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A B S T R A C T

Radiological methodologies, such as chest x-rays and CT, are widely employed to help diagnose and monitor
COVID-19 disease. COVID-19 displays certain radiological patterns easily detectable by X-rays of the chest.
Therefore, radiologists can investigate these patterns for detecting coronavirus disease. However, this task
is time-consuming and needs lots of trial and error. One of the main solutions to resolve this issue is to
apply intelligent techniques such as deep learning (DL) models to automatically analyze the chest X-rays.
Nevertheless, fine-tuning of architecture and hyperparameters of DL models is a complex and time-consuming
procedure. In this paper, we propose an effective method to detect COVID-19 disease by applying convolutional
neural network (CNN) to the chest X-ray images. To improve the accuracy of the proposed method, the last
Softmax CNN layer is replaced with a 𝐾-nearest neighbors (KNN) classifier which takes into account the
agreement of the neighborhood labeling. Moreover, we develop a novel evolutionary algorithm by improving
the basic version of competitive swarm optimizer. To this end, three powerful evolutionary operators: Cauchy
Mutation (CM), Evolutionary Boundary Constraint Handling (EBCH), and tent chaotic map are incorporated
into the search process of the proposed evolutionary algorithm to speed up its convergence and make an
excellent balance between exploration and exploitation phases. Then, the proposed evolutionary algorithm
is used to automatically achieve the optimal values of CNN’s hyperparameters leading to a significant
improvement in the classification accuracy of the proposed method. Comprehensive comparative results reveal
that compared with current models in the literature, the proposed method performs significantly more efficient.
1. Introduction

At the end of 2019, in Wuhan, China, the first outbreak of novel
coronavirus disease (COVID-19) occurred. The COVID-19 virus attacks
and mutates rapidly in the lungs of a confirmed patient. The tainted
lungs are inflamed and overflowing with fluid in such a situation. When
we undertake CT-Scan or X-ray images of an infected person, the results
reveal dark spots in the lungs named Ground Glass Opacity (Parekh
et al., 2020). The spreading level of COVID-19 disease is significantly
higher than its forecasting or detection speed according to its highly
contagious existence (Ismael & Şengür, 2020). In the failure of an
intelligent diagnostic tool, it is important to diagnose suspected COVID-
19 patients quickly and accurately (Chakraborty & Mali, 2020; Panwar,
Gupta, Siddiqui, Morales-Menendez, Bhardwaj et al., 2020). The cur-
rent techniques available to diagnose this spreading pandemic are
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slightly accurate and time-consuming (Alamoodi et al., 2020; Shi et al.,
2020). There are generally three major variations of COVID-19 testing
procedures: Reverse Transcription Polymerase Chain Reaction (RT-
PCR), Computed Tomography (CT), and Chest X-ray (CXR) (Yoo et al.,
2020). RT-PCR is among these three recognized as time-consuming
approach. CT-Scan can detect inflammation of the lungs in terms of
location, shape, and scale. CXR offers a more accurate way of diagnosis
for COVID-19 and a clear image of air sacs. Thus, we have chosen
CXR images of the lungs for the experiments conducted in this work
(Panwar, Gupta, Siddiqui, Morales-Menendez, Bhardwaj et al., 2020;
Pereira et al., 2020).

Medical institutions produce and collect large volumes of data that
provide immensely helpful patterns and information, which go way
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further than what traditional analytical methods can handle. It should
be noted that the RT-PCR test is one of the expensive and time-
consuming approaches for the identification of suspects of COVID-19
(Ahmadian, Jalali et al., 2021; Jalali, Ahmadian, Ahmadian et al., 2021;
Kashir & Yaqinuddin, 2020). Therefore, a better approach could be
found in which a combination of deep learning classifiers and clinical
images provides rapid and reliable identification of the COVID-19 virus
throughout CXR analysis of pulmonary images. Deep Learning is a
machine learning category that facilitates computer systems to learn
important data features automatically from a set of data gathered
for different applications such as machine vision (Pouyanfar et al.,
2018; Yadav & Jadhav, 2019) and recommender systems (Ahmadian,
Ahmadian et al., 2021; Ahmadian et al., 2022; Ahmadian, Joorabloo
et al., 2018; Ahmadian et al., 2020, 2018a, 2018b, 2014; Moradi et al.,
2016; Rahmani et al., 2019; Tahmasebi et al., 2021). Convolutional
neural network (CNN) is one of the popular deep learning models
which has been widely used in different research area such as medial
applications. CNN can take input in 2D or 3D images into consideration
and make proper utilization of spatial and features information (Yuan
et al., 2018).

