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Abstract

Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale 

extracted imaging information to clinical and biological endpoints. The development of 

quantitative imaging methods along with machine learning has enabled the opportunity to move 

data science research towards translation for more personalized cancer treatments. Accumulating 

evidence has indeed demonstrated that non-invasive advanced imaging analytics, i.e., radiomics, 

can reveal key components of tumor phenotype for multiple three-dimensional lesions at multiple 

time points over and beyond the course of treatment. These developments in the use of CT, PET, 

US and MR imaging could augment patient stratification and prognostication buttressing emerging 

targeted therapeutic approaches. In recent years, deep learning architectures have demonstrated 

their tremendous potential for image segmentation, reconstruction, recognition, and classification. 

Many powerful open-source and commercial platforms are currently available to embark in new 

research areas of radiomics. Quantitative imaging research, however, is complex and key statistical 

principles should be followed to realize its full potential. The field of radiomics, in particular, 

require a renewed focus on optimal study design/reporting practices and standardization of image 

acquisition, feature calculation and rigorous statistical analysis for the field to move forward. In 

this article, the role of machine and deep learning as a major computational vehicle for advanced 

model building of radiomics-based signatures or classifiers, and diverse clinical applications, 

working principles, research opportunities and available computational platforms for radiomics 

will be reviewed with examples drawn primarily from oncology. We also address issues related 

to common applications in medical physics, such as standardization, feature extraction, model 

building, and validation.
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I. Introduction

Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale 

data mining of images to clinical and biological endpoints1. The fundamental idea is that 

medical images are much richer in information than what the human eye can discern. 

Quantitative imaging features, called also “radiomic features” can provide richer information 

about intensity, shape, size or volume, and texture of tumor phenotypes using different 

imaging modalities (e.g., MRI, CT, PET, ultrasound, etc.)2. Tumor biopsy-based assays 

provide limited tumor characterization as the extracted sample may not always represent the 

heterogeneity of the whole patient’s tumor, while radiomics can comprehensively assess the 

three-dimensional tumor landscape by means of extracting relevant imaging information3. It 

implies that, applying well-known machine learning methods to radiomic features extracted 

from medical images, it is possible to macroscopically decode the phenotype of many 

physio-pathological structures and, in theory, solve the inverse problem of inferring the 

genotype from the phenotype, providing valuable diagnostic, prognostic or predictive 

information4,5.

The term radiomics originated from other –omics sciences (e.g., genomics and proteomics) 

and conveys the clear intent to invoke personalized medicine based on medical images. It 

traces its roots to computer-aided detection/diagnosis (CAD) of medical images6,7. However, 

with recent advances and the diversity of medical imaging acquisition technologies 

and processing, radiomics is establishing itself as an indispensable image analysis and 

understanding tool with applications that transcend diagnosis into prognosis and prediction 

approaches for personalizing patients’ management and their treatment. One of the main 

differentiators from CAD consists of the link that radiomics has to establish between 

the current features of a physio-pathological structure at the time of investigation and 

its temporal evolution in order to personalize the therapeutical approach8. The recent 

availability of large databases of digital medical images and annotated information (e.g., 

evolution over time or response to treatment with a given prescription, clinical and survival 

information), the increase of computational power based on advanced hardware (e.g., GPU, 

cluster or cloud computing) as well as the tremendous mathematical and algorithmic 

development in areas like machine or deep learning have created favorable conditions to 

untap the potential of the enormous amount of imaging data wealth that is being generated.

Certainly, the complementarity of other information such as clinical or laboratory data as 

well as interaction measurements (e.g., radiogenomics9, relating imaging to genomics, or 

exposomics, that is the complementary information from the interaction of the patient with 

environmental variables) will play a key role to drive future success of radiomics, such as 

accuracy and reproducibility, to levels that are acceptable for routine clinical practice.

Radiomics has been applied to many diseases including cancer and neurodegenerative 

diseases to name a few. Although the examples drawn here are from the cancer field, the 
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principles presented here are generally universal across the medical imaging domain. The 

number of publications issued in the last years has grown almost exponentially. Although 

there are many review articles already about radiomics, its definition, technical details, and 

applications in different areas of medicine, the view of radiomics as an image mining tool 

lends itself naturally to application of machine/deep learning algorithms as computational 

instruments for advanced model building of radiomics-based signatures9,10. This will be the 

main subject of this article, addressing issues related to common applications in medical 

physics, standardization, feature extraction, model building, and validation.

II. Overview of Research and Clinical Applications of cancer Radiomics

In this section the applications of radiomics to tumor detection and characterization and 

prediction of outcome will be reviewed. All the studies described are retrospective and 

mono-institutional, except where noted.

A. Radiomics in Diagnosis

a. Cancer detection and auto contouring—The radiomics approach of combining 

the extraction of radiomic features with machine learning, can be used either to detect/

diagnose cancer or to automatically contour the tumor lesion. Methods for radiomics-driven 

automatic prostate tumor detection typically use a supervised method trained on a set of 

features calculated from multi-modality images11. For detection of prostate cancer, features 

were computed in a 3×3 pixels sliding window in multimodal MRI of prostate. The 

voxels were tagged as cancerous or non-cancerous using a support vector machine (SVM) 

classifier12. In Algohary et al.13, the prostate was segmented into areas according to the 

aggressiveness between malignant and normal regions in the training groups. A voxel-wise 

random forest model (RF) with a conditional random field spatial regulation was used to 

classify the voxels in multimodal MRI (T1, Contrast – Enhanced (CE) T1, T2 and FLAIR) 

of the brain of glioblastoma multiforme (GBM) patients into five classes: non-tumor region 

and four tumor subregions including necrosis, edema, non-enhancing area, and enhancing 

area14. area12. Convolutional neural networks have also been applied to segment organs at 

risk in head and neck cancer radiotherapy 15 and in lung16 and liver cancers17 compared to 

traditional methods.

b. Prediction of histopathology and tumor stage—Radiomics holds the potential 

to revolutionize the conventional tumor characterization and replace classic approaches 

based on macroscopic variables and can be used to distinguish between malignant and 

benign lesions3. Breast cancer lesions, automatically detected using connected component 

labelling and adaptive fuzzy region growing algorithm, were classified using radiomic 

features as benign mass or malignant tumor on digital mammography18, dynamic 

contrast enhanced (DCE) MRI, and ultrasound19. A radiomic model based on mean 

apparent diffusion coefficient (ADC), had better accuracy than radiologist assessment 

for characterization of prostate lesions as clinically significant cancer (Gleason grade 

group ≥ 2) during prospective MRI interpretation20 . A deep learning multiparametric 

MRI transfer learning method has also shown the ability to classify prostate cancer high 

grade/low or grade 21. Radiomic models based on CT images have been used to predict the 
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histopathology (adenocarcinoma or squamous cell carcinoma)22,23 and PET tumor stage24 

of lung cancer as well as micropapillary patterns in lung adercarcinomas25.

