically close to the yellow distractors 

(Nothdurft, 2000). An interesting side effect of density is that the RT x set size function can 

become negative if increasing density speeds the search more than the set size effect slows 

search (Bravo & Nakayama, 1992).

Feature Guidance is modulated by position in the visual field

GS2, following Neisser (1967) says “there are parallel processes that operate over large 
portions of the visual field at one time” (Wolfe, 1992, p203). However, it is important to 

think more carefully about the spatial aspects of guidance and preattentive processing.

The visual field is not homogeneous. Of course, we knew this with regard to attentive vision 

and object recognition. As you read this sentence, you need to fixate one word after another, 

because acuity falls off with distance from the fovea, the point of fixation (Olzak & Thomas, 

1986). Moreover contours “crowd” each other in the periphery, making them still harder to 

perceive correctly (Levi, 2008). Thus, you simply cannot read words of a standard font size 

more than a small distance from fixation. What must be true but is little remarked on, is that 

preattentive guidance of attention must also be limited by eccentricity effects

In Figure 6, look at the star and report on the color of all the ovals that you can find. Without 

moving your eyes, you will be able to report the purple oval at about 4 o’clock and the blue 

isolated oval at 2 o’clock. The same preattentive shape/orientation information that guides 

your attention to those ovals will not guide your attention to the other two ovals unless you 

move your eyes. Thus, while preattentive processing may occur across large swaths of the 

visual field at the same time, the results of that processing will vary with eccentricity and 

with the structure of the scene. In that vein, it is known that there are eccentricity effects in 

search. Items near fixation will be found more quickly and these effects can be neutralized 

by scaling the stimuli to compensate for the effects of eccentricity (Carrasco, Evert, Chang, 

& Katz, 1995; Carrasco & Frieder, 1997; Wolfe, O'Neill, & Bennett, 1998).

Thinking about search in the real world of complex scenes, it is clear that the effects 

of eccentricity on guidance are going to be large and varied. Returning to Figure 6, for 

example, both color and shape are preattentive features but guidance to “oval” will fail 

at a much smaller eccentricity than guidance to that one “red” spot. Rosenholtz and her 

colleagues attribute the bulk of variation in the efficiency of search tasks to the effects 

of crowding and the loss of acuity in the periphery (Rosenholtz, Huang, & Ehinger, 

Wolfe Page 10

Psychon Bull Rev. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2012; Rosenholtz, 2011, 2020; Zhang, Huang, Yigit-Elliott, & Rosenholtz, 2015). Guided 

Search isn’t prepared to go that far, but it is clear that crowding and eccentricity will limit 

preattentive guidance. Those limits will differ for different features in different situations, 

but this topic is vastly understudied. We will return to these questions in the later discussion 

of the functional visual field (FVF). For the present, it is worth underlying the thought that 

preattentive guidance will vary as the eyes move in any normal, real world search.

Levels of selection: Dimensional Weighting

Though guidance is shown as a single box (#5 in Figure 3) controlling access to selective 

processing (#4), it is important to recognize that selection is a type of attentional control, 

not one single thing. We have been discussing guidance to specific features (e.g. blue … 

or bluest), but attention can also be directed to a dimension like color. This “dimension 

weighting” has been extensively studied by Herman Muller and his group (reviewed 

in Liesefeld, Pollmann, & Müller, 2019; Liesefeld & Müller, 2019). Their “dimension-

weighting account” (DWA) is built on experiments where, for example, the observer might 

be reporting on some attributes of a green item in a field of blue horizontal items. If 

there is a salient red “singleton” distractor, it will slow responses more than an equally 

salient vertical distractor. DWA argues that a search for green puts weight on the color 

dimension. This results in more distraction from another color than from another dimension 

like orientation.

At a level above dimensions, observers can attend to one sense (e.g. audition) over another 

(e.g. vision). As any parent can attest, their visual attention to the stimuli beyond the 

windshield can be disrupted, if their attention is captured by the auditory signals from the 

back seat of the car.

Building the priority map – Temporal factors and the role of “attention capture”

In Guided Search, attention is guided to its next destination by a winner-take-all operation 

(Koch & Ullman, 1985) on an attentional priority map (Serences & Yantis, 2006). In GS2, 

the priority map was modeled as a weighted average of contributions from top-down and 

bottom-up processing of multiple basic features. In GS6, there are further contributions to 

priority, as outlined in the next sections. In thinking about the multiple sources of guidance, 

it is worth underlining the point made earlier, that the priority map is continuously changing 

and continuously present during a search task. Different contributions to priority have 

different temporal properties. Bottom-up salience, for instance, may be a very powerful but 

a short-lived form of guidance (Donk & van Zoest, 2008). Theeuwes and his colleagues 

(Theeuwes, 1992; Van der Stigchel, et al., 2009), as well as many others (e.g. Harris, Becker, 

& Remington, 2015; Lagroix, Yanko, & Spalek, 2018; Lamy & Egeth, 2003) have shown 

that a salient singleton will attract attention. Indeed, there is an industry studying stimuli that 

‘capture’ attention (Folk & Gibson, 2001; Theeuwes, Olivers, & Belopolsky, 2010; Yantis & 

Jonides, 1990). Donk and her colleagues have argued that this form of guidance is relatively 

transient in experiments using artificial stimuli (Donk & van Zoest, 2008) and natural scenes 

(Anderson, Ort, Kruijne, Meeter, & Donk, 2015). Others have shown that the effects may 

not completely vanish in the time that it takes to make a saccade (De Vries, Van der 

Stigchel, Hooge, & Verstraten, 2017), but this transient nature of bottom-up salience may 
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help to explain why attention does not get stuck on high salience, non-target spots in images 

(Einhauser, Spain, & Perona, 2008). Lamy et al. (2020) make the useful point that “attention 

capture” may be a misnomer. It might be better to think that stimuli for attention capture 

create bumps in the priority map. In many capture designs, that bump will be the winner in 

the winner-take-all competition for the next deployment of attention. However, other capture 

paradigms may be better imagined as changing the landscape of priority, rather than actually 

grabbing or even splitting the ‘spotlight’ of attention (Gabbay, Zivony, & Lamy, 2019).

The landscape of priority can be modulated in a negative/inhibitory manner as well. 

Suppose that one is searching for blue squares among green squares and blue circles. This 

conjunction search can be speeded if one set of distractors (e.g. all the green squares) is 

shown first. This is known as “visual marking” and is thought to reflect some reduction in 

the activation of the previewed items (Watson & Humphreys, 1997). One could conceive 

of marking as a boost to the priority of the later stimuli, rather than inhibition (Donk & 

Theeuwes, 2003; but see Kunar, Humphries, and Smith, 2003). For present purposes, the 

important point is that marking shows that priority can evolve over time. Subsequent work 

has shown the limits on that evolution. If there is enough of a break in the action, the 

map may get reset (Kunar, Humphreys, Smith, & Hulleman, 2003; Kunar, Shapiro, and 

Humphreys, 2006). If we think about priority maps in the real world or in movies, it would 

be interesting to see if the maps are reset by event boundaries (Zacks & Swallow, 2007).

Expanding the idea of guidance – history effects

As the phenomenon of marking suggests, the priority map is influenced by several forms of 

guidance other than the traditional top-down and bottom-up varieties. To quote Failing and 

Theeuwes (2018); “Several selection biases can neither be explained by current selection 
goals nor by the physical salience of potential targets. Awh et al. (2012) suggested that a 
third category, labeled as “selection history”, competes for selection. This category describes 
lingering selection biases formed by the history of attentional deployments that are unrelated 
to top-down goals or the physical salience of items.” (P514 of Failing & Theeuwes, 2018). 

There are a variety of effects of history. We are dividing these into two forms of guidance. 

We will use the term “history” effects to refer to the effects that arise from passive exposure 

to some sequence of stimuli (e.g. priming effects). In contrast, “value” or “reward” effects 

are those where the observer is learning to associate positive or negative value to a feature 

or location. This distinction is neither entirely clear nor vitally important. These phenomena 

represent ways to change the landscape of the priority map that are not based on salience 

or the observer’s goals. One classic form of the priming variety of history effects is the 

‘priming of pop-out’ phenomenon of Maljkovic & Nakayama (1994). In an extremely 

simple search for red among green and vice versa, they showed that RTs were speeded when 

a red target on trial N followed red on trial N-1 (or green followed green). Theeuwes has 

argued that all feature-based attention can be described as priming of one form or another 

(Theeuwes, 2013; Theeuwes, 2018). This seems a bit extreme. After all, you can guide your 

attention to all the blue regions in your current field of view without having been primed by 

a previous blue search. Top-down guidance to blue would seem to be enough (see Leonard 

& Egeth, 2008). Nevertheless, the previous stimulus clearly exerts a force on the next trial. 

In the “hybrid foraging” paradigm, where observers (Os) search for multiple instances of 
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more than one type of target, they are often more likely to collect two of the same target 

type in a row (run) than they are to switch to another target type (Kristjansson, Thornton, 

Chetverikov, & Kristjansson, 2018; Wolfe, Aizenman, Boettcher, & Cain, 2016). These runs 

are, no doubt, partially due to priming effects. Introspectively, when the first instance of a 

target type is found in a search display containing multiple instances, those other instances 

seem to ‘light up’ in a way that suggests that finding the first one primed all the other 

instances, giving them more attentional priority.