Machine learning algorithms have been extensively employed in
different real applications such as image classification. In Altan and
Karasu (2020), an effective COVID-19 detection approach is introduced
by integrating Curvelet transformation, chaotic salp swarm algorithm,
and deep learning models. For this purpose, a feature matrix is con-
structed by applying Curvelet transformation on the chest X-ray images
of patients. Moreover, the chaotic salp swarm algorithm is utilized to
optimize the feature matrix. Then, the EfficientNet-B0 model is used as
a deep learning approach to detect COVID-19 cases. Karasu et al. (2017)
proposed a feature representation model based on KNN approach to im-
prove the performance of image classification algorithms. To this end,
a character segmentation method is employed to derive 35 different
characters from the background of the gray scale images which can
be classified using KNN. Then, a set of effective features are obtained
using the histogram components of the derived characters. The authors
showed that this representation of features is able to significantly
improve the image classifiers’ accuracy. A novel COVID-19 detection
approach is introduced in Al-Itbi et al. (2022) in which the X-ray and
CT images are utilized as the inputs. Particularly, a feature extraction
method is employed based on the Scatter Wavelet Transform to derive
the features of input images and then, the extracted features are used
as the inputs of Dense Deep Neural Network to classify the images
into COVID-19/Non-COVID-19 cases. Hu et al. (2022) proposed a novel
framework for COVID-19 detection by integrating classification and
regression tasks in a multi-task multi-modality support vector machine
approach. Accordingly, a feature extraction method is applied to the
chest CT images to obtain appropriate features for each segment of
input image. Then, an effective model is considered based on data
augmentation of over-sampling approach to address class imbalance
problem. Finally, the proposed support vector machine model is utilized
to detect COVID-19 cases. In Deb et al. (2022), four different deep CNN
models: VGGNet, GoogleNet, DenseNet, and NASNet are integrated
as an ensemble model to extract latent features from the chest X-
ray images. Then, the extracted features of X-ray images are used as
the inputs of a fully connected layer to make an effective COVID-19
disease detection approach. The authors have investigated the perfor-
mance of their proposed method on two COVID-19 datasets where the
results demonstrate that the proposed ensemble method outperforms
single-mode classification models.

Although the deep neural network models have gained considerable
accuracy in image classification applications, the design of these mod-
els has been mainly done manually, which is a time-consuming and
complex process. It is worth mentioning that deep neural networks
contain several hyperparameters which determining their values is
a challenging task. Also, the efficiency of these models is strongly
2

dependent on the values used for their hyperparameters. Therefore,
developing effective methods to automatically determine the values of
these hyperparameters is a critical issue to improve the performance
of deep neural networks (Ahmadian & Khanteymoori, 2015; Jalali,
Ahmadian et al., 2019, 2020; Jalali, Khosravi et al., 2019; Jalali,
Osorio et al., 2021; Khodayar et al., 2021; Mousavirad et al., 2020).
Such methods should automatically provide the optimal structure of
deep neural networks leading to obtain the most accuracy in the
shortest time. Deep Neuroevolution (DNE) is a remarkably effective
and feasible approach to obtain automatically the architectures of deep
neural networks using powerful evolutionary algorithms. The aim of
this approach is to select the best values for hyperparameters leading
to promote accuracy, minimize the network over-fitting, and promote
consistency. However, evolutionary algorithms mainly suffer from low
convergence speed and tapping into local optima. Moreover, making
a balance between the exploration and exploitation phases of these
algorithms plays a critical role in enhancing their ability of search
process (Ahmadian, Jalali, Raziani et al., 2021; Jalali et al., 2022;
Jalali, Ahmadian, Khodayar et al., 2021; Jalali, Ahmadian, Khosravi
et al., 2021; Jalali, Hedjam et al., 2020; Jalali, Khodayar et al., 2021;
Jalali, Khosravi, Kebria et al., 2019; Qazani et al., 2020).