c. Microenvironment and intra-tumor partitioning—A radiomic signature 

combining features from CE-CT, and 18F-FDG PET was implemented for the presence of 

high level of hypoxia in head and neck cancer, defined in terms of maximum tumor-to-blood 

uptake ratio >1.4 in the 18F-FMISO PET26. Classification and clustering methods have been 

developed for tumor separation into subregions (habitat imaging), which contributes to the 

revelation of tumor heterogeneity, and potential selection of subregions to boost radiation 

dose27. A radiomics analysis focused on a characterization of GBM diversity, using various 

diversity indices to quantify habitat diversity of the tumor as well as to relate it to underlying 

molecular alterations and clinical outcomes28.

d. Tumor genotype—Significant associations between the radiomic features and 

gene-expression patterns were found in lung cancer patients3. A radiogenomic study 

demonstrated the associations of radiomic phenotypes with breast cancer genomic features 

as mitochondrial DNA (miRNA) expressions, protein expressions, gene somatic mutations, 

and transcriptional activities. In particular, tumor size and enhancement texture had 

associations with transcriptional activities of pathways and miRNA expressions29. Radiomic 

models were implemented for identification of Epithelial Growth Factor Receptor (EGFR) 

mutant status from CT through multiple logistic regression and pairwise selection 30 and to 

decode ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged 

during transfection) fusions in lung adenocarcinoma31.

Triple negative breast cancer (TNBC) is likely to be identified by considering heterogeneity 

of background parenchymal enhancement, characterized by quantitative texture features 

on DCE-MRI, adds value to such differentiation models as they are strongly associated 

with the TNBC subtype32. Furthermore, TNBC has been proven to be differentiated from 

fibroadenoma using ultrasound (US) radiomics. A radiomics score obtained by penalized 

logistic regression with a least absolute shrinkage and selection operator (LASSO) analysis 

showed significant difference between fibroadenoma and TNBC33. The extraction of 

radiomic features from MR of GBM was able to predict immunohistochemically identified 

protein expression patterns34.

Despite large evidence of association among radiomics and genomics, few preclinical 

studies have demonstrated causal relationship between tumor genotype and radiomic. In 

one study, HCT116 colorectal carcinoma cells were grown as xenografts in the flanks of 

NMRI-nu mice. Then overexpression of GADD34 gene was induced by administration of 

HCT116 doxycycline (dox), or placebo was given. The radiomic analysis demonstrated 

that that gene overexpression causes change in radiomic features, as many features differed 

significantly between the dox-treated and placebo groups4.

e. Clinical and macroscopic variables—Radiomic features, derived from T2-w and 

ADC MRI scan, correlate with clinical variables that are relevant for patient’s prognosis. 

These include prostate specific antigen (PSA) level35 in patients with prostate cancer, and 

Human Papilloma Virus (HPV) Status in head and neck squamous cell carcinoma36,37. 
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Given the well-known behavior of HPV-positive head and neck cancer which is likely to 

respond at a lower dose of chemoradiation, this opens the way to a CT based patient 

stratification for a dose de-escalation.

B. Radiomics in therapy

Because radiomic features can describe histology22 and genetic footprint 29–31 of the tumor, 

which are correlated with the tumor aggressiveness, they can be used to build models 

to predict the outcome, in terms of local/distant control or survival, of cancer therapy 

performed with various therapeutic options (radio-, chemotherapy, targeted molecular 

therapy, immunotherapy, non – ionizing radiation) or a combination of them.

a. Local control, response, recurrence—Radiomics predicts response to 

neoadjuvant chemoradiation assessed at time of surgery for Non-Small Cell Lung Cancer 

(NSCLC) and locally advanced rectal cancer38. Local control in patients treated with 

stereotactic radiotherapy for lung cancer was described using a PET and CT signature 

developed by using supervised principal component analysis was developed using features 

from PET and CT39. A Radiomic model was developed using first-order statistics, GLCM, 

and geometrical measurements computed in T2-w and ADC 3T MRI by RF approach for 

biochemical recurrence of prostate cancer after radiotherapy35. A total of 126 radiomic 

features were extracted using GLCM, GLGCM, Gabor transform, and GLSZM from 

contrast-enhanced 3T MRI using T1-w, T2-w, and DWI sequences to predict the therapeutic 

response of nasopharyngeal carcinoma (NPC) to chemoradiotherapy40. Deep learning 

methods with radiomics are also proposed to predict outcomes after liver41 and lung cancers 

radiotherapy.

b. Distant metastases—Radiomic models to predict the development of distant 

metastases (DM) from NSCLC on patients treated with Stereotactic Body Radiotherapy 

(SBRT) patients for lung cancer were developed using features from CT42 or from PET 

-CT39. Vallières et al. used texture-based model for the early evaluation of lung metastasis 

risk in soft-tissue sarcomas43 from pre-treatment FDG-PET and MRI scans comprising 

T1-w and T2-w fat-suppressed sequences (T2FS). A radiomic signature was developed to 

predict DM after locally advanced adenocarcinoma44. Analysis of the peritumoral space can 

provide valuable information regarding the risk of distant failure, as more invasive tumors 

may have different morphologic patterns in the tumor periphery. An SVM classifier was 

trained to predict distant failure from radiomics analysis of the peritumoral space45.

c. Survival—Aerts et al.3 built a radiomic signature consisting of a combination of four 

features in a retrospective lung cancer cohort, which was predictive for survival in head 

and neck and NSCLC independent cohorts. One textural feature calculated from GLCM, 

SumMean46, was identified using the LASSO procedure as an independent predictor of 

overall survival that complements metabolic tumor volume (MTV) in decision tree47. A 

radiomic signature was built from PET-CT for survival after SBRT for lung cancer 39. Deep 

learning was also proposed to stratify NSCLC patients according to mortality risk using 

standard of care CT48.
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d. Molecular targeted therapy—Many tumors commonly overexpress oncogenes such 

as the EGFR and respond to molecular targeted therapies such as EGFR tyrosine kinase 

inhibitor. From the change in features between the CT acquisitions before and three weeks 

after therapy it was possible to identify NSCLC patients responding to treatment with 

gefitinib49. A radiomic prediction model was designed to stratify patients according to 

progression-free and overall survival after therapy with antiangiogenic for GBM 50.

e. Immunotherapy—Cancer immunotherapy by immune checkpoint blockade is a 

promising treatment modality that is currently under strong development, and there is a 

great need for models to select patients responding to immunotherapy. In a retrospective 

multicohort study, an eight-feature radiomic signature predictive of the presence of CD8 T 

cells, which is related to the tumor-immune phenotype, was developed from CE-CT images, 

using elastic-net regularized regression method51. The signature was successfully validated 

on external cohorts for discrimination of immune phenotype, and for the prediction of 

survival and response to anti-PD-1 or PD-L1 immunotherapy.

f. Delta-radiomics—The longitudinal study of features and of their change during the 

treatment, with the goal of predicting response to therapy, is called delta-radiomics. Features 

calculated from pretreatment and weekly intra-treatment CT change significantly during 

radiation therapy (RT) for NSCLC52. Delta-radiomics could possibly be performed by 

the Cone Beam CT (CBCT) devices for image guidance of radiotherapy treatment, thus 

allowing large-scale study of tumor response to total dose, fractionation and fraction dose. 