Contextual cueing

Contextual cueing (Chun & Jiang, 1998) represents a different form of a history effect. In 

Contextual cueing, Os come to respond faster to repeated displays than to novel displays, 

as if the Os had come to anticipate where the target would appear even though they had 

no explicit idea that the displays had been repeating (Chun, 2000). It has been argued that 

contextual cueing might just be a form of response priming (Kunar, Flusberg, Horowitz, 

& Wolfe, 2007). That is, Os might just be faster to respond when they find a target in a 

contextually cued location. However, the predominant view has been that contextual cueing 

represents a form of implicit scene guidance (see below) in which recognition of the scene 

(even implicitly) boosts the priority map in the likely target location (Sisk, Remington, & 

Jiang, 2019; Harris and Remington, 2020).

Value

A different route to modulation of priority comes from paradigms that associate value 

with target and/or distractor features. If you reward one feature (e.g. red) and/or punish 

another (e.g. green), items with rewarded features will attract more attention and items with 

punished features will attract less attention (Anderson, Laurent, & Yantis, 2011). As with 

contextual cueing, it could be argued that the effect of reward is to speed responses, once the 

target is found and not to guide attention to the target. However, Lee and Shomstein (2013) 

varied set sizes and found that value could make slopes shallower. This is an indication that 

value had its effects on the search process and not just on the response once a target is 

found. Moreover, the effects of reward can be measured using real scenes (Hickey, Kaiser, & 

Peelen, 2015), an indication that value can be a factor in everyday search.

We are labeling “history” and “value” as two types of guidance. One could further divide 

these and treat each paradigm (e.g. contextual cueing) as a separate type of guidance or, 

like Awh et al. (2012), one could group all these phenomena into “selection history”. 

Alternatively, priming, contextual cueing, value, marking, etc. could all be seen as variants 

top-down guidance. Bottom-up guidance is driven by the stimulus. Top-down guidance 

would be guidance with its roots in the observer. This was the argument of Wolfe, Butcher, 

Lee, & Hyle (2003) and of prior versions of GS. GS6 accepts the logic of Awh, Belopolsky, 

& Theeuwes (2012). Top-down guidance represents what the observer wants to find. History 

and value guidance show how the state of the observer influences search, independent of the 

observer’s intentions. Again, the important point is that there are multiple modulators of the 

landscape of attentional priority beyond top-down and bottom-up guidance.
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Scene Guidance

Selection history makes a real contribution to attentional guidance. However, these effects 

seem quite modest if compared to “scene guidance”, the other addition to the family of 

attention-guiding factors in GS6. Guidance by scene properties was not a part of earlier 

forms of Guided Search, largely because scenes were not a part of the body of data being 

explained by the model. Given a literature that dealt with searching random arrays of 

isolated elements on a computer screen, there was not much to say about the structure of the 

scene (though we tried in Wolfe, 1994b). Of course, the real world in which we search is 

highly structured and that structure exerts a massive influence on search. In Figure 7a, ask 

which box or boxes are likely to hide a sheep. Unlike a search for a T amongst a random 

collection of L’s, where every item is a candidate target, there are sources of information in 

this scene that rapidly label large swathes of the image as ‘not sheep’.

Top-down guidance to sheep features is important here, but even with no sign of a sheep, 

scene constraints make it clear that “C” is a plausible location. Spatial layout cues indicate 

that any sheep behind “B” would be very small and “A”, “D”, and “E” are implausible, even 

though, looking at Figure 7b, there are sheep-like basic features in the fluffy white clouds 

behind “E” and the bits in the building behind “D” that share color and rough shape with the 

sheep who was, in fact, behind “C”.

Like selection history, scene guidance is a term covering a number of different modulators 

of priority. Moreover, perhaps more dramatically than the other forms of guidance, scene 

guidance evolves over time. In Figure 3, this is indicated by having two sources of scene 

information feeding into guidance. In the first moments after a scene becomes visible, the 

gist of the scene becomes available. Greene and Oliva (2009) demonstrated that exposures 

of 100 sec or less are all that are needed to permit Os to grasp the rough layout of the 

scene. Where is the ground plane? What is the rough scale of the space? A little more time 

gives the observer rough semantic information about the scene: Outdoors, rural, etc. For this 

specific example, very brief exposures are adequate to determine that there is likely to be an 

animal present (Li, VanRullen, Koch, & Perona, 2002; Thorpe, Fize, & Marlot, 1996), even 

if not to localize that animal (Evans & Treisman, 2005). Castelhano and her colleagues have 

formalized this early guidance by the layout in her Surface Guidance Framework (Pereira & 

Castelhano, 2019).

With time, other forms of scene guidance emerge. For example, Boettcher et al. (2018) have 

shown that “anchor objects” can guide attention to the location of other objects. Thus, if 

you are looking for a toothbrush, you can be guided to likely locations if you first locate 

the bathroom sink. Presumably, this form of scene guidance requires more processing of the 

scene than does the appreciation of the gistlike “spatial envelope” of the scene (Oliva, 2005). 

Since anchor objects are typically larger than the target object (sink -> toothbrush), this can 

be seen as related to the global-local processing distinction originally popularized by Navon 

(1977).

As one way to quantify scene guidance, Henderson and Hayes (2017) introduced the idea of 

a “meaning map”. A meaning map is a representation akin to the salience map that reflects 

bottom-up guidance of attention. To create a meaning map, Henderson and Hayes divided 

Wolfe Page 14

Psychon Bull Rev. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scenes up into many small regions. These were posted online, in isolation and in random 

order as a “Mechanical Turk” task in which observers were asked to rate the meaningfulness 

of each patch (i.e. a patch containing an eye might be rated as highly meaningful; a piece 

of wall, much less so). These results are summed together to form a heatmap showing 

where, in the scene, there was more or less meaning present. Meaning maps can predict eye 

movements better than salience maps calculated for the same images (Pedziwiatr, Wallis, 

Kümmerer, & Teufel, 2019). The method loses the valuable guiding signal from scene 

structure, but it is a useful step on the way to putting scene guidance on a similar footing 

with top-down and bottom-up guidance.

Rather like those classical sources of guidance, scene guidance may have a set of features, 

though these may not be as easy to define as color, size, etc. For example, in scene guidance, 

it is useful to distinguish between “syntactic” guidance – related to the physics of objects 

in the scene (e.g. toasters don’t float) and “semantic” guidance – related to the meaning 

of objects in the scene (e.g. toasters don’t belong in the bathroom; Biederman, 1977; 

Henderson & Ferreira, 2004; Vo & Wolfe, 2013).

Guidance summary

Guidance remains at the heart of Guided Search. Guidance exists to help the observer 

to deploy selective attention in an informed manner. The goal is to answer the question, 

“Where should I attend next?”. The answer to that question will be based on a dynamically 

changing priority map, constructed as a weighted average of the various sources of guidance 

(see Yamauchi and Kawahara, 2020, for a recent example of the combination of multiple 

sources of guidance). The weights are under some explicit control. Top-down guidance to 

specific features is the classic form of explicit control (I am looking for something shiny 

and round). There must be an equivalent top-down aspect of scene guidance (I will look 

for that shiny round ball on the floor). There are substantial bottom-up, automatic, and/or 

implicit sources of guidance, particularly early in a search. Factors like salience and priming 

will lead to attentional capture early in a search. More extended searches must become more 

strategic to avoid perseveration (I know I looked for that shiny ball on the floor. Now I 

will look elsewhere). One way of understanding these changes over time is to realize that 

the priority map is continuously changing over time, and to be clear Treisman’s classic 

“preattentive” and “attentive” stages of processing are both active throughout a search.

Dividing guidance into five forms is somewhat arbitrary. There are different ways to lump 

or split guiding forces. One way to think about the forms of guidance that are added in 

GS6 (history, value, & scene) is that all of them can be thought of as long-term memory 

effects on search. They are learned over time: History effects on a trial by trial basis, value 

over multiple trials, and scene effects over a lifetime of experience. This role for long-term 

memory is somewhat different than the proposed role of activated long-term memory as the 

home of target templates in search, as will be discussed later.

What are the basic features that guide visual search?

A large body of work describes the evidence that different stimulus features can guide search 

(e.g. color, motion, etc.). Other work documents that there are plausible features that do not 
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guide search: e.g. intersection type (Wolfe & DiMase, 2003) or surface material (Wolfe & 

Myers, 2010). A paper like this one would be an obvious place to discuss the evidence for 

each candidate feature, but this has been done several times recently (Wolfe, 2014, 2018; 

Wolfe & Horowitz, 2004; Wolfe & Horowitz, 2017) so the exercise will not be repeated 

here.