In this paper, an effective image classification method is proposed
based on deep CNN model to detect COVID-19 disease from chest X-ray
images. In order to improve the classification accuracy of the proposed
method, the last Softmax CNN layer is replaced with a KNN classifier
to take into account the agreement of the neighborhood labeling.
Moreover, an evolutionary algorithm is developed by improving the
original version of competitive swarm optimizer (CSO) model (Cheng
& Jin, 2014). To this end, three powerful evolutionary operators:
Cauchy Mutation (CM), Evolutionary Boundary Constraint Handling
(EBCH), and tent chaotic map are incorporated into the search process
of CSO model to improve its search capabilities, increase its conver-
gence speed, and make an excellent balance between the exploration
and exploitation phases. Then, the improved evolutionary algorithm is
employed to derive the optimal architecture of deep CNN model for
classifying X-ray images whether or not they are affected by COVID-
19 disease. Therefore, the proposed COVID-19 detection method takes
much shorter time in designing of deep neural network compared to
manual methods, and at the same time achieves higher classification
accuracy. In summary, the principal contributions of this work are as
follows:

• A novel image classification approach is developed by employing
deep CNN model to identify patients whether or not they are
infected with COVID-19 disease according to the chest X-ray
images. In the proposed method, the last Softmax CNN layer is
replaced with a KNN classifier to improve the classification accu-
racy by taking into account the agreement of the neighborhood
labeling.

• An effective evolutionary algorithm is proposed by considering
three powerful evolutionary operators including Cauchy muta-
tion, evolutionary boundary constraint handling, and tent chaotic
map in the search process of the original version of competitive
swarm optimizer model. The main advantage of the proposed evo-
lutionary algorithm is to make a balance between the exploration
and exploitation phases which results in increasing convergence
speed and reducing the probability of falling into local optima.

• The proposed evolutionary algorithm is applied to automatically
achieve the optimal values of hyperparameters of CNN model
leading to a significant improvement in the accuracy of classi-
fication method. Therefore, different from most of the previous
methods, the proposed method does not need to perform a manual
trial and error process to obtain the appropriate values of CNN’s
hyperparameters.

• Extensive experiments are carried out to assess the effectiveness
of the proposed DNE algorithm. The results demonstrate that the
proposed DNE method can detect COVID/NON-COVID cases more

accurate and reliable than the other state-of-the-art models.



Expert Systems With Applications 201 (2022) 116942S.M.J. Jalali et al.
The remainder of this paper is structured accordingly. The literature
review is discussed in Section 2. Section 3 outlines the entire proposed
DNE classification method for COVID-19 images. Section 4 explains
the experimental procedures. Finally, Section 5 sets out the conclusion
remarks and future directions.

2. Literature review

Although the COVID-19 disease is a very new issue in the world,
an enormous number of researches have been conducted to address
different challenges related to this disease. Specifically, the researchers
have recently investigated the utilization of deep classifiers to retrieve
the features of the appearance of COVID-19 disease from different
radiological images. A novel deep learning algorithm named nCOVnet
is proposed by Panwar, Gupta, Siddiqui, Morales-Menendez, Singh
(2020), which is based on the theory of data leakage for the rapid
identification of the COVID-19 cases. The detection accuracy in their
experiments was achieved in 88% which is not excellent as a classi-
fier used for a very critical issue. Kumar et al. (2020) developed a
model named DeQueezeNet, which categorizes X-ray images into two
positive and negative categories in the course of detection for COVID-
19 patients. With a 94% accuracy and 90% precision, the proposed
model predicts the potential for the disease by pre-processing the X-
ray images of positive COVID-19 and normal cases. In another work,
Luján-García et al. (2020) used X-rays for COVID-19 detection and
additional classification among patients who had or did not have
COVID-19 infections. Another improvement for the classification of
COVID-19 has been introduced in Ozturk et al. (2020) by presenting
a CNN-based framework for binary and multi-class views of conditions
such as COVID-19, proper pneumonia, and none of them. They reached
98% in binary classification accuracy and 87% in multi-class accuracy
using 17 convolutional layers. Shan et al. (2020) developed a unique
deep learning model to automatically classify affected lung regions of
COVID-19 patients. Their technique has been evaluated for 300 coro-
navirus infected individuals with the obtained accuracy of 91%. The
deployment of transfer learning in COVID-19 detection was outlined
by Apostolopoulos and Mpesiana (2020) since there is very little data
available. The authors have achieved the 96 percent accuracy, however,
the experimental results show that the dataset was not very balanced.
Thus, feature extraction and classification have been successful through
transfer learning methodology.