It has been shown that reproducible features can be extracted from CBCT53 predictive for 

overall survival in NSCLC patients as much as features from CT54. Nevertheless, the studies 

on CBCT delta-radiomics are still limited to assessment of feasibility and reproducibility55.

g. Prediction of side effects—Radiomics-based models can help early identify the 

development of side effects such as radiation induced lung injury (RILI). The change from 

pre- to post-treatment (at 3, 6, and 9 months) CT features significantly correlates with lung-

injury as scored by oncologist post-SBRT for lung cancer and was found to be correlated 

with dose and fractionation56.

A logistic regression–based classifier was constructed to combine information from multiple 

features to identify patients that will develop grade ≥2 radiation pneumonitis among those 

who received RT for esophageal cancer57. The addition of normal lung image features 

produced superior model performance with respect to traditional dosimetric and clinical 

predictors of radiation pneumonitis (RP), suggesting that pre-treatment CT radiomic features 

should be considered in the context of RP prediction. CT radiomic features were extracted 

from the total lung volume defined using the treatment planning scan for RP 58.

h. Differentiation of recurrence from benign changes—The differentiation of 

tumor recurrence from benign radiation-induced changes in follow-up images can be a major 

challenge for the clinician. A radiomic signature consisting of 5 image-appearance features 

from CT demonstrated high discriminative capability to differentiate recurrence of lung 

tumor from consolidation and opacities in SBRT patients59. Similarly, a combination of five 

radiomic features from CE-T1w and T2w MR were found to be capable of distinguishing 
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necrosis from progression in follow up MR images in patients treated with Gamma Knife 

radiosurgery for brain metastases60.

i. Non ionizing radiation and other therapies—Radiomic features in MRI respond 

differently when Laser interstitial thermal therapy (LITT), a highly promising focal strategy 

for low-grade, organ-confined prostate cancer, is performed on cancer or healthy prostate 

tissue. A radiomic signature then could allow to assess if prostate cancer is successfully 

ablated61. A radiomic model was predictive of complete response after transcatheter 

arterial chemoembolisation combined with high-intensity focused ultrasound treatment in 

hepatocellular carcinoma62.

III. Radiomics Analysis with Machine and Deep Learning Methods

A. Preprocessing

Prior to radiomics analysis, preprocessing steps need to be applied to the images, which 

aim at reducing image noise, enhancing image quality, enabling the reproducible and 

comparable radiomic analysis. For some imaging modalities, such as PET, the images 

should be converted to a more meaningful representation (standardized uptake value, 

SUV). Image smoothing can be achieved by average or Gaussian filters63. Voxel size 

resampling is important for datasets that have variable voxel size64. Specifically, isotropic 

voxel size is required for some texture feature extraction. There are two main categories 

of interpolation algorithms: Polynomial and spline interpolation. Nearest neighbor is a 

zero-order polynomial method that assigns grey-level values of the nearest neighbor to the 

interpolated point. Bilinear or trilinear interpolation and bicubic or tricubic interpolation 

are often used for 2D in-plane interpolation or 3D cases. Cubic spline and convolution 

interpolation are third order polynomial method that interpolates smoother surface than 

linear method, while being slower in implementation. Linear interpolation is a rather 

commonly used algorithm, since it neither leads to the rough blocking artifacts images 

that are generated by nearest neighbors, nor will it cause out-of-range grey levels that might 

be produced by higher order interpolation65.

In the context of feature-based radiomics analysis, as discussed below, the computation of 

textures would require discretization of the grey levels (intensity values). There are two ways 

to do the discretization: fixed bin number N and fixed bin width B. For fixed bin number, we 

first decide a fixed number of N bins, and the grey levels will be discretized into these bins 

using the formula below:

Xd, k =
Ng

Xgl, k − Xgl, min
Xgl, max − Xgl, min

+ 1 Xgl, k < Xgl, max

Ng Xgl, k = Xgl, max

, (1)

where Xgl,k is the intensity of kth voxel.

For fixed bin width, starting at a minimum Xgl,min, a new bin will be assigned for every 

intensity interval of wb. Discretized grey levels are calculated as follow:
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Xd, k = Xgl, k − Xgl, min
wb

+ 1 . (2)

The fixed bin number method is better when the modality used is not well calibrated. 

It maintains the contrast and makes the images of different patients comparable, but 

loses the relationship between image intensity, while fixed bin size method keeps the 

direct relationship with the original scale. Some investigations about the effect of both 

methods have shown that fixed bin size method offered better repeatability and thus may 

be suitable for intra- and inter- patient studies, however, this remains a subject of ongoing 

research66,67. In CT-radiomics the image pixel intensity maps to the Hounsfield Units (HU) 

and thus is much more directly comparable and interpretable. MRI-related modalities are 

more challenging since the pixel intensities are not directly interpretable, rather need to 

normalized relative to some standard reference (e.g., contralateral brain, or normal appearing 

white matter in neuroimaging, psoas muscle in abdominal imaging, etc.).

B. Machine and Deep Learning Algorithms for Radiomics

Machine and deep learning algorithms provide powerful modeling tools to mine the huge 

amount of image data available, reveal underlying complex biological mechanisms, and 

make personalized precision cancer diagnosis and treatment planning possible. Hereafter, 

two main types - feature-engineered (conventional radiomics) and non-engineered (deep 

learning-based) radiomics modeling methods – will be briefly introduced. Generally 

speaking, machine learning methods can also be divided into supervised, unsupervised and 

semi-supervised for both feature-based and featureless methods. Each of these categories 

will be briefly discussed in the following sections. A workflow diagram illustrating the 

radiomics analysis process after image acquisition is shown in Fig. 1.

a. Feature-engineered radiomics methods—Traditionally, the radiomic features 

being extracted are hand-crafted features that capture characteristic patterns in the imaging 

data, including shape-based, first-, second-, and higher order statistical determinants and 

model-based (e.g. fractal) features. Feature-based methods require a segmentation of the 

region of interest (ROI), either through a manual, semi-automated, or automatic methods. 