There are changes in the way we think about basic features in GS6. GS2 envisioned guiding 

features as coarse, categorical abstractions from the ‘channels’ that define sensitivity to 

different colors, orientations, etc. (Wolfe et al., 1992). The simulation of GS2, for example, 

made use of some very schematic, broad color and orientation filters (see Figure 3 of Wolfe, 

1994a). This works well enough for relatively simple features like color or orientation 

(though some readers took those invented filters a bit too literally). It does not work well for 

more complex features like shape. It is clear that some aspects of shape guide attention and 

there have been various efforts to establish the nature of a preattentive shape space. Huang 

(2020) has proposed a shape space with three main axes: segmentability, compactness, and 

spikiness that seems promising. However, the problem becomes quite daunting if we think 

about searching for objects. Search for a distinctive real-world object in a varied set of other 

objects seems to be essentially unguided (Vickery, King, & Jiang, 2005). By this, we mean 

that the RT x set size functions for such a search look like those from other unguided tasks 

like the search for a T among Ls or a 2 among 5s (Fig 1). On the other hand, a search 

for a category like “animal” can be guided. In a hybrid search task (Wolfe, 2012) in which 

observers had to search for any of several (up to 16) different animals, Cunningham et 

al. (2014) found that Os did not attend to objects like flags or coins; presumably, because 

no animals are that circular or rectangular. They did attend to distractors like clothing; 

presumably, because at a preattentive level, crumpled laundry has features that might appear 

to be sufficiently animal-like to be worth examining. But what are those features?

We would be hard-pressed to describe the category, “animal”, in terms of the presence 

or absence of classic preattentive features (e.g. What size is an animal, in general?). One 

way to think about this might be to imagine that the process of object recognition involves 

something like a deep neural network (DNN; Kriegeskorte & Douglas, 2018). If one is 

looking for a cow, finding that cow would involve finding an object in the scene that 

activates the cow node at the top of some many-layered object recognition network. Could 

some earlier layer in that network contain a representation of cow-like shape properties 

that could be used to guide attention in the crude manner that shape guidance appears to 

proceed? That is, there might be a representation in the network that could be used to steer 

attention away from books and tires, but would not exclude horses or, perhaps, bushes or 

piles of old clothes. This is speculative, but it is appealing to think that shape guidance 

might be a rough abstraction from the relatively early stages of the processes that perform 

object recognition, just as color guidance appears to be a relatively crude abstraction from 

the processes that allow you to assess the precise hue, saturation, and value of an attended 

color patch (Nagy & Cone, 1993; Wright, 2012).
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The Search Process

In GS6, the search process is simultaneously serial and parallel

How does search for that cow proceed? The guidance mechanisms, described above, create 

a priority map based on a weighted average of all the various forms of guidance. Attention 

is directed to the current peak in that map. If it is the target and there is only one target, the 

search is done. If not, attention moves to the next peak until the target(s) is/are found and/or 

the search is terminated. Figure 8 shows how GS6 envisions this process.

Referring to the numbers in Figure 8, (1) there is a search stimulus in the world; here a 

search for a T among Ls. (2) Items are selected from the visual system’s representation 

of that stimulus, in series. (3) Not shown, the choice of one item over another would be 

governed by the priority map, the product of the guidance processes, discussed earlier. (4) 

The selected item may be represented in Working Memory (Drew, Boettcher, & Wolfe, 

2015). This will be discussed further, when the topic of the “search template” is considered. 

(5) The object of search is represented as a “Target Template” in Activated Long Term 

Memory (ALTM). Again, more will be said about templates, later. (6) Each selected item 

is compared to the target template by means of a diffusion process (Ratcliff, 1978; Ratcliff, 

Smith, Brown, & McKoon, 2016). It is not critical if this is strictly an asynchronous 

“diffusion” process, a “linear ballistic accumulator” (Brown & Heathcote, 2008), a “leaky 

accumulator” (Bogacz, Usher, Zhang, & McClelland, 2007), or another similar mechanism. 

There may be a correct choice to be made here but, for present purposes, all such processes 

have similar, useful properties, discussed below and there is good evidence that the nervous 

system is using such processes in search (Schall, 2019). Evidence accumulates toward a 

target boundary or a non-target boundary. (7) Distractors that reach the non-target boundary 

are ‘discarded’. The interesting question about those discarded distractors is whether they 

are irrevocably discarded or whether they can be selected again, later in the search. For 

example, in a foraging search like berry picking, one can imagine a berry, rejected on first 

glance, being accepted later on. In a search for a single target, successful target-present 

search ends when evidence from a target item reaches the target boundary (6).

Several questions about this process need to be addressed.

1. What is the purpose of an “asynchronous diffuser”?

2. What is the fate of rejected distractors and how do we avoid perseverating on a 

salient distractor object?

3. How is search terminated?

The Asynchronous Diffuser or The Carwash

The slope of RT x set size functions, like those in Figure 1, can be thought of as a measure 

of the rate with which the search process, shown in Figure 8, deals with items in the visual 

display. A task like the T vs L search, shown here, might produce target-present slopes of 

about 20-40 msec per item. For purposes of illustration, suppose that this T vs L search 

produces a target-present slope of 30 msec/item and further suppose, as Treisman would 

have proposed, that this is an unguided, serial, self-terminating search. If so, then observers 
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would have to search through about half of the items, on average, before stumbling on the 

target. Taking this factor of 2 into account, if the target-present slope is 30 msec/item, the 

“true” rate would be about 60 msec/item or about 17 items per second moving through 

the system. Unfortunately, no one has developed an “attention tracker” that can monitor 

covert deployments of attention the way that an eye tracker can track overt deployments 

of the eyes so we cannot say for sure that attention is being discretely deployed in at the 

rate suggested by the slopes of RT x set size functions. There are useful hints that neural 

rhythms in the right frequency range are important to the neural basis of covert attention. For 

instance, Buschman and Miller (2009) could see monkeys shifting attention every 40 msec 

accompanied by local field potentials oscillating at 25 Hz. Lee, Whittingto, & Kopell (2013) 

built a neural inspired model to show how oscillations in this Beta rhythm range (18-25 Hz) 

could reproduce a variety of top-down attentional effects (see Miller and Buschman, 2013, 

for a review of this literature).

So, GS assumes that items are being selected one after the other and the data suggest that 

this is occurring at a rate of around 20 Hz. The problem is that no one seems to think that 

object recognition can take place in ~50 msec. Much more typical is the conclusion from 

an ERP study by Johnson and Olhausen (2003), that holds that recognition takes “between 

150-300 msec”. Even papers proposing “ultra-rapid” recognition (VanRullen & Thorpe, 

2001) are suggesting that imperfect but above chance performance takes 125-150 msec per 

object (Hung, Kreiman, Poggio, & DiCarlo, 2005; VanRullen & Thorpe, 2001). Thus, a 

model that proposes that items are selected and fully recognized every 50 msec is simply not 

plausible.

One solution has been to propose parallel processing of the display (Palmer & McLean, 

1995; Palmer, Verghese, & Pavel, 2000) or, more recently, parallel processing of items in 

some region around fixation (see discussion of the functional visual field, below: Hulleman 

& Olivers, 2017). The GS6 solution, as illustrated in Figure 8, is to propose that items 

may be selected to enter the processing pipeline every 50-60 msec or so, but that it may 

take several hundred msec to move through the process to the point of recognition. As 

a consequence, at any given moment in search, multiple items will be in the diffusion/

recognition process. Since they entered that process one after the other, the result is an 

asynchronous diffusion. A real-world analogy is a carwash (Moore & Wolfe, 2001; Wolfe, 

2003). Cars enter and leave the carwash in a serial manner but multiple cars are being 

washed at the same time. Hence the process is neither strictly serial nor parallel. In computer 

science, this would be a pipeline architecture (Ramamoorthy & Li, 1977).

It is notoriously difficult to use behavioral data to distinguish serial processes from parallel 

processes (Townsend, 1971; Townsend, 2016). GS6 would argue that it is an essentially 

fruitless endeavor in visual search. The carwash/asynchronous diffuser is both serial and 

parallel. Moreover, it is easy to imagine variations on the carwash architecture of Figure 8. 

Maybe two “cars” can enter at once. Maybe one car can pass another car, entering second 

but leaving first (this is actually illustrated in the diffusion box in Figure 8 when the second 

and third red lines cross). It will be next to impossible to discriminate between variants like 

this in behavioral data and, in fact, it does not matter very much. The important points are: 

1) selective attention appears to select one or a very few objects at one time, 2) the time 
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between selections is shorter than the time to recognize an object; and, therefore, 3) multiple 

items must be undergoing recognition at the same time.

The fate of rejected distractors and the role of inhibition of return

Returning to Figure 8, we show rejected “L”s being tossed into an extremely metaphorical 

garbage can. What does that mean? In particular, does that mean that once rejected, a 

distractor is completely removed from the search? Should visual search be characterized as 

an example of “sampling without replacement”? Feature Integration and early versions of 

GS assumed this was the case. In GS2, search proceeded from the highest spot in the priority 

map to the next and the next, until the target was found or the search ended. The proposed 

mechanism for this was “inhibition of return” (IOR; Klein, 1988; Posner, 1980; Posner & 

Cohen, 1984). In non-search tasks, if attention is directed to a location and then removed, it 

is harder to get attention back to the previously attended location (Klein, 2000). This is IOR. 

Klein (1988) applied IOR to visual search. The idea was that the rejected distractors would 

be inhibited, preventing re-visitation.