In Desai et al. (2020), the authors investigated deep learning models
and their contributions in interpreting medical images of COVID-19.
This work claims that the main reason to apply deep learning models
for medical images of COVID-19 is their successful in processing such
images and extracting useful features from them. An open source
network named COVID-Net is developed in Wang et al. (2020) to detect
COVID-19 cases from chest X-ray images. The main advantage of this
framework is its freely availability and the possibility of modification
and improvement by other researchers. In addition to this framework,
the authors introduced an open access dataset containing 13,975 chest
X-ray images across 13,870 positive COVID-19 cases. In another work
Mukherjee et al. (2020), the authors employed convolutional neural
network to predict COVID-19 cases according to both CT scans and
chest X-ray images. Using both CT and chest X-ray images together as
the inputs of CNN model is the main advantage of this work which leads
to improve the prediction accuracy. They reported an overall accuracy
of 96.28% for their proposed approach. An effective approach based on
deep neural networks is proposed in Sheykhivand et al. (2021) to auto-
matically identify COVID-19 cases. To this end, four different classes
including healthy, viral, bacterial, and COVID-19 are considered for
the chest X-ray images in the used benchmark dataset. This proposed
method uses an integration of Generative Adversarial Networks (GANs),
deep transfer learning, and LSTM to make an effective classification
model. The authors compared their model with other deep transfer
3

learning approaches in terms of different evaluation metrics including
accuracy, precision, sensitivity, and specificity. The results showed
that their model has a promising performance. In Aviles-Rivero et al.
(2022), an image classification method is proposed based on a deep
learning model to diagnose COVID-19 disease from chest X-ray images.
To this end, a graph diffusion model is developed using an optimization
methodology to make pseudo-labels of input data for the inputs of deep
neural network model. In Bhattacharyy et al. (2022), the chest X-ray
images are utilized as the input data to make an effective approach for
diagnosing COVID-19 disease. In particular, a segmentation method is
developed based on the conditional generative adversarial network to
extract the lung area from the chest X-ray images. Then, a deep neural
network is employed to derive the latent features from the extracted
lung areas. Finally, a number of machine learning methods have been
applied to detect COVID-19 cases using the derived latent features.
Kumar et al. (2022) developed a novel framework named SARS-Net in
which the graph convolutional network and CNN model are integrated
to automatically detect the presence of COVID-19 disease in chest X-ray
images of patients. The authors compared the SARS-Net model with a
number of existing classification approaches, and reported a significant
accuracy for their proposed model in comparison to other state-of-the-
art methods. In Gaur et al. (2022), a COVID-19 detection method is
developed by preprocessing the CT scan images and identifying the
positive and negative cases. For this purpose, the CT scan images are
preprocessed by the empirical wavelet transformation to obtain their
appropriate components of RGB channels. Then, a transfer learning
methodology is utilized to classify the input CT scan images based on
the obtained components.

By investigating the approaches reviewed in this section, it can
be concluded that all of them utilize a static design of deep neural
networks for developing their classification models. In other words,
these approaches adjust the hyperparameters of deep neural networks
manually without considering any heuristic. Whilst, the performance
of deep neural networks is significantly dependent on the values se-
lected for their hyperparameters. In addition, adjusting the values of
these hyperparameters in a manual way is very time-consuming and
might cause to reduce the efficiency of deep neural networks. Different
from the previous works, we develop an automatic strategy in this
paper to tune the hyperparameters of deep neural networks using an
enhanced evolutionary algorithm. Therefore, the main advantage of the
proposed method is to automatically determine the optimal values of
the hyperparameters of deep neural networks leading to improve the
performance of the proposed method in identifying COVID-19 cases.

3. The proposed DNE methodology

In this section, we describe the proposed X-ray image classification
framework for detecting coronavirus (COVID-19) which is based on
a deep Convolutional Neural Network (CNN) model optimized by an
evolutionary algorithm. In order to configure the deep CNN hyper-
parameters and architecture, automatically, an efficient and scalable
algorithm called Modified Competitive Swarm Optimizer (MCSO) has
been developed. This allows the network architecture to be more con-
sistent. Furthermore, in order to enhance the accuracy of the proposed
image classification model, the latest CNN Softmax layer is substi-
tuted by a 𝐾-nearest neighbor classifier. Fig. 1 illustrates the overall
procedure of the proposed DNE framework.