Shape-based features are external representations of a region, that characterize the shape, 

size and surface information of the ROIs68. Typical metrics include sphericity, and 

compactness3,43,69,70. First-order features (e.g. mean, median) describe the overall intensity 

and variation of the ROIs, while ignoring spatial relations8,24. Second-order (texture) 

features in contrast can provide inter-relationships among voxels. Textural features can be 

extracted from different matrices, e.g. grey-level co-occurrence matrix (GLCM), grey-level 

run-length matrix (GLRLM), etc35,46,71. Semantic features are another type of feature that 

can be extracted from medical images. These features describe qualitative features of the 

image typically used in the radiology workflow.

Hundreds or even thousands of radiomic features are not uncommon when we deal with 

outcome modeling. Feature selection and/or extraction thus is a crucial step that aims 

at obtaining the optimal feature subset or feature representation that correlates most 
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with the endpoint and meanwhile correlates least between each other. After the feature 

subset is obtained, various machine learning algorithms can be applied based on them. 14 

feature selection and 12 classification methods were evaluated in terms of their predictive 

performance on two independent lung cancer cohorts72. Sometimes, the feature selection 

and model construction can be implemented together, called the embedded method, such as 

least absolute shrinkage and selection operator (LASSO)73. In contrast, wrapper methods 

select the features based on the models’ performance for different subsets of features, 

for which we need to rebuild the model again after features are selected, for instance, 

recursive feature elimination support vector machines (SVM-RFE). Filter method also 

separates the feature selection and model construction processes, whose uniqueness of 

it is its independence of the classifier being used for the subsequent model building, 

such as Pearson correlation-based feature ranking. In any feature selection method, it is 

essential to ensure that there is no “double dipping” into the training data for both feature 

selection, hyperparameter optimization and model selection. Rather the methods of “nested 

cross validation” should be used in order to prevent overfitting or incorrect estimates of 

generalization. According to whether or not the labels (ground truths) are used, feature 

selection and extraction can be divided into supervised, unsupervised and semi-supervised 

ways. The three feature selection methods discussed above are mostly supervised. Examples 

of unsupervised methods are principle component analysis (PCA)74, clustering and t-

Distributed Stochastic Neighbor Embedding (t-SNE)75. PCA uses an orthogonal linear 

transformation to convert the data into a new coordinate system so that large variances 

are projected to orthogonal coordinates. Clustering is another feature extraction algorithm 

which aims at finding relevant features and combining them by their cluster centroids based 

on some similarity measure, such as K-means and hierarchical clustering 76. Unsupervised 

consensus clustering identified robust imaging subtypes using dynamic CE-MRI data for 

patients with breast cancer77. tSNE is a dimension reduction method capable of retaining the 

local structure (pairwise similarity) of data, while revealing some important global structure.

In the medical field, two types of questions are mainly investigated, binary problems 

(classification), such as whether or not a disease has recurred, the patient is alive beyond 

certain time threshold, etc; and survival analysis, that is able to show if a risk factor 

or treatment affects time to event. For the classification problem logistic regression fits 

the coefficients of the variables to predict a logit transformation of the probability of 

the presence of the event. SVM, frequently used in Computed Aided Diagnosis (CAD)6 

and radiomics32,59,76,78, learns an optimal hyperplane that separates the classes as wide 

as possible, while trying to balance with misclassified cases. SVM can also perform 

non-linear classification using the “kernel trick” -- different basis functions (e.g. radial 

basis function), mapping to higher dimensional feature space. The hyperplane maximizes 

the margin between the two classes in a non-linear feature space. SVM also tolerates 

some points on the wrong side of the boundary, thus improving model robustness and 

generalization79. RF is based on decision trees, a popular concept in machine learning 

especially in the field of medicine, because their representation of hypotheses as sequential 

“if-then” resembles human reasoning80. RF applies bootstrap aggregating to decision trees 

and improve the performance by lowering the high variance of the trees81. Risk assessment 
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models (classification and survival) were constructed via RFs and imbalance adjustment 

strategies for locoregional recurrences and distant metastases in head and neck cancer82

Neural networks, though usually used in the featureless context, can also be used in 

conventional feature selection and modeling22,38,78. These algorithms are mainly for 

supervised learning, while in particular in the medical field, there are a lot of data 

without labeling, in these cases, semi-supervised learning can be applied to make use of 

the unlabeled data combined with the small amount of labeled data. The self-training is 

bootstrapped with additional labelled data obtained from its predictions83. The transductive 

SVM (TSVM) tries to keep the unlabeled data as far away from the margin as possible84. 

Graph-based methods construct a graph connecting similar observations and enable the class 

information being transported through the graph85.

For the survival analysis, Cox regression86, random survival forests87 and support vector 

survival88 methods are also available to investigate the presence of a set of variables that 

may affect survival time. Due to the length limit, we will not go into the details. Interested 

readers can refer to the references to read more about these algorithms.

b. Non feature-engineered radiomics methods—Though hand-crafted features 

introduced above provide prior knowledge, they also suffer from the tedious designing 

process and may not faithfully capture the underlying imaging information. Alternatively, 

with the development of deep learning technologies based on multi-layer neural networks, 

especially the convolutional neural networks (CNN), the extraction of machine learnt 

features is becoming widely applicable recently. In deep learning, the processes of data 

representation and prediction (e.g, classification or regression) are performed jointly89. In 

such a case, multi-stack neural layers of varying modules (e.g., convolution or pooling) 

with linear/non-linear activation functions perform the task of learning the representations 

of data with multiple levels of abstraction and subsequent fully connected layers are 

tasked with classification, for instance. A typical scenario to get such features is to use 

the data representation CNN layers as feature extractor. Each hidden layer module within 

the network transforms the representation at one level. For example, the first level may 

represent edges in an image oriented in a particular direction, the second may detect motifs 

in the observed edges, the third could recognize objects from ensembles of motifs89. Patch-/

pixel-based machine learning (PML) methods use pixel/voxel values in images directly 

instead of features calculated from segmented objects as in other approaches 90,89. Thus 

PML removes the need for segmentation, one of the major sources of variability of radiomic 

features. Moreover, the data representation removes the feature selection portion eliminating 

associated statistical bias in the process. For the CNN network, either self-designed (from 

scratch) or existing structures, e.g. VGG91, Resnet92, can be used. Depending on the data 

size, we can choose to fix the parameters or fine tune the network using our data, also called 

transfer learning. Instead of using deep networks as feature extractors, we can use them 

directly for the whole modeling process. Similarly to the conventional machine learning 

methods, there are also supervised, unsupervised and semi-supervised methods. CNN are 

similar to regular neural networks, but the architecture is modified to fit to the specific 

input of large-scale images. Inspired by the Hubel and Wiesel’s work on the animal visual 

cortex93, local filters are used to slide over the input space in CNNs, which not only 
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exploit the strong local correlation in natural images, but also reduce the number of weights 

significantly by sharing weights for each filter. Recurrent neural networks (RNN) can use 

their internal memory to process sequence inputs and take the previous output as inputs. 