In 1998, Horowitz and Wolfe (1998) did a series of experiments in which they made IOR 

impossible; for example, by replotting all of the items on the screen every 100 msec during 

search. They found that this did not change the efficiency with which targets were found 

(i.e., the target-present slopes did not change). They declared that “visual search has no 

memory” (Horowitz & Wolfe, 1998), by which they meant that the search mechanism does 

not keep track of rejected distractors. Of course, there is usually good memory for targets 

(Gibson, Li, Skow, Brown, & Cooke, 2000). The “no memory” claim – the claim that 

visual search is an example of sampling with replacement - was controversial (Horowitz & 

Wolfe, 2005; Kristjansson, 2000; Ogawa, Takeda, & Yagi, 2002; Peterson, Kramer, Wang, 

Irwin, & McCarley, 2001; Shi, Allenmark, Zhu, Elliott, & Müller, 2019; Shore & Klein, 

2000; von Muhlenen, Muller, & Muller, 2003) and, probably, too strong. There is probably 

some modest memory for rejected distractors but not enough to support sampling without 

replacement. GS6 assumes that something like 4-6 previous distractors are remembered, in 

the sense that they are not available to be immediately reselected.

Several mechanisms probably serve to prevent visual search from getting stuck and 

perseverating on a couple of highly salient distractors.

1. There is probably some IOR, serving as a “foraging facilitator” (Klein & 

MacInnes, 1999), or maybe not (Hooge, Over, van Wezel, & Frens, 2005).

2. As noted earlier, bottom-up salience may fade after stimulus onset (Donk & van 

Zoest, 2008), and noise in the priority map may serve to randomly change the 

location of the peak in that map.

3. Observers may have implicit or explicit prospective strategies for search that 

discourage revisiting items (Gilchrist & Harvey, 2006). For example, given a 

dense array of items, observers will tend to adopt some strategy like “reading” 

from top left to bottom right. If this is done rigorously, the result is search that 

is, effectively, without replacement even though no distractor-specific memory 

would be required.
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4. Finally, in any more extended search, explicit episodic memory can guide search. 

If I know that I looked on the kitchen counter for the salt, it may be time to check 

the dining table.

GS6 abandons the idea of sampling without replacement. In our work, we never found 

evidence that observers were marking rejected distractors in order to avoid revisiting them, 

but others have some evidence and the other mechanisms, listed above, will cause the search 

process to behave as if it has some memory. In any case, it is obvious we can search 

effectively without becoming stuck on some salient pop-up ad on the webpage.

Search Termination

If we do not mark every rejected distractor, how do we terminate search when there is 

no target present? The most intuitive approach is to imagine that some pressure builds up, 

embodying the thought that one has searched long enough. Broadly, there have been two 

modeling approaches. One approach assumes that, at each time point or after each rejection 

of a distractor, there is some probability of terminating the search with a target-absent 

response. That probability increases with each rejected distractor according to some rule 

(Moran, Zehetleitner, Liesefeld, Müller, & Usher, 2015; Moran, Zehetleitner, Mueller, & 

Usher, 2013; Schwarz & Miller, 2016). Alternatively, one can propose that an internal signal 

accumulates toward some quitting threshold and that search is terminated if that threshold is 

reached (Chun & Wolfe, 1996; Wolfe & VanWert, 2010). Some models have aspects of both 

processes (Hong, 2005) and there are other approaches; e.g. proposing a role for coarse to 

fine processing (Cho & Chong, 2019).

As in earlier versions of GS, GS6 uses diffusion of a signal toward a quitting threshold, 

though we have implemented probabilistic rules in simulation and have found that the results 

are comparable. The GS6 version is diagrammed in Figure 9.

Items are selected in series (1) and enter into the asynchronous diffuser, described previously 

(2). Distractors are rejected. The extent to which rejected distractors are remembered and 

not reselected is a parameter of the model. Our assumption is that any memory for rejected 

distractors is quite limited (Horowitz & Wolfe, 2005). A noisy signal (4) diffuses toward a 

quitting threshold (5). If the threshold is reached, search is terminated, resulting in either 

a true negative response or a false negative (miss) error. If no item has reached the target 

threshold to produce a true positive (hit) or false positive (false alarm error), and if the 

quitting signal has not reached the quitting threshold, the process continues (7) with another 

selection.

Critically, the quitting threshold (5) is set adaptively. If the observer makes a true negative 

response, the threshold is lowered making subsequent search terminations faster. If the 

observer misses a target, the threshold is raised. The size of increases and decreases in the 

threshold is determined by the observer’s tolerance for errors. If errors are costly, threshold 

increases markedly after an error. This would result in longer response times and fewer 

errors. The degree to which a search is guided is also captured by this adaptive process of 

setting the quitting threshold. Imagine that 50% of items in a letter search can be discarded 

as having the wrong color to be a target, if the quitting threshold is set for an unguided 
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search, no targets will be missed and the quitting threshold will be driven down to allow for 

markedly faster target-absent response.

A second adaptive process governs the start point of the diffusion in the asynchronous 

diffuser (6). In signal detection terms, the separation between the target and distractor 

bounds in the diffuser gives an estimate of the discriminability of targets and distractors 

(roughly, but not quite, d’ – see below). The starting point of the diffusion is related to 

the criterion. If the start point is closer to the target bound than to the distractor bound, 

this corresponds to a liberal criterion (c > 0). If the observer finds a target, the starting point/

criterion moves up to a more liberal position. If the observer makes a false positive error, 

the starting point/criterion moves down to a more conservative position. This adjustment is 

important in accounting for target-prevalence effects, discussed below.

This is illustrated in the simulation below but, before turning to the simulation, it is 

important to note that the process, described here, applies to laboratory experiments with 

hundreds of trials of the same search. We need to think somewhat differently about searches 

in the real world.

• Most real-world search tasks are one-time or intermittent tasks. For instance, 

consider search in the refrigerator for the leftovers from last night’s dinner. There 

is going to be one trial of this search. If someone else has eaten the leftovers, 

you will need to stop when you have searched long enough. We assume that a 

combination of a history of prior searches and an assessment of the current state 

of the refrigerator allows you to set an initial quitting threshold. In a laboratory 

version of that task, you could then adaptively adjust the threshold to optimize 

your quitting time. A one shot setting of the threshold will allow you to quit in 

a reasonable, even if, probably, not an optimal amount of time. That one shot 

setting will be based on a long-term adaptive process of learning how long this 

sort of task should take.

• Even laboratory tasks require the equivalent of that assessment of the contents 

of the refrigerator. The quitting threshold must be different for a set size of 2 

and a set size of 20. Evidence suggests that Os correct somewhat imperfectly for 

changes in set size with the result that Os reliably make more errors at larger set 

sizes (e.g. Wolfe, 1998). Interestingly, performance in basic search tasks in the 

lab is about the same whether several set sizes are intermixed, or if set sizes are 

run in separate blocks. This suggests that the quitting threshold (QT) should be 

expressed as:

QT = f(set size) ∗ (time cost per item)

• Moreover, this f(set size) term should be f(effective set size), where the “effective 

set size” is some estimate of the number of items that would be worth selective 

attention. In the colored letter search, mentioned above, the letters of the wrong 

color would not be part of the effective set size. In the leftovers search, you 

would search through items that could be the leftovers and not attend to each egg 
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in the egg tray. The idea of the effective set size captures the impact of guidance 

on the search process.

Simulating the search process

A full computational model of GS would require models of early vision, gist/ensemble 

processing, scene understanding, and more in order to create a priority map. Sadly, that is 

more than can be done here. In this paper, we report on the results of a more limited project 

to simulate the mechanics of search as described in Figure 9. In effect, this is like simulating 

something like a T among Ls or 2 among 5s search (Fig 1E) where the priority map is not 

relevant (The GS2 simulation had such a condition). Even without the priority map, there 

are many moving and interlocking parts in the two diffusion mechanisms proposed here. In 

the absence of an explicit simulation (or a mathematically forma description), it is hard to 

know if those parts interact to produce plausible results. Our simulation suggests that this 

architecture can reproduce a range of important findings from the literature and can do so 

with a fixed set of parameters. That is, we do not need one set of parameters to explain 

target-prevalence effects and another set to explain the target-absent to target-present ratio 

of the slopes of the RT x set size functions, for example. The simulation does not promise 

to identify the correct values for all parameters. For example, the idea of the asynchronous 

diffuser is that multiple items can be selected in series and then processed at the same time. 

How many items can be selected? We don’t know and we don’t have a clear empirical way 

to get a precise answer. In the simulation, a range of values work. We show results for a 

limit of five items, but it does not matter much if we repeat the simulation with 3 or 6 

items. MATLAB code for this simulation will be posted at https://osf.io/9n4hf/files/ , and it 

should be possible to try different parameters. Guided Search has always had a large number 

of parameters that can be adjusted as Miguel Eckstein once elegantly illustrated (Eckstein, 

Beutter, Bartroff, & Stone, 1999). This remains true in GS6. There are two points to be 

made here. First, there is no reason to assume that the real human search engine does not 

have a large number of parameters. Second, the goal is to show that the GS6 search engine 

can produce a range of findings without the need to specifically adjust parameters for each 

simulated experiment.

Simulation specifics

The simulation of the architecture, proposed in Figure 9, has the following properties.

• The asynchronous diffuser has a capacity of 5 items.

• A new item is selected every 50 msec, if there is space available.