3.1. Convolutional Neural Network (CNN)

Deep learning is a technique using in machine learning, in which
a deep architecture designs several linear and non-linear processor
modules to represent high-level functionality in a given dataset. A
wide range of applications currently employ several such deep learning
methods including restricted Boltzmann machines (RBMs), deep belief
networks (DBNs), auto-encoders, and deep convolutional neural net-
works (CNNs). CNN approaches have been widely common in computer
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Fig. 1. Overall procedure of the proposed DNE framework.
vision as well as in the field of medical image processing in the past
decades (Anwar et al., 2018).

Bio-inspired versions of multi-layered perceptron are named as
CNNs. They generally associate visual features from input images ef-
fectively. Such deep networks address small image pixel spots named
temporal information through using multiple layer neurons and the
weights shared within each convolutional level (Mahendran & Vedaldi,
2016). Three architectural concepts incorporate CNNs to verify some
level of non-linearity in scale, transition, and disruption (Zheng et al.,
2018). The local interconnections between the patterns of the neurons
in adjoining CNN layers are chosen to take as a subcategory of units
in the previous layer which have amenable spatially adjacent areas
to leverage the spacial local correlation in the hidden units of the
current layer. Furthermore, any filter in the CNN is repeated across the
entire field of vision. Such filters exchange weight and bias vectors for
establishing a feature map. The shared weight gradient is the same as
the common shared parameter gradients. A feature map is generated
when convolution operations are conducted on subsections of the entire
image (Tian et al., 2020).

Let 𝑋 with 𝑅𝐴×𝐵 is used to determine the input in the convolutional
layer and the input data size is defined as 𝐴 and 𝐵. The output for the
convolutional layer is then stated as follows:

𝐶𝑛 = 𝑓

( 𝑁
∑

𝑐=1
𝑋𝑙−1
𝑐 ∗ 𝑊 𝑙

𝑚 + 𝐵𝑙𝑚

)

, (1)

where 𝐶𝑛 represents the 𝑚th output of convolutional layer, and 𝑛
refers to the number of outputs equal to the filter size. The number
of channels is represented by 𝑁 ; the convolutional operator is defined
as *, and 𝑋𝑐 is the 𝑐th input data channel for the prior (𝑙 − 1)th
layer. For the present layer 𝑙, the width and height of the filter are
indicated by 𝑊 and 𝐻 , respectively. 𝑊 𝑙

𝑚 is the 𝑚th filter weight for
the present 𝑙th layer, and 𝐵𝑙𝑚 is considered as 𝑚th bias. Generally,
activation function in CNN structures is represented by 𝑓 which their
most common functions are Sigmoid function, Rectified Linear Unit
(ReLU), Leaky ReLU, and Tanh. The ReLU is the widely-used activation
function which is defined in the following form:

𝑓 (𝑥) = max(0, 𝑥). (2)

The pooling technique allows in reducing the algorithm complexity
with the feature maps, prevents proper over-fitting after the last fully
convolutional layer, and significantly reduces training parameters to
shorten the training time of the model. The most widely recognized
method of pooling is max-pooling, which mainly involves traversing
functional maps with flexible steps and evolving optimal values to the
traversed areas. After performing the traversing operation, the updated
feature maps will eventually be extracted. This is the entire process of
the CNNs in general.

3.2. K-nearest neighbor

𝐾-nearest neighbor (KNN) algorithm is a supervised-learning clas-
4

sification approach founded on samples of the closest training set
throughout the feature domain which is considered as one of the
simplest algorithms in machine learning applications (Kim et al., 2012;
Ning et al., 2019). This algorithm is trained by the collection of vectors
and labels of the training objects (here images). The unknown data
points are simply allocated to their closest neighbors’ 𝐾 labels through-
out the classification phase. The primary benefit of KNN algorithm is
to work efficiently in binary classes since its decision is centered on a
small neighborhood of related objects, and therefore can contribute to
acceptable accuracy.

Instead of Softmax classifier as the last layer of the CNN model,
we replace it with KNN classifier providing significant improvement
in model accuracy and help to minimize the possibility of over-fitting
in the classification performance. The objects are typically classified by
majority voting on the labels of the closest 𝐾 neighbors. For 𝐾 = 1, the
entity is labeled basically as the nearest object class. If only two classes
exist in the dataset, 𝐾 parameter has to be an odd integer number.
Upon transforming each image to a vector of real numbers, we used
Euclidean distance feature in KNN as the most widely accepted distance
mechanism. The Euclidean distance of KNN algorithm is formulated as
following:

𝑑(𝑥𝑖, 𝑥𝑗 ) = ‖𝑥𝑖 − 𝑥𝑗‖22 =

( 𝑚
∑

𝑟=1

(

𝑥𝑖𝑟 − 𝑥𝑗𝑟
)2
)1∕2

, (3)

where 𝑥𝑖 and 𝑥𝑗 are the 𝑚−dimensional vectors of the 𝑖th and 𝑗th
samples, and the index 𝑟 indicates the 𝑟th real-valued feature of each
sample.