There are two popular types of RNN – Long short-term memory (LSTM)94 and Gated 

recurrent units (GRU)95. They were invented to solve the problem of vanishing gradient 

for long sequences by internal gates that are able to learn which data in the sequence is 

important to keep or discard. Deep autoencoders (AE), which are unsupervised learning 

algorithms, have been applied to medical imaging for latent representative feature extraction. 

There are variations to the AEs, such as variational autoencoders that resemble the original 

AE and variational Bayesian methods to learn a probability distribution that represents the 

data96, convolutional autoencoders that preserve spatial locality97, etc. Another unsupervised 

method is the restricted Boltzmann machine (RBM), which is consists of visible and hidden 

layers98. The forward pass learns the probability of activations given the inputs, while the 

backward pass tries to estimate the probability of inputs given activations. Thus, the RBMs 

lead to the joint probability distribution of inputs and activations. Deep belief networks 

can be regarded as a stack of RBMs, where each RBM communicates with previous and 

subsequent layers. RBMs are quite similar with AEs, however, instead of using deterministic 

units, like RELU, RBMs use stochastic units with certain distribution. As mentioned 

above, labeled data is limited, especially in the medical field. Neural network based 

semi-supervised approaches combine unsupervised and supervised learning by training the 

supervised network with an additional loss component from the unsupervised generative 

models (e.g. AEs, RBMs)99.

Machine learning methods are highly effective with large number of samples; however, 

they suffer from overfitting pitfalls with limited training samples. For deep learning, data 

augmentation (e.g. by affine transformation of the images) during training is commonly 

implemented. Transfer learning is another way to reduce the difficulty in training. Using 

deep models trained on other dataset (natural images) and then fine-tune on the target 

dataset. The structures of the networks can also be modified to reduce overfitting, such as, 

by adding dropout and batch normalization layers. Dropout randomly deactivates a fraction 

of the units during training and can be viewed as a regularization technique that adds 

noise to the hidden units100. Batch normalization reduces the internal covariate shift by 

normalizing for each training mini-batch101.

Comparing with feature-based methods, deep learning methods are more flexible and can be 

used with some modifications in various tasks. In addition to classification, segmentation, 

registration, and lesion detection are widely explored by deep learning techniques. Fully 

CNN (FCN), trained end-to-end, merge features learnt from different stages in the encoders 

and then upsampling low resolution feature maps by deconvolutions102. Unet, built upon 

FCN, with the pooling layers being replaced by upsampling layers, resulted in a nearly 

symmetric U-shaped network103. Skipping structures combines the context information with 

the unsampled feature maps to achieve higher resolution. CNN, trained end-to-end from 

clinical images were directly used for binary classification of skin cancer and achieved 

performance on par with experts104. Chang et al proposed a multi-scale convolutional 

sparse coding method that provides an unsupervised solution for learning transferable base 

knowledge and fine-tuning it towards target tasks105.
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C. Validation and Benchmarking of Radiomics Models

Once models are developed using the selected predictors, quantifying the predictive ability 

of the models (validation) is necessary. Based on the TRIPOD criteria106, there are 4 

types of validation: 1a. Developing and validating on the same data, which gives apparent 

performance. This evaluation is usually optimistic estimation of the true performance. 1b. 

Developing the models using all the data, then using resampling techniques to evaluate the 

performance. 2a. Randomly split the data into 2 groups for development and validation 

separately. 2b. Split the data non-randomly (e.g. by location or time), which is stronger than 

2a. 3 & 4. Develop the model using one data set and validate on separate data. It is ideal 

if there is a separate data set for external validation, however, in the frequent case that only 

a single data set is available, internal validation (1b) is required. Two popular resampling 

methods are bootstrapping and cross-validation. Feature selection, which is required before 

machine learning, should precede cross-validation, or it will lead to a selection bias due to 

the leak of information by the pre-filtering of the features107.

Radiomic classifiers output a score that indicates the likelihood of one event to happen, 

and a threshold, to generate positive or negative predictions according to the task at 

hand. For example, fewer false positives would be required if we are implementing a 

conservative experiment, thus larger threshold will be preferred. Classifiers are evaluated 

using either a numeric metric (e.g. accuracy), or the so-called confusion matrix, or a 

graphical representation of performance, such as a receiver operating characteristic curve 

(ROC), a two-dimensional graph with true positive rate being the Y axis, and false positive 

rate the X axis. It has the advantage that they show classifier performance without regard 

to threshold and class distribution, thus widely used in model evaluation. The area under an 

ROC curve (AUC) is more convenient when comparing, and is equivalent to the probability 

that the classifier will rank a randomly chosen positive instance higher than a randomly 

chosen negative instance108. For survival analysis, Harrell’s C index109 is commonly used to 

measure discrimination ability of the model, which is motivated by Kendall’s tau correlation. 

Harrell defines the overall C index as the proportion of all usable pairs in which the 

predicted risk probabilities and outcomes are concordant (Usable pairs are two cases that at 

least one of them is event)110.

Kaplan-Meier (KM) curves are used to estimate the survival function from lifetime data, 

and also used to compare different risk groups. The risk groups can be patients that are 

treated with certain plan and the control group, or they can be the outputs from a survival 

model (e.g. Cox model) that divides the patients into high and low risk groups. It is highly 

recommended to visualize confidence intervals of the curves. The log rank test gives a 

quantitative evaluation of the statistical significance of the difference for different curves, 

which is also widely provided for KM curves111.

IV. Implementation in medical physics practice

A. Software tools for radiomics

In most published research studies in radiomics, in-house developed methods are used. 

However, some research groups developed image analysis/radiomic software tools, both 
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commercial or open source, available to the scientific community. The main goals of these 

tools are: 1) to speed up the development of competences based on more recent skills on 

radiomics; 2) to allow reproducibility and comparability of results from different research 

groups, and 3) to standardize both feature definitions and computation methods to guarantee 

the reliability of radiomic results 112,113.

Table 1 shows a list of the software, web platforms, and toolkits available free of charge 

for the extraction of radiomics features, along with some of their main functionalities 

and relevant information. Given the high pace of radiomic developments, the list is not 

exhaustive and does not intend to cover all possible solutions. Furthermore, considering 

recent and increased interest in the radiomic field, many other dedicated tools are under 

development. All the open source solutions shown in this overview have been implemented 

by research teams (MaZda114, LifeX 115, ePAD116, HeterogeneityCAD3, PyRadiomics/

Radiomics 117, QuantImage 118, the Texture Analysis Toolbox43, QIFE119, IBEX 120, and 

MedomicsLab) and are capable of analyzing CT, MRI, and PET, some of them can process 

also other medical images, such as mammography, radiography, or ultrasound.