• A currently selected item cannot be reselected but other items can be reselected 

so this model has a memory for, at most, five items.

• The diffuser is updated every 10 msec with a diffusion rate of 1/20th of the 

distance to either the target or distractor bounds (given a neutral criterion starting 

point, see below). Thus, without noise it would take 200 msec from selection to 

target identification.
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• The diffusion is a noisy process with a standard deviation equal to 2.5X of the 

diffusion rate.

• The quitting signal begins to accumulate after the first item has been identified. 

This diffusion is also a noisy process with a standard deviation equal to 2.5X of 

the diffusion rate.

• If an item hits the target bound, the trial ends with a target-present response. If an 

item hits the distractor bound, it is removed from the diffuser and a new item can 

be selected.

• If the quitting signal reaches the quitting threshold, the trial ends with a target-

absent response.

• On each trial, the quitting threshold is proportional to the set size. That is, if the 

set size is 20, the quitting threshold is twice what it would be for a set size of 10. 

Linearity is probably an oversimplification since the quitting threshold would be 

proportional to some estimate of numerosity and not a perfectly accurate count.

• Target-present responses adjust the starting point of the asynchronous diffuser. If 

the response is correct (a hit), the starting point moves up one step. In effect, the 

criterion becomes more liberal. If the response is a false positive (false alarm), 

the starting point moves down by a much larger step, set to 16X of the upward 

step.

• Target-absent responses adjust the quitting threshold. If the response is a true 

negative, the quitting threshold declines by one step, making subsequent quitting 

faster. If the response is a false negative (miss error), the quitting threshold 

increases by a larger step defined as (downward step)/(desired error rate). Thus, 

if the simulation was aiming for an 8% error rate, the upward step would be 

1/0.08 = 12.5X the downward step.

• The upward step is further scaled by the target prevalence. Prevalence refers to 

the proportion of trials that have a target present. Most search experiments are 

run at a prevalence of 0.5 or 1.0 if the task is to localize or identify the target. 

Prevalence has strong effects on error rates (Wolfe, Horowitz, & Kenner, 2005; 

Wolfe & Van Wert, 2010). In the simulation, the actual upward step size after an 

error is (downward step)/(desired error rate * prevalence * 2).

The simulation was run for 10000 trials at each of five prevalence levels (.1, .3, .5, .7, .9). 

Set size was randomly distributed among set sizes 5, 10, 15, & 20. The intended error rate 

was set to 8%. As noted, the parameters are easily varied. This is not a claim about exact 

values of any of these. It is a claim that one set of values will produce a set of plausible 

search behaviors.

Simulation Results

Figure 10 shows the standard results for a visual search experiment (for comparison, see, for 

example, Wolfe, Palmer, & Horowitz, 2010). Reaction Time (RT) rises linearly with set size. 

Correct target-present RTs are faster than target-absent. Miss RTs are somewhat faster than 
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True Negative RTs. Miss error rates average about 8%, which was the goal in this run of 

the simulation. Error rates increase with set size, as is typical in search experiments. At 50% 

target prevalence, false alarm errors are markedly less common than miss errors; again, as is 

typical inlaboratory studies.

Slope ratios

One might wonder about the ratio of target-absent to target-present slopes. GS6 can be 

described as a version of a serial, self-terminating search and we would have typically 

expected such searches to produce a 2:1 slope ratio, not the ~3:1 ratio found here (Sternberg, 

1969). However, the 2:1 ratio assumes perfect memory – sampling from the display without 

replacement. With perfect memory, Os must sample an average of (N+1)/2 items to find 

the target and N to reject all items (N = set size). Once memory is imperfect, the impact 

of increasing set size is proportionally greater on absent trials. For pure sampling with 

replacement (no memory), it takes an average of N selections to find the target in a set 

size of N, but it takes more than 2N selections to visit all distractors. This means that the 

slope ratio will be greater than 2:1. If we simulate the situation where there is memory for 

the last five items selected, the predicted slope ratio is about 3, as it is in Figure 10. The 

exact amount of memory is not critical. Predicted slope ratios are ~3 when memory is less 

than about half of the set size. In fact, though it has been assumed that 2:1 slope ratios 

are the rule in the empirical data, the actual empirical data tends to produce slope ratios 

greater than 2:1 (Wolfe, 1998) including in children (Gil-Gómez de Liaño, Quirós-Godoy, 

Pérez-Hernández, & Wolfe, 2020). It should be noted that, while empirical slopes are often 

greater than 2.0, they are typically less than 3.0. It seems possible that factors like systematic 

search strategies (e.g. “reading” the display top to bottom) make earlier quitting possible. 

This would be worth testing.

RT Distributions

Continuing this discussion of the role of memory for rejected distractors, if the search 

process was really a process of simple sampling without replacement, the distribution of 

target-present RTs would be uniform (with some blur due to noise). For instance, with a set 

size of 10, you would have a 10% chance of landing on the target on the first selection, 10% 

on the second, and so forth. The RT distribution for target-absent trials would be narrower 

than that of target-present since target-absent would require selection of all items on every 

absent trial. Of course, there would be perceptual and motor components to the RT that 

would blur this simple picture of the RT distribution. In practice, however, this is not what 

empirical RT distribution looks like. Real RT distributions in search (and in general) are 

positively skewed (Palmer, Horowitz, Torralba, & Wolfe, 2009). Simple diffusion models 

produce positively skewed RT distributions (e.g. Vanderkerckhove & Tuerlinckx, 2007). 

This was one of the motivations for adopting diffusion processes into GS6. However, the 

GS6 architecture with its multiple, interacting diffusion processes needs to be simulated to 

characterize its RT distributions. The distributions for the simulated data, shown in Figure 

10, are shown in Figure 11B. The empirical data in Figure 11A are drawn from Figure 4c of 

Wolfe, Palmer, & Horowitz (2010). Although with some quantitative differences, it is clear 

that the two sets of distributions are qualitatively very similar. The minimum RT for present 
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trials is longer in the real data than in the simulation, suggesting that the simulation needs a 

minimum motor constant added.

Prevalence effects

Target prevalence is an important factor in visual search behavior having both basic and 

applied consequences (Wolfe, Horowitz, & Kenner, 2005; Horowitz, 2017). It is also a 

useful constraint on models of search (Schwarz & Miller, 2016). In the empirical data, 

lower prevalence is associated with elevated miss errors and with speeded target-absent 

trials. High target prevalence (less frequently studied: Wolfe & VanWert, 2010) is associated 

with elevated false positive errors and longer target-absent trials. This changing profile of 

errors can be converted into signal detection measures. Criterion moves from conservative 

at low prevalence to liberal at high prevalence. D’ does not change dramatically with 

prevalence (Gur et al., 2003). It has been instructive to plot zROC curves for error rates 

generated at different prevalence values (e.g. Figure S1c of Wolfe & Van Wert, 2010). A 

zROC function plots the z-transformed Hit rates against z-transformed false alarms. This 

converts the normally curved, standard ROCs into straight lines, if those ROC curves are 

well-behaved. The slope of a zROC is 1.0 when the variance of underlying signal and noise 

distributions are equal. Interestingly, zROC slopes of less than 1.0 (~0.6) have been found in 

baggage screening (Sterchi , Hättenschwiler, & Schwaninger, 2019) and radiology (Kundel, 

2000), as well as in laboratory studies of recognition memory (Mickes, Wixted, & Wais, 

2007; Wixted, 2007). A slope of less than 1 would be consistent with variance of the noise 

distribution being less than the variance of the signal.

Figure 12 shows the simulation’s performance as a function of prevalence. Figure 12A 

shows that prevalence has its effect on RTs for negative responses. These RTs increase 

with prevalence. RTs for positive responses (Hits and alarms-not shown) do not change 

much with prevalence. Figure 12B shows the change in the signal detection values of d’ 

and criterion (c). Criterion changes from conservative (>0) at low prevalence to liberal (> 

0) at high prevalence. D’ is not the right measure when the zROC slope is not 1.0 (See 

Fig. 12D). However, this figure is still useful in showing that standard d’ does not change 

dramatically with prevalence. A more appropriate measure like d(a) would not change at all 

(Macmillan & Creelman, 2005). Figure 12C shows the ROCs derived from the hit and false 

alarm data at each prevalence level. Note that the axes are drawn to magnify the curve. It 

would be confined to the upper left of a standard ROC graph because we are simulating 

highly discriminable targets and distractors. Figure 12D shows the z-transformed zROC 

curve. It has a slope of 0.77, somewhat greater than the 0.6 found in the literature. The slope 

is 0.65 if data from set size 5 are removed. The small set size produces some situations 

where false alarm rates drop to near zero, making these calculations unstable. Overall, the 

simulation successfully captures the results from Wolfe and VanWert (2010). Wolfe and 

VanWert (2010) propose that this pattern of results require a model that allows prevalence 

to influence both criterion and the quitting threshold. Presumably, the GS6 simulation is 

successful because it has adaptive processes that adjust both of those parameters. If either of 

those adjustments is disabled, the pattern of results is not preserved.
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Error Rates

The miss error rate is given to the simulation as a goal. The quitting threshold adjusts itself 

over trials to meet that goal. In a separate run of the simulation, using the parameters that 

were used above, we varied the miss error goal from 3% to 15%.