3.3. Modified Competitive Swarm Optimizer (MCSO)

In order to solve large-scale optimization problems, Cheng and Jin
(2014) introduced a robust and efficient particle swarm optimization
(PSO) variant, known as competitive swarm optimizer (CSO). In CSO,
the particles benefit from randomly chosen opponents and not from the
strongest global or the individual position. The population of swarms
is split randomly into two groups in each iteration and competitions
between the particles in any group take place on a pair principle.
The winner particle is directly transferred during every competition
toward the next iteration, while the losing particle updates its position
and velocity with a knowledge of the winning particle based on the
following equations:

𝑣𝑡+1𝑙 =𝐺𝑡1𝑣
𝑡
𝑙 + 𝐺

𝑡
2
(

𝑥𝑡𝑤 − 𝑥𝑡𝑙
)

+ 𝜆𝐺𝑡3
(

�̄�𝑡 − 𝑥𝑡𝑙
)

(4)

𝑥𝑡+1𝑙 =𝑥𝑡𝑙 + 𝑣
𝑡+1
𝑙 (5)

where 𝑡 represents the iteration counter, 𝐺𝑡1, 𝐺
𝑡
2, 𝐺

𝑡
3 represent three

[0, 1] range vectors that are generated randomly, while 𝑥𝑡𝑤 and 𝑥𝑡𝑙 are
respectively the winner and loser particles. �̄�𝑡 represents the mean
swarm position in iteration 𝑡, and the effect of �̄�𝑡 is handled by 𝜆.

In order to strength more the search capabilities of CSO algorithm,
we introduce a three-phase modification on this evolutionary algorithm
to make an efficient balance between exploration and exploitation
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phases as well as the ability to escape from local minima. We name
our novel evolutionary swarm intelligence algorithm as modified CSO
(MCSO) in which the modifications we have applied over CSO are listed
as follows:

-First modification:
Generally, during the beginning phases of the search procedure,

he CSO algorithm converges increasingly. Nevertheless, once CSO
its global optima point, the convergence decreases significantly. We
mplement Cauchy Mutation (CM) evolutionary operator in CSO to set
p a procedure that monitors and helps search agent improvements by
scaping the local search space through spreading to proper positions.
o this end, the following equation is used:

(𝑥) = 1
𝜋

𝑡
𝑥2 + 𝑡2

, 𝑡 > 0 & −∞ < 𝑥 <∞ (6)

where 𝑡 shows the scale element. The probability distribution function
of the Cauchy component is shown by:

𝐹 (𝑥) = 1
2
+ 1
𝜋
arctan

(

𝑥
𝑡

)

(7)

The mutation operator disrupts the population of the search agents
and enables them break of the local minima. The deployment of CM in
CSO is defined as following:

𝑊𝑗 =

(

∑𝑃
𝑖=1 𝑥𝑖𝑗

)

𝑃
(8)

here 𝑊𝑗 represents the matrix of weights, 𝑥𝑖𝑗 is the 𝑗th position of the
th search agent and population size of the search agents is denoted by
. The Cauchy mutation operator is applied as follows:
′
𝑗 = 𝑥𝑗 +𝑊𝑗 ⋅ 𝐴 (9)

here 𝐴 is a random vector generated by Cauchy.