Four software programs (MaZda, LifeX, ePAD, IBEX) offer the possibility of 

manually or automatically segmenting medical images. Three toolkits (HeterogeneityCAD, 

PyRadiomics/Radiomics, QIFE) are designed exclusively for the extraction of features. 

They can be embedded in more complete solutions (e.g. 3D Slicer 121). Morphological, 

first, second and third order statistical features can be extracted by all software solutions, 

except for ePAD. Four of them (TexRAD, MaZda, PyRadiomics/Radiomics, IBEX) offer 

also the possibility of extracting features from filtered images. Of note, MEDomicsLab is 

an open-source software currently being developed by a consortium of research institutions, 

which will be available in the second half of 2019.

B. Commercial Programs for radiomics

Commercial software programs are also becoming increasingly available due to the interest 

of many medical device incumbents as well as newcomers such as commercial spin-off of 

research groups or de novo start-up companies. Such software programs can be divided into:

a. Research platforms—These platforms enable the discovery of new signatures by 

linking quantitative imaging biomarkers, clinical and –omics data to clinical endpoints. They 

are usually considered non-medical devices in that they do not affect the clinical routine, run 

usually on independent workstations, and are not used to drive clinical decisions. Their main 

differentiator from open access software consists of workflow optimization and efficiency 

improvements, enabling an automatic, end-to-end seamless processing pipeline. TexRad®, 

QIDS®, RadiomiX, iBiopsy® and EVIDENS offer research capabilities at a different level, 

ranging from simple features extraction to image filter application and machine learning 

modules. In the research mode, these software programs are usually open to process any 3D 

image, DICOM or not, up to 2D digital pathology images (histomics or pathomics).

b. Clinically validated software programs,—In order to use decision support 

systems (DSSs), based on an already discovered signatures and thoroughly validated on 

large independent datasets, also known as clinical grade DSS, in clinical practice, a 
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regulatory clearance is usually needed, as they fall within the definition of medical devices 

in many regulatory systems, e.g., class I or II medical device as a function of their intended 

use (e.g. mere support to decision versus a computer aided diagnosis/prognosis). DSSs are 

usually limited to a specific modality, mostly CT, and to a specific disease in a specific body 

district: these constraints come primarily from the intended use definition to which these 

DSSs are subjected to be compliantly marketed.

Research tools or clinical grade DSSs can be embedded into more comprehensive platforms 

such as Picture Archive and Communication Systems (PACS), Hospital Information Systems 

(HIS), Oncology Information Systems (OIS) or Treatment Planning Systems (TPS), or 

being stand-alone. Usually, large medical device incumbents tend to embed DSSs into their 

research or clinical solutions, while newcomers often offer their solution as a standalone 

system.

It is not unusual that large medical device players embed open access or commercial 

software programs to provide their customers with the possibility of exploring or exploiting 

radiomic potential: examples are IntelliSPace Discovery (Philips, the Netherlands) which 

interfaces to Pyradiomics, Advantage Workstation (GE, Buc, France) which interfaces 

through a plugin to Quantib™ Brain or Syngo.via Frontier (Siemens, Erlangen, 

Germany) which interfaces to RadiomiX. It is also beneficial to mention the platform 

(www.envoyai.com) which offers the possibility of sharing applications and, once solutions 

reached the product maturity, to commercialize them.

V. Current challenges and recommendations

A. Interpretability issues

It is recognized that machine learning algorithms tend to generally trade interpretability 

for better prediction. Hence, clinicians are still reluctant to embrace these methods as part 

of their clinical practice, because they have long been perceived them as “black boxes”, 

meaning that it is difficult to determine how they arrive at their predictions. For example, 

it is difficult to understand deep neural networks due to the large number of interacting, 

non-linear parts 122,123. In order to improve interpretability of radiomics for the clinician, 

methods based on graph approaches can be utilized124, and in the context of deep learning 

better visualization tools are being developed such as maps highlighting regions of the tumor 

that impact the prediction of the deep learning classifier are also being proposed 123.

B. Repeatability and Reproducibility issues

In radiomics, repeatability is measured by extraction of features from repeated acquisition of 

images under identical or near-identical conditions and acquisition parameters125, whereas 

reproducibility or robustness, is assessed when measuring system or parameters differ. These 

can be assessed by use of digital or physical phantoms. Physical phantoms usually contain 

inserts of different with different density, shape or texture properties in order to produce a 

wide range of radiomics feature values. These phantoms allow to assess the reproducibility 

or robustness of the entire workflow, from image acquisition to extraction of radiomic 
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features. Their major drawback is that they do not reflect the variability of human anatomy 

in the clinical scenario.

A phantom for radiomics was created for use with CT 113 or CBCT126 called Credence 

Cartridge Radiomics (CCR) Phantom. This consisted of 10 cartridges with different density 

and texture properties in order to produce a wide range of radiomics feature values: wood, 

rubber, cork, acrylic, and plaster. Phantoms for PET with heterogeneous lesions have been 

also proposed, e.g. with different 3D printed inserts reflecting different heterogeneities in 

FDG uptake127.

Digital phantoms are usually scans of patients acquired under controlled conditions. They 

are therefore realistic, but cannot be used for studying radiomic features’ sensitivity to the 

image acquisition and its parameters. A dataset consisting of 31 sets of repeated CT scans 

acquired approximately 15 minutes apart is now publicly accessible through The Reference 

Image Database to Evaluate Therapy Response (RIDER). This dataset allows “test-retest” 

analysis, a comparison of the results from images acquired within a short time on the same 

patient128.

C. Factors affecting stability

For CT, inter-scanner variability of image features produces differences in extracted features 

that are comparable to the variability in patient images acquired by the same scanner113. The 

choice of methods of reconstruction, such as filtered back projection or iterative algorithm, 

also affect radiomic feature129. Smoothing of the image and reducing the slice thicknesses 

can improve reproducibility of CT-extracted features128,130. In PET imaging, textural 

features are sensitive to different acquisition modes 131,132, reconstruction algorithms, and 

their user-defined parameters such as the number of iterations, the post-filtering level, input 

data noise, matrix size, and discretization bin size133,134.

Radiomic features extracted from MRI scans depend on the field of view, field strength, 

reconstruction algorithm and slice thickness. Results of the DCE MRI depend on the 

contrast agent dose, method of administration, and the pulse sequence used. The radiomic 

features extracted from DW-MRI depend on acquisition parameters and conditions as k-

space trajectory, gradient strengths and b-values. The repeatability of MR-based radiomic 

features has been investigated135 using a ground truth digital phantom of brain glioma 

patients and an MRI simulator capable of generating images according to different 

acquisition (field strength, pulse sequence, arrangement of field coils) and reconstruction 

methods. It was found that some features are subject to small changes, compared with 

clinical effect size.