Results of the simulation are given in Figure 13. Figure 13A shows that the quitting 

thresholds, that started at the same point for all error goals, evolved so that the lowest 

error goal (3% - the top, red line) produced the highest quitting threshold. The starting point 

threshold in the asynchronous diffuser, controlling the false alarm rate does not change with 

error goal because the goal is for miss errors, controlled by the quitting signal diffuser. 

Figure 13B shows the simulated error rates as a function of the Error Goal. It can be seen 

that the model produces the desired error rates. It also captures the tendency to make more 

errors at larger set sizes. The top (blue) line shows errors for the largest set size (20). False 

alarm rates are not changed by changing the miss error rate goal. Other aspects of the 

simulation performance are not qualitatively altered by the change in error rate. Absent RTs 

decrease as error rate increases (a classic, speed-accuracy tradeoff).

Simulation – Summary

The simulation of the architecture in Figure 9 is intended to show that this proposed 

mechanism, with all of its interacting parts, is capable of producing a plausible pattern 

of results. It captures basic set size effects as well as RT distributions and the effects of 

prevalence. We do not claim that this is the only possible model that could produce these 

results. It would be interesting to see if a very different architecture could do so. Nor do 

we argue that these are the only parameters that will allow this model to produce plausible 

results. Within limits, many of these parameters can be varied without completely ‘breaking’ 

the model. That said, there are critical aspects of the model and it can be ‘lesioned’ by 

disrupting them. For example, the quitting threshold is currently adjusted by the set size 

on each trial (presumably, an analog of the observer, looking at the display and deciding 

how much ‘stuff’ needs to be searched through on the current trial). If we eliminate that 

adjustment and use the same quitting threshold at all set sizes, then the slope of the RT 

x set size function for target-absent trials becomes zero and the miss error rate, averaged 

across set sizes, becomes somewhat larger than the error goal. If the adjustment of either the 

quitting threshold or the diffuser starting point is disabled, the pattern of results changes. If 

the main components are intact, the model can tolerate some variation in the parameters.

Spatial aspects of search – The functional visual fields (FVF)

Thus far, we have not considered the spatial aspects of the search process. In the simulation, 

for example, the search “stimulus” is simply an array of numbers whose distance from each 

other in space has no meaning. Eye movements are not implemented in the simulation. Of 

course, in the world of real visual searches, space matters. In classic GS, spatial factors 

were largely ignored. In many of the search experiments on which GS2 was based, stimuli 

were big enough and deliberately spaced widely enough to minimize acuity and crowding 

effects. In real searches in scenes, of course, no such stimulus control is possible. Any 

comprehensive model of search needs to acknowledge that the time to find a target, 1 deg 
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from fixation is likely to be markedly shorter than the time to find the same target 10 deg 

from fixation.

Even if GS largely ignored the topic, it has been understood since Sanders (1963; 1970) that 

there is a Functional Visual Field (FVF) around the current fixation that defines the current 

spatial limits of search. It can be defined as “an index of the total visual field area from 

which target characteristics can be acquired when eye and head movements are precluded” 

(p14 of Scialfa, Kline, & Lyman, 1987). Elsewhere this is also referred to as the Useful Field 

of View (Mackworth, 1965; Sekuler & Ball, 1986). The terms are essentially equivalent. We 

use FVF here. The idea of the FVF has been gaining in influence in recent years, paralleling 

the increasing use of eye tracking in search experiments. In search, the FVF becomes a 

measure of what can be processed with attention in a single fixation (Liesefeld & Mueller, 

2020; Motter & Simoni, 2008; Young & Hulleman, 2013). Hulleman and Olivers (2017) go 

so far as to suggest that we should not be concerned with attention to individual items, but 

rather to treat processing of all items within the FVF as the relevant unit in search. In this, 

they update classic parallel models of search ( Palmer et al., 2000) to be parallel processing 

within the FVF with serial fixations to move the FVF. We don’t agree (Wolfe, 2017), but we 

do agree that it is important to consider the role of eye movements and of the resulting FVF.

In fact, in GS6, there are three FVFs to be considered. These are not separate components 

of the model in the sense that the two diffusers of Figure 9 are separate components. Rather, 

they are logically distinct senses of what we mean when we talk about the FVF. These three 

FVFs are illustrated in Figure 14. The concept of an FVF can be divided up in other, similar 

ways (e.g. Frey & Bosse, 2018).

A target cannot be discriminated from a distractor if it is too small or too crowded by other 

contours. These acuity and crowding limitations exist independent of constraints on search. 

For example, in Fig 14A, imagine that observer is fixated on the “X”. They might be cued 

to the green or orange circle. They might be able resolve the “T” in the green circle but not 

the T in the orange circle. The orange T would be said to lie outside the resolution FVF 

even though it is attended. A more detailed account of this type of FVF can be found in 

Watson (2018). The exploratory FVF in Fig 14B is defined by overt movements of the eyes 

(as distinct from covert deployments of attention). If the eyes can go to an item, it lies inside 

the exploratory FVF. Note that this FVF is better imagined as a 2D probability function, 

with fixation to near items more likely than fixation to more distant items. An item can be 

inside the exploratory FVF even if it is outside the resolution FVF. In the example in Fig 

14B, suppose the observer knows that the target is red, the next saccade might be directed, as 

shown, to a region with several red items, even if they cannot be resolved as Ts or Ls. This 

exploratory FVF will be task dependent. If the color were irrelevant, the probability map of 

overt deployments of the eyes would be different in 14B even though the stimulus (and, thus, 

the resolution FVF) would be unchanged.

The third FVF is defined by covert deployments of attention. If an item can be covertly 

attended during the current fixation, it lies inside the attentional FVF. Again, this will be 

probabilistic. An item can be inside the attentional FVF and yet not attended on this fixation 

if covert attention is otherwise occupied. This is illustrated in Fig 14C, where we imagine 
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that the 6 green-circled items are processed during the fixation though other selections 

would have been possible within that attentional FVF. The idea of an attentional FVF does 

not require a commitment to serial sampling of items by covert attention, though serial 

sampling is the GS6 proposal. Models like Hulleman and Olivers’ (2017) have a rather 

different view of what is happening. They argue that summary statistics are computed across 

the FVF and that nothing is known about individual items inside the FVF. They would 

equate the resolution and attentional FVFs, arguing that, if you can’t resolve something, 

it does not contribute to summary statistics that, in their model, allow the observer to 

determine if the target is present.

Returning to Fig 14a, it would be possible to attend to the orange circle, putting that 

item inside the attentional FVF while being unable to successfully identify the T, placing 

it outside the resolution FVF. In practice, the attentional FVF is probably similar to the 

resolution FVF because there is not much point to attending to items you can’t recognize. 

However, they do not need to be the same FVFs.

Measuring FVFs

The resolution FVF can be measured by standard psychophysical measures: Cue a location 

and determine the probability that the item at that location can be identified. The attentional 

and exploratory FVFs can be estimated from eye tracking data (Wu & Wolfe, 2019). Figure 

14C imagines the next saccade going to the target, T. If it was identified during the current 

fixation, it must be within the attentional FVF. The set of all such saccades maps out an 

estimate of the bounds of the attentional FVF. Actually, the analysis is somewhat more 

complicated for several reasons. First, sometimes the target is recognized late in the fixation 

period after a saccade is programmed elsewhere. The saccade goes away from the target, 

but then the next saccade goes to the target. In other cases, there may be multiple fixations 

near the target, as the item is scrutinized. This is especially true in difficult search tasks like 

those in breast cancer screening. These refixations can be filtered out of the attentional FVF. 

Finally, the target can be fixated. Then the eyes move away to examine other items before 

the eyes go back to the target as the observer makes a response. That return saccade may be 

driven more by memory for the target position than by the attentional FVF. Still, with some 

assumptions about how to filter the data, it is possible to use these targeting saccades to 

estimate the attentional FVF. The other saccades, the ones that do not go to the target, map 

out the exploratory FVF. Saccades on target absent trials, where there can be no targeting 

saccades, provide an easier estimate of the exploratory FVF. The resolution FVF would be 

measured by more standard psychophysical methods, cueing the observer to attend to one 

location while fixating on another.

In a simple T vs L search, Wu et al. (2019) found that targeting saccades mapped out an 

attentional FVF of 5-8 deg radius [see also Young, 2013 #14509]. The exploratory FVF was 

somewhat larger than the attentional FVF (Wu & Wolfe, 2019) as one might expect. It is 

important to reiterate that the sizes of the attentional and exploratory FVFs are not fixed 

properties of the human search engine, they are ways of talking about the mechanics of 

search and about the interaction of that search engine with a specific stimulus. As an obvious 
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example, if the FVFs for the search for a small, low contrast mass in a mammogram will be 

different than the FVFs for the search for a red spot on the same image.

The eye tracking data also make it clear that the attentional FVF, like the exploratory FVF 

is probabilistic. If everything inside the attentional FVF were fully processed, then a target 

inside that FVF would be found. However, Wu et al. (2019) found that target Ts within 2 deg 

of fixation, well within that 5-8 deg FVF, were only fixated within the next three fixations on 

about 70% of instances. The finding that easily detectable items can be missed, even within 

the attentional FVF has obvious implications for socially important search tasks like those in 

medical image perception (Berlin, 2007; Goddard, Leslie, Jones, Wakeley, & Kabala, 2001; 

Kundel, 2007). Moreover, it is clearly related to phenomena like inattentional blindness and 

change blindness, where Os can fail to report clearly visible items, even when they have 

been fixated (Simons & Rensink, 2005; Mack & Rock, 1998).