Second modification:
In CSO algorithm, per each iteration, the position of search agents

s updated continuously. After finalizing the updating procedure, the
earch agents exceeding the search space boundaries are considered
orthless in order to find the best solutions. Therefore, the search
gents must be redirected to the search field, accomplished by the
volutionary boundary constraint handling (EBCH) technique. Once we
ncorporate this technique into CSP, its exploration and exploitation
daptability is enhanced effectively. Thus, the relevant attributes of the
est search agent positions substitute the search agents that contravene
he search space boundary conditions. The EBCH updating process is
iven by the following formula:

(𝑜𝑖 → 𝑥𝑖) =
{

𝜉 ⋅ lb𝑖 + (1 − 𝜉)𝑥𝑏𝑖 if 𝑜𝑖 < lb𝑖
𝜚 ⋅ ub𝑖 + (1 − 𝜚)𝑥𝑏𝑖 if 𝑜𝑖 > ub𝑖

(10)

where 𝑜𝑖 represents the out-of-bound search agent, 𝜉 and 𝜚 are random
variables in [0,1] interval, ub𝑖 and lb𝑖 denote to the upper and lower
bounds of the search space, respectively, and 𝑥𝑏𝑖 is considered as the 𝑖th
best search agent.

-Third modification:
In order to improve CSO convergence speed, 𝜆 parameter plays a

key role. In the iterative cycle of CSO, the evolutionary chaotic maps
are used to strengthen the ability of utilizing and keeping the core
search step harmonized. This concept motivates us to fine tune the 𝜆
parameter using a powerful chaotic map named tent map. The formula
of tent map is given as following:

𝜆 =

{ 𝜆
0.7 𝜆 < 0.7
10
3 (1 − 𝜆) 𝜆 ≥ 0.7

(11)

In Fig. 2, the detailed framework of the proposed MCSO algorithm
s summarized as a flowchart.
5

Fig. 2. The proposed MCSO evolutionary algorithm.

3.4. Proposed MCSO-CNN

Within this section, we introduce our novel proposed deep neu-
roevolution approach named as MCSO-CNN. In order to achieve op-
timal CNN hyperparameters that increase the accuracy of X-ray image
classification, the proposed method is optimized using the MSCO algo-
rithm. Two essential challenges should be addressed by each evolution-
ary optimization technique, namely, solution representation and fitness
function calculation. On the other hand, eleven key hyperparameters
of CNN model are highlighted in the proposed classification model to
be optimized by the MCSO including convolution filter size, number
of filters, number of convolutional layers, activation function type,
dropout rate, maxpooling size, learning rate, momentum rate, optimizer
type, number of epochs, and batch size. Therefore, any solution in
MCSO can be represented as an eleven dimensional vector that cor-
responds each to one of the eleven hyperparameters of CNN model.
Learning rate, momentum rate, and dropout rate are the continuous
value hyperparameters that MCSO can achieve their optimum values.
In addition, number of convolutional layers, number of filters, kernel
size, batch size, maxpooling size, and number of epochs are other
discrete hyperparameters. Optimizer type and activation function type
hyperparameters are the categorial ones that are utilized in the opti-
mization procedure by MCSO. While MCSO actively searches the space
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for solutions, the values obtained optimally for the hyperparameters
should be converted all into their corresponding discrete values. Thus,
we design a cost-effective strategy to convert each real value into an
integer value. In this regard, the continuous values in each hyperparam-
eter are passed to a discrete search space as 𝐷 = [𝐻1,𝐻2,… ,𝐻𝑛]. To
ormulate the discretization model, the following equations are taken
nto consideration:

= 1 + 𝑛 × 𝐶 (12)

= 𝑚𝑖𝑛(⌊𝜁⌋, 𝑛) (13)

here 𝐶 represent a continues value in the [0, 1] interval for exploration
urpose in the continuous search space area, 𝜁 is an operator respon-
ible to map from 𝐶 to [1, 𝑛 + 1], and 𝜓 is another mapping operator
rom 𝜁 to [1, 2, 3,… , 𝑛]. Each integer value belonging to the solution’s
ontinuous dimension can thereby be computed using the following
ormula:

𝑖𝑗 = 𝐻𝜓 (14)

Using Eqs. (4) and (5), the proposed MCSO-CNN method starts
andomly to initialize the population of 𝑛 solutions. 𝑋𝑖𝑗 , where 𝑖 = 1..𝑛
nd 𝑗 = 1..11 is a 11-dimensional vector standing for the 𝑖th solution
ncoding the eleven hyperparameters of CNN model. A continuous
pdate of current solutions after generation of the first population can
rovide new solutions. We use CM strategy to help the CSO in order to
scape from local optima by Eq. (9). For improving the convergence of
SO, we incorporate the EBCH technique into the CSO using Eq. (10).
hen, we tune the parameter 𝜆 with the tent chaotic map using Eq. (11)
or providing a balance between exploration and exploitation steps. The
hole process is repeated until the final threshold is met and the best

olution is found as expected. The best CNN hyperparameter values
an be adopted in this solution. We also require to specify a fitness
unction to find out the success of all the solutions that have been
btained by the MCSO-CNN model. To facilitate this, the input data
rom the COVID-19 dataset is divided into two distinct training and test
ets. The training set optimizes CNN hyperparameters, while the test set
valuates the performance of the final COVID-19 detection model.