In presence of significant respiratory tumor motion as in the case of lung cancer, 

conventional PET images are influenced by motion as, because of their relatively long 

acquisition times, the counts measured are averaged over multiple breathing cycles. 

Respiratory-gated PET accounts for respiratory motion and textural features from gated 

PET have been found robust136.
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Segmentation affects the radiomics workflow, regardless of the imaging technique, because 

many extracted features depend on the segmented region2,5. Semiautomatic segmentation 

algorithms may improve the stability of radiomic features137, and recently available fully 

automatic segmentation tools may be as accurate as manual segmentation by medical 

experts138.

The studies on the comparisons of the performance of many classifier and feature selection 

methods indicate that the choice of classification method is the most dominant source of 

models’ predictive performance variability 72. Fourteen feature selection algorithms were 

compared on a set of 464 lung cancer patients considering 440 radiomic variables 76. The 

feature selection method based on the Wilcoxon signed-rank (WLCX) test had the highest 

prognostic performance with high stability against data perturbation. Interestingly, WLCX is 

a simple univariate method based on ranks, which does not take into account the redundancy 

of selected features during feature ranking. In a comparison of performance of 24 feature 

selection methods for radiomic signature building for lung cancer histology it was shown 

that RELIEF with its variants were the best performing methods22.

D. Quality, Radiomics quality score

The workflow for radiomic studies involves several steps, from data acquisition, selection, 

and curation, to feature extraction, feature selection, and modelling. There is an important 

need that radiomics studies are properly designed and reported to ensure the field can 

continue to develop and produce clinically useful tools and techniques. A number of issues 

can arise providing misleading information, including imaging artifacts, poor study design, 

overfitting of data, and incomplete reporting of results8,139. Although imaging artifacts are 

inevitable in medical imaging, consistent imaging parameters may help reduce variability 

in radiomic features126. To minimize the potential of overfitting of radiomic models, 10 

patients are needed for each feature in the final model140. Ideally, an independent external 

validation dataset is also used to confirm the prognostic ability of any radiomic model. The 

radiomics quality score (RQS) has recently been developed to assess all areas of a radiomic 

study and determine whether it is compliant with best practice procedures139, emulated from 

the TRIPOD initiative previously described.

E. Standardization and harmonization

Although research in the field of radiomics has drastically increased over the past several 

years, there still remains a lack of reproducibility and validation of current radiomic models. 

There are currently no guidelines and standard definitions for radiomic features and for 

constructing these features into clinical models. Current initiatives are underway to improve 

standardization and harmonization in radiomic studies.

As a part of radiomic signature validation, there are efforts to explore distributed feature 

sharing and model development across contributing institutions141. A key component in 

this exercise is the assessment and redressal of batch effects142 and confounding variables 

across contributing sites, so as to ameliorate systematic yet unmeasured sources of variation. 

Another key component is the use of methods to harmonize data as well as model 

parameters across study sites, with the intent of meaningful comparisons across clinical 
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population143. Such efforts are necessary to enable the widespread and generalizable 

development of models that are transportable across institutions. In addition to the careful 

calibration and stability analysis of radiomic features within predictive models, there is also 

a need for ensuring model robustness through approaches like noise injection144. Adversarial 

training approaches from neural networks can have value in the modern deep learning 

modeling area by incorporating not only positive examples but negative ones too145. The 

workflow for computing features is complex and involves many steps, often leading to 

incomplete reporting of methodological information (e.g., texture matrix design choices and 

gray-level discretization methods). As a consequence, few radiomics studies in the current 

literature can be reproduced from start to end.

To accelerate the translation of radiomics methods to the clinical environment, the Image 

Biomarker Standardization Initiative (IBSI)65 has the goal to provide standard definitions 

and nomenclature for radiomic features, reporting guidelines, and to provide benchmark 

datasets and values to verify image processing and radiomic feature calculations. Figure 

2 presents the standardized radiomics workflow defined by the IBSI. The IBSI aims at 

standardizing both the computation of features and the image processing steps required 

before feature extraction. For this purpose, a simple digital phantom was designed and used 

in Phase 1 of the IBSI to standardize the computation of 172 features from 11 categories. In 

Phase 2 of the IBSI, a set of CT images from a lung cancer patient was used to standardize 

radiomics image processing steps using 5 different combinations of parameters including 

volumetric approaches (2D vs 3D), image interpolation, re-segmentation and discretization 

methods. The initiative is now reaching completion and a consensus on image processing 

and computation of features has been reached over time.

Overall, the use of standardized computation methods would greatly enhance the 

reproducibility of radiomics studies, and it may also lead to standardized software solutions 

available to the community. It would also be desirable that the code of existing software be 

updated to conform with standards established by the IBSI. Furthermore, it is essential to 

include in radiomics studies the comprehensive description of feature computation details as 

defined by the IBSI65 and Vallières et al146, as shown in Table 2. Ultimately, we envision 

the use of dedicated ontologies to improve the interoperability of radiomics analyses via 

consistent tagging of features, image processing parameters and filters. The Radiomics 

Ontology (www.bioportal.bioontology.org/ontologies/RO) could provide a standardized 

means of reporting radiomics data and methods, and would more concisely summarize the 

implementation details of a given radiomics workflow.

Finally, some guiding principles already exist to help radiomics scientists further implement 

the responsible research paradigm into their current practice. A concise set of principles 

for better scientific data management and stewardship, the “FAIR guiding principles”147, 

stating that all research objects should be findable, accessible, interoperable, and reusable. 

Implementation of the FAIR principles within the radiomics field could facilitate its faster 

clinical translation. First, all methodological details and clinical information must be clearly 

reported or described to facilitate reproducibility and comparison with other studies and 

meta-analyses. Second, models must be tested in sufficiently large patient datasets distinct 

from teaching (training and validation) sets to statistically demonstrate their efficacy over 
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conventional models (e.g., existing biomarkers, tumor volume, cancer stage, etc.). To 

allow for optimal reproducibility potential and further independent testing, all data, final 

models and programming code related to a given study needs to be made available to the 

community. Table 3 provides guidelines that can help to evaluate the quality of radiomics 

studies146. More guidelines on reproducible prognostic modeling can also be found in the 

TRIPOD statement106.

VI. Conclusions

The field of radiomics is constantly growing within the field of medical physics and is an 

exciting opportunity for the medical physics community to participate in novel research 

for the safe translation of quantitative imaging. Machine and deep learning-based models 

have the potential to provide clinicians with DSS to improve diagnosis, treatment selection, 

and response assessment in oncology. As the field expands, the need to associate radiomic 

features with other clinical and biological variables will become of increased importance. 