The role of the FVF

As noted earlier, the FVF is absolutely central to some accounts of visual search (Hulleman 

& Olivers, 2017). If one is focused on the role of eye movements in search and if one 

is relatively agnostic about the role of covert attention during fixation, it makes sense to 

emphasize the FVF since search, at that point, becomes a succession of deployments of 

the FVF over the search array (Rothkegel, Schutt, Trukenbrod, Wichmann, & Engbert, 

2019). The pattern of these deployments gives an answer to the question, “How much 

of the image was attended?”. That answer is important to the understanding of errors in 

fields like radiology (Ebner et al., 2017; Lago, Sechopoulos, Bochud, & Eckstein, 2020) 

or driving (B. Wolfe, Rosenholtz, & Reimer, 2017). In those settings, it is important to 

try to distinguish between errors made because the observer/expert never “looked at” the 

target (search errors) or because they looked at the target and failed to successfully process 

what they saw (recognition and decision errors – the taxonomy comes from Kundel and 

colleagues Kundel, Nodine, & Carmody, 1978; Nodine, Mello-Thoms, Kundel, & Weinstein, 

2002). As a practical intervention to reduce errors, efforts are made to expand the FVF in the 

hopes of improving performance (Ball, Beard, Roenker, Miller, & Griggs, 1988; Edwards, 

Fausto, Tetlow, Corona, & Valdés, 2018).

In terms of the GS6 architecture, shown for example in Figure 9, the impact of the FVF 

is relatively muted. The input to the asynchronous diffuser in Figure 9 can be seen as 

being driven by the FVF. The eyes move to some location. Multiple items are loaded into 

the diffuser from that vicinity. Then the eyes go elsewhere and the process is repeated. 

In modeling GS6, the pattern of RTs and errors is much the same if items are sampled 

with or without spatial constraints. In reality, there is no doubt that real-world search is 

constrained by eye movements and the FVF. Acuity and crowding limits, if nothing else, 

ensure that will be true. However, the RT distributions, error rates, etc., in Figures 10-13 are 

not dependent on a spatial constraints on selection. In a sense, FVFs and the diffusion and 

quitting mechanism could be seen having independent “main effects” on search.

Eye movements and the FVF may serve to provide the equivalent of some added memory to 

visual search. Eye movements and oculomotor inhibition of return may serve as “foraging 

facilitators” (Hooge et al., 2005; Klein & MacInnes, 1999; but see Smith & Henderson, 
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2009) and/or saccadic momentum may keep the eyes moving in the same direction over 

multiple saccades (MacInnes, Hunt, Hilchey, & Klein, 2014; Wilming, Harst, Schmidt, & 

Konig, 2013). These processes, combined with the FVF, make it less likely that search 

would be sampling in a fully amnesic manner, with replacement, and more like the earlier 

notions of search as a serial, self-terminating process, sampling without replacement from 

the search stimulus. Strict, prospective plans like reading an image/page from left to right 

and top to bottom effectively provide more memory. It would be interesting to see if the 

probabilistic character of the attentional FVF would persist if a prospective, reading-style 

plan was imposed on the search. That is, would Os continue to miss some targets near 

fixation while scanning the image in a highly systematic manner? Presumably, the observer 

would be sure that he had ‘looked at’ the whole image. Proofreading errors might be seen as 

an example.

To summarize, while most searches are certainly characterized by the deployment of FVFs 

around the visual field, it is not the FVF, itself, that is responsible for the detailed mechanics 

of search in GS6. Models like that of Hulleman and Olivers’ (2017) give primacy to the 

FVF. Models like GS6 give primacy to covert selection of items. Rather like the older serial/

parallel debate, these alternatives may be difficult to distinguish in the data and may reflect 

two views of the same underlying process.

Search Templates and Hybrid Search

In order to search for something, there must be some representation of that target, held in 

the mind. This is often referred to as the “search template”. The term “template” must not be 

taken too literally. The literal sense is of something used to make exact copies, like a stencil, 

but we can obviously have a search template for “animal” or “tool”, or other categories 

that are not visually defined in any precise manner. There has been considerable interest in 

templates in search over the last decade. Much of this has focused on the idea that the search 

template resides in working memory (e.g. Carlisle, Arita, Pardo, & Woodman, 2011; Grubert 

& Eimer, 2018; Gunseli, Meeter, & Olivers, 2014; Rajsic, Ouslis, Wilson, & Pratt, 2017; 

van Moorselaar, Theeuwes, & Olivers, 2014). The core observation comes from experiments 

where observers are asked to hold something in working memory (e.g. a color) while doing 

a search task. Results show that the search is biased toward items resembling the contents of 

working memory (for a review, see Olivers, Peters, Houtkamp, & Roelfsema, 2011) though 

see (Woodman, Vogel, & Luck, 2001);

GS6 holds that there are two templates hidden in the term “search template”, and that these 

need to be distinguished. The point is illustrated in Figure 15.

On the left are eight animals. You could easily memorize them for a subsequent search 

task in which you needed to look for any instance of any of these eight. This would be 

a “hybrid search” task. Hybrid search is defined as searching for any of several possible 

targets at the same time (Schneider & Shiffrin, 1977; Wolfe, 2012). Hybrid search can be 

done quite easily for 100 specific items (Wolfe, 2012). Less precisely defined categories 

(e.g. animals, signs, etc.) can be the targets of hybrid search as well, though in smaller 

numbers (Cunningham & Wolfe, 2014)
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When you search the display on the right of Figure 15, for instances of the eight possible 

targets, two representations of the target set are at work. These can be named the “guiding” 

and “target” templates. First, your search will be guided to animals and not to signs because 

there are basic animal shape features that allow you to reject the signs preattentively. 

We can call that representation of the targets, the “guiding template”. It is simply the 

representation of the top-down guidance, available in the current task. If all the animals 

had been yellow, yellow would have been added to the guiding template. It is perfectly 

reasonable to imagine that the guiding template resides in working memory and, indeed, 

most of the demonstrations of the role of the template in working memory use simple 

guiding features like color (e.g. Hollingworth & Luck, 2009).

A guiding template can be established and/or influenced in a number of ways, harkening 

back to the discussion of forms of guidance, earlier in this paper. Clearly, some sort of 

template is established by the top-down, volitional act of deciding to look for, let us say, 

a blue disk. Moreover, that template can also be shaped by the prior history of search. In 

studies like that of Kristjansson & Johannesson (2014) one can see the effects of priming 

more dramatically, in conjunction search, where top-down guidance is important than in a 

pop-out search where not much of a template is needed since bottom-up salience will get 

you to the target. These priming effects on the template will occur implicitly, as will tuning 

of the template as implicit processes try to figure out how to guide optimally (e.g. Geng, 

DiQuattro, & Helm, 2017).

Once attention selects an animal, you need to determine if this animal is one of the members 

of your specific memory set. For that, you need a more precise template, adequate to allow 

you to say that indeed, this crab is the specific crab that you were holding in memory and 

that this owl is not the bird of prey who was in the set. These “target templates” cannot 

reside in working memory because working memory has a limited capacity and no theory of 

working memory will permit 100+ objects to be stored there. Moreover, we have found that 

hybrid search is not crippled when working memory is loaded with unrelated items (Drew 

et al., 2015). We propose that these templates live in “activated long-term memory (ALTM)” 

(Cowan, 1988, 1995), the piece of long-term memory that is relevant to the current task.

This is not a criticism of the work on templates in working memory. Debates about whether 

you can guide to one or two properties at the same time, for instance, remain interesting 

(Bahle, Thayer, Mordkoff, & Hollingworth, 2019; Olivers et al., 2011). We are simply 

noting that there are two senses in which the term template is being used in the search 

literature, and that these should be distinguished. The evidence suggests that attention cannot 

be guided on the basis of high-level object identity. A specific object will not ‘pop-out’ of 

a display of other objects, unless it is possessed of some unique basic feature like color 

(Vickery, King, & Jiang, 2005; Wolfe, Alvarez, Rosenholtz, Kuzmova, & Sherman, 2011). 

At the same time, a list of the basic features of an object will generally be inadequate to 

confirm that an item in the visual scene is the specific target, held in memory. Guidance and 

identification are separate tasks and require separate internal representations or templates.
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Other search tasks & Limitations

In this final section, we will mention a few remaining topics and limitations - briefly in order 

not to make this paper longer than it already is. In particular, it is worth reiterating a point 

made in the context of the GS6 simulation, earlier. GS6 remains a model of a specific class 

of laboratory search tasks. These are tasks where observers look for a target item among 

distractor items for a block of trials, often several hundred repetitions of the same task. The 

claim and assumption of much of the search literature are that what we learn about in such 

artificial situations, applies to real life where we almost never search for the same thing 

over and over. For the present, this needs to be a promise for lines of future work. Here, we 

sketch a few of those lines and comment on how GS6 might be extended to handle these 

topics.