The field should also continue to strive for standardized data collection, evaluation criteria, 

and reporting guidelines in order to mature as a field. Data-sharing will be crucial to develop 

the large-scale datasets needed for proper validation of radiomic models and there will be 

a need for collaborations to validate models across multiple institutions. In order to move 

radiomic models into the clinical practice it is imperative to demonstrate improvements to 

the clinical workflow and decision making, through expert observer studies and eventually 

clinical trials. Future developments in the areas of machine and deep learning with their 

improved balance of interpretability and prediction will also continue to advance radiomic 

studies.
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Fig. 1. 
Workflow for radiomics analysis with feature-based (conventional machine learning) and 

featureless (deep learning) approaches.

Avanzo et al. Page 28

Med Phys. Author manuscript; available in PMC 2022 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Radiomics computation workflow as defined by the IBSI.
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Table 2.

Reporting guidelines on the computation of radiomics features (adapted from Refs.65 and 146).

GENERAL

  Image acquisition Acquisition protocols and scanner parameters: equipment vendor, reconstruction algorithms and filters, field 
of view and acquisition matrix dimensions, MRI sequence parameters, PET acquisition time and injected 
dose, CT x-ray energy (kVp) and exposure (mAs), etc.

  Volumetric analysis Imaging volumes are analyzed as separate images (2D) or as fully-connected volumes (3D).

  Workflow structure Sequence of processing steps leading to the extraction of features.

  Software Software type and version of code used for the computation of features.

IMAGE PRE-PROCESSING

  Conversion How data were converted from input images: e.g, conversion of PET activity counts to SUV, calculation of 
ADC maps from raw DW-MRI signal, etc.

  Processing Image processing steps taken after image acquisition: e.g., noise filtering, intensity non-uniformity correction 
in MRI, partial-volume effect corrections, etc.

ROI SEGMENTATION 
a;b How regions of interests (ROIs) were delineated in the images: software and/or algorithms used, how many 

different persons and what expertise (specialty, experience), how a consensus was obtained if several persons 
carried out the segmentation, in automatic or semi-automatic mode, etc.

INTERPOLATION

  Voxel dimensions Original and interpolated voxel dimensions.

  Image interpolation method Method used to interpolate voxels values (e.g, linear, cubic, spline, etc.) as well as how original and 
interpolated grids were aligned.

  Intensity rounding Rounding procedures for non-integer interpolated gray levels (if applicable), e.g., rounding of Hounsfield 
units in CT imaging following interpolation.

  ROI interpolation method Method used to interpolate ROI masks. Definition of how original and interpolated grids were aligned.

  ROI partial volume Minimum partial volume fraction required to include an interpolated ROI mask voxel in the interpolated ROI 
(if applicable): e.g., a minimum partial volume fraction of 0.5 when using linear interpolation.

ROI RE-SEGMENTATION

  Inclusion/exclusion criteria Criteria for inclusion and/or exclusion of voxels from the ROI intensity mask (if applicable), e.g., the 
exclusion of voxels with Hounsfield units values outside a pre-defined range inside the ROI intensity mask in 
CT imaging.

IMAGE DISCRETIZATION

  Discretization method Method used for discretizing image intensities prior to feature extraction: e.g., fixed bin number, fixed bin 
width, histogram equalization, etc.

  Discretization parameters Parameters used for image discretization: the number of bins, the bin width and minimal value of 
discretization range, etc.

FEATURE CALCULATION

  Features set Description and formulas of all calculated features.

  Features parameters Settings used for the calculation of features: voxel connectivity, with or without merging by slice, with or 
without merging directional texture matrices, etc.

CALIBRATION

  Image processing steps Specifying which image processing steps match the benchmarks of the IBSI.

  Features calculation Specifying which feature calculations match the benchmarks of the IBSI.

a
In order to reduce inter-observer variability, automatic and semi-automatic methods are favored.
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b
In multimodal applications (e.g., PET/CT, PET/MRI, etc.) ROI definition may involve the propagation of contours between modalities via 

co-registration. In that case, the technical details of the registration should also be provided.
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Table 3.

Quality factors in radiomics studies (adapted from Refs 139 and 146).

IMAGING

  Standardized imaging protocols Imaging acquisition protocols are well described and ideally similar across patients. Alternatively, 
methodological steps are taken towards standardizing them.

  Imaging quality assurance Methodological steps are taken to only incorporate acquired images of sufficient quality.

  Calibration Computation of radiomics features and image processing steps match the benchmarks of the IBSI.

EXPERIMENTAL SETUP

  Multi-institutional/external 
datasets

Model construction and/or performance evaluation is carried out using cohorts from different institutions, 
ideally from different parts of the world.

  Registration of prospective study Prospective studies provide the highest level of evidence supporting the clinical validity and usefulness of 
radiomics models.

FEATURE SELECTION

  Feature robustness The robustness of features against segmentation variations and varying imaging settings (e.g., noise 
fluctuations, inter-scanner differences, etc.) is evaluated. Unreliable features are discarded.

  Feature complementarity The inter-correlation of features is evaluated. Redundant features are discarded.

MODEL ASSESSMENT

  False discovery corrections Correction for multiple testing comparisons (e.g., Bonferroni or Benjamini- Hochberg) is applied in 
univariate analysis.

  Estimation of model performance The teaching dataset is separated into training and validation set(s) to estimate optimal model parameters. 
Example methods include bootstrapping, cross-validation, random sub-sampling, etc.

  Independent testing A testing set distinct from the teaching set is used to evaluate the performance of complete models 
(i.e., without retraining and without adaptation of cut-off values). The evaluation of the performance is 
unbiased and not used to optimize model parameters.

  Performance results consistency Model performance obtained in the training, validation and testing sets is reported. Consistency checks of 
performance measures across the different sets are performed.

  Comparison to conventional 
metrics

Performance of radiomics-based models is compared against conventional metrics such as tumor volume 
and clinical variables (e.g., staging) in order to evaluate the added value of radiomics (e.g., by assessing 
the significance of AUC increase calculated with the DeLong test).

  Multivariable analysis with non-
radiomics variables

Multivariable analysis integrates variables other than radiomics features (e.g., clinical information, 
demographic data, panomics, etc.).

CLINICAL IMPLICATIONS

  Biological correlate Assessment of the relationship between macroscopic tumor phenotype(s) described with radiomics and 
the underlying microscopic tumor biology.

  Potential clinical application The study discusses the current and potential application(s) of proposed radiomics-based models in the 
clinical setting.

MATERIAL AVAILABILITY

  Open data Imaging data, tumor ROI and clinical information are made available.

  Open code All software code related to computation of features, statistical analysis and machine learning, and 
allowing to exactly reproduce results, is open source. This code package is ideally shared in the form 
of easy-to-run organized scripts pointing to other relevant pieces of code, along with useful sets of 
instructions.

  Open models Complete models are available, including model parameters and cut-off values.
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