1. Multiple target search: Sometimes there may be an unknown number of targets in 

a search. For example, a breast x-ray could contain two masses, or one or none. 

A piece of carry-on baggage might contain a water bottle and a knife. It is known 

that finding a first target can make it less likely that you will find a subsequent 

target. This has been known as “Satisfaction of Search” effect (Berbaum et 

al., 1990; Berbaum et al., 2015; Tuddenham, 1962), and more recently, as 

“Subsequent Search Misses” (Biggs, 2017; Cain, Adamo, & Mitroff, 2013). GS6 

would accommodate this situation by requiring the use of the quitting threshold 

to end all trials in multitarget search since you could never be sure you are done 

after finding a target. The quitting threshold might be reset to zero after a target 

was found. It would be interesting to determine if the architecture of Figure 9 

would produce the satisfaction of search effect.

2. Foraging: When there are many targets in a scene (e.g. berry picking) the search 

termination rule changes, especially if observers are not required/expected to 

pick every target. In these foraging tasks, the marginal value theorem (MVT; 

Charnov, 1976) says that observers should leave the current patch/scene when the 

current rate of return drops below the average rate of return for the task. Broadly 

speaking, humans follow the MVT in a basic berry picking paradigm (Wolfe, 

2013), though they start to deviate systematically with changes in patch quality 

(target prevalence; Fougnie, Cormiea, Zhang, Alvarez, & Wolfe, 2015; Wolfe, 

2013). It would be interesting to see if MVT behavior would emerge from a 

version of a GS6 quitting rule. The animal literature is filled with other forms of 

foraging (e.g. hunting for prey rather than grazing for berries). These have been 

little studied in humans.

3. Hybrid foraging: In hybrid foraging tasks, observers collect multiple instances of 

several types of target (Wolfe et al., 2016). Hunting for several different types of 

blocks in the Lego box would be one natural example. For GS6, hybrid foraging 

is interesting because of the task switching that does (or does not) occur during 

the course of a search within a single scene/patch. Consider a simple hybrid 

foraging task in which observers collect blue and green dots among red and 

yellow distractors (Kristjansson, Johannesson, & Thornton, 2014; Kristjánsson, 

Thornton, & Kristjánsson, 2018). In this task, observers can continue picking 

Wolfe Page 32

Psychon Bull Rev. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the current target or switch to the other, creating a different way to study history/

priming effects in search. Moreover, the quitting decision for a screenful of items 

becomes a choice between leaving the patch/screen versus switching to another 

target type, unless, of course, it is possible to search for (and guide to) more than 

one target at a time (see, again, the question of guiding templates).

4. Quitting thresholds in natural scenes: Scenes complicate the modeling of 

search because it is nearly impossible to define the “set size” in a real scene. 

Though this might be more tractable if we focused on defining the “effective” 

(Neider & Zelinsky, 2008; Yu, Samaras, & Zelinsky, 2014) or “functional” 

(Wolfe, et al., 2011) set size – that is, the set of items relevant to the current 

search. Assessing the effective set size would involve preattentive/non-selective 

ensemble perception (Whitney & Yamanashi Leib, 2018), and numerosity 

judgements (Burr & Ross, 2008). As mentioned earlier, GS6 would need to 

be adapted so that a quitting threshold could be set after a single glance at a 

novel scene. The observer would need to be able to say (implicitly), “This scene 

contains 10 candidate target objects. I will base my quitting threshold on that 

estimate.” Alternatively, other measures like clutter (Neider & Zelinsky, 2011) or 

congestion (Rosenholtz, Li, & Nakano, 2007) could be used to assess how much 

relevant ‘stuff’ there is in an image without recourse to a countable effective set 

size.

5. Extended search in scenes: Most of the data on search comes from tasks that 

take no more than a few seconds to complete. In no small part, this has been a 

methodological necessity. If you want to collect several hundred examples of the 

same search from one observer, it would be impractical to use a search task that 

takes several minutes per trial. However, real-world tasks (e.g. cancer screening) 

do take minutes per case (and often involve multiple images). It remains an 

open question whether the rules that govern a 700 msec search for a T among 

Ls, also govern a 10 minute search for cancer in a set of mammograms, to say 

nothing of a search of hours for target like a sailor lost overboard (Koopman, 

1956a, 1956b, 1957). It is likely that there are some important differences. Short 

searches do not appear to involve much planning or strategy. It seems to be 

faster to let covert attention bounce around in an anarchic manner than to bring 

it under strict control (Wolfe, Alvarez, & Horowitz, 2000). Professional searchers 

like radiologists, in contrast, certainly develop strategies that govern the broad 

structure of their search. Amateurs, hunting for a target like the car keys, would 

also impose more structure on the search than any structure that is found in a 

brief search trial.

6. Extended search with navigation: The great bulk of search studies involve a 

single image. In contrast, many, perhaps most, real-world tasks involve moving 

through the stimulus. In the aforementioned search for the car keys, the searcher 

is likely to be navigating around the room and/or from room to room. There is 

a limited amount of research in this area (e.g. Brügger, Richter, & Fabrikant, 

2019; Longstaffe, Hood, & Gilchrist, 2014; Smith, Hood, & Gilchrist, 2010). 

Search and navigation have generally been studied separately. Virtual reality 
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provides a promising venue for progress (Hadnett-Hunter, Nicolaou, O’neill, & 

Proulx, 2019; Võ, Boettcher, & Draschkow, 2019), since it allows a degree of 

experimental control that is difficult to obtain with real scenes. Search with 

navigation need not involve moving the observer. Searching through 3D volumes 

of image data as when screening for lung cancer in CT imagery involves a 

stationary searcher, navigating through the image data by scrolling through a 

stack of images (Drew et al., 2013).

Summary

Thirty years after its first appearance, the core ideas of Guided Search remain in place. 

Information from initial, preattentive processing of visual input can be used to guide the 

deployment of selective attention. Selective attention is required for the binding of features 

into recognizable objects. GS6 expands on those basic tenets. It describes a richer array 

of factors guiding attention, notably including scene properties. It makes more specific 

proposals about the internal mechanics of the ‘search engine’ and shows, by simulation, 

that the proposed set of interacting diffusion mechanisms can simulate data that capture 

important patterns in human search data. GS6 more explicitly deals with the inhomogeneity 

of the visual field by incorporating the idea of the functional visual field (or fields), and it 

attempts to clarify the role of the search template by explaining that there are two distinct 

types of template at work.

There are many topics left untouched here. For instance, a more detailed mapping of this 

work to neuroscientific studies is an exercise for another day and, probably, another author. 

Even within the human behavioral literature, there are important lines of work with which 

this paper has not dealt (as the authors of those works will have noticed). Finally, it remains 

to be seen if this work and, more broadly, laboratory studies of visual search are actually 

addressing the important factors in real-world visual search.
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previously published data, on request. The code for the simulation will be available on 

our website, https://search.bwh.harvard.edu/ and at https://osf.io/9n4hf/files/ . For any 

other requests, please jwolfe@bwh.harvard.edu.
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Figure 1: 
Basic laboratory search tasks and RT x set size graphs.
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Figure 2: 
A representation of Guided Search 2.0
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Figure 3: 
A representation of Guided Search 6.0

Wolfe Page 51

Psychon Bull Rev. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
Feature search based on bottom-up salience, top-down relations, and top-down identity.
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Figure 5: 
Density effects in search: Feature differences are easier to detect when items are closer 

together.
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Figure 6: 
Look at the star and report the color of ovals.
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Figure 7: 
A) Which boxes could hide a sheep? B) Find sheep. The scene is on the grounds of 

Chatsworth House, a stately home in Derbyshire, England
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Figure 8: 
The search process in GS6.
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Figure 9: 
The GS6 search termination process
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Figure 10: 
Results of a simulation of the aspects of GS6, illustrated in Figure 9: A: RT x set size 

functions (c.f. Fig 1f), B: Error rates
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Figure 11: 
RT distributions: A) Data from Wolfe, Palmer, & Horowitz (2010). B) GS6 simulation data. 

Each distribution represents one set size. Lighter curves are smaller set sizes (the four set 

sizes are 5, 10, 15, & 20, prevalence is 0.5). Green shows target-present. Purple shows 

target-absent.
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Figure 12: 
Simulation of prevalence effects. A) RT as a function of prevalence, B) D’ and criterion, ’c’ 

as function of prevalence, C) ROC derived from variation in prevalence. Blue number values 

within the graph show prevalence associated with each datapoint. D) zROC derived from 

variation in prevalence. See the supplement to Wolfe & VanWert (2010) for comparison 

data.
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Figure 13: 
Simulation of different miss error goals. A) Quitting thresholds as a function of time. Each 

color represents a different Error Goal from 3% (red-top) to 15% (yellow-bottom). Lower 

functions in 13A are the diffuser starting point values that produce false alarms. B) Error 

rates as a function of Error Goal. Each function is for a different set size: Top (blue) line = 

set size 20, teal=15, green=10, brown=5.

Wolfe Page 61

Psychon Bull Rev. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 14: 
Three different types of functional visual fields (FVF) that need to be considered in visual 

search. A) Resolution FVF, B) Exploratory FVF, C) Attentional FVF
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Figure 15: 
Two templates in visual search: A guiding template and a target template.
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