It should be noted that the CNN model is equipped with the hy-
erparameter values from any solution in MCSO. Therefore, the fitness
unction for the efficiency of the optimized CNN model for detection
f COVID-19 can be interpreted. The images in the training set can be
ncluded in the training period as the inputs of the CNN model. The
itness value of solutions during optimization procedure is the accuracy
f the CNN classifier in classification of input images. The accuracy
actor denotes to the number of images classified correctly over all of
he total input images in the dataset. Thus, the accuracy value can be
ormulated by using the following formula:

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# number of correctly classified images

# total number of input images (15)

Precisely, a solution with higher accuracy has a higher fitness value
and likewise. The objective of the proposed approach is thereby to
achieve a solution that contains the optimum values of CNN hyper-
parameters of the highest accuracy (i.e. highest fitness value). The
optimized CNN model is then used to classify images in the test set.
The overall steps of the MCSO-CNN method are outlined by Algorithm
1.

4. Experimental setting, results and evaluation

4.1. Dataset description

The proposed DNE framework is evaluated and tested using X-
ray images provided by Alqudah and Qazan (2020) which can be
downloaded for free of use from Mendeley open source repository.1 The

1 https://data.mendeley.com/datasets/2fxz4px6d8/4.
6

Algorithm 1 Pseudo-code of the proposed DNE COVID-19 detection
framework (MCSO-CNN)
1: Input: D, labeled X-ray images dataset;
2: Output: Classified X-ray images (Normal or infected by COVID-19);
3: Begin algorithm:
4: Set the max number of iterations, 𝑀𝑎𝑥𝑖𝑡;
5: Split D into training set (𝑇 𝑟) and test set (𝑇 𝑒);
6: Generate the initial population of 𝑃 particles, 𝑆 = {𝑋𝑖 , 𝑖 = 1..𝑃 };
7: 𝑡=1;
8: while (𝑡 < 𝑀𝑎𝑥𝑖𝑡𝑒) do
9: Design 𝑃 CNN models based on 𝑆;
0: Calculate the fitness (accuracy) 𝐹𝑖 of each particle 𝑋𝑖 with Eq. (17) based on 𝑇 𝑟;
1: 𝑔𝑏𝑒𝑠𝑡← 𝑋𝑖; 𝑋𝑖 of the best fitness;
2: for i=1 to ⌊𝑃 ⌋ (half of population) do
3: Select randomly two particles, 𝑋𝑘 and 𝑋𝑚;
4: if 𝐹𝑘 > 𝐹𝑚 then
5: 𝑋𝑤 = 𝑋𝑘; #𝑋𝑤 is the winner particle

16: 𝑋𝑙 = 𝑋𝑚; #𝑋𝑙 is the loser particle
17: else
18: 𝑋𝑤 = 𝑋𝑚, 𝑋𝑙 = 𝑋𝑘;
19: end if
20: Add 𝑋𝑤 into new population;
21: Remove 𝑋𝑘 and 𝑋𝑚 from the population;
22: 𝑖= 𝑖 + 1;
23: for i=1 to ⌊𝑃 ⌋ (half of population) do
24: Update velocity of loser as shown in Eq. (4);
25: Update the parameter 𝜆 by tent chaotic map using Eq. (11);
6: Update position of loser using Eq. (5);

27: Apply CM operator using Eq. (9);
28: Apply the EBCH operator using Eq. (10);
29: Calculate the fitness of new loser, 𝐹𝑙 ;
30: Move new loser into new population;
31: Update 𝑔𝑏𝑒𝑠𝑡 if there is better solution;
32: 𝑖= 𝑖 + 1;
33: end for
34: Pass new population to next iteration;
35: end for
36: 𝑡=𝑡+1;
37: end while
38: Fit the trained CNN model on the basis of the best particle 𝑔𝑏𝑒𝑠𝑡 hyperparameters and

classify images based on KNN algorithm;
39: In the 𝑇 𝑒 test set, classify the images with the best CNN model acquired;
40: Return the classified images as the optimal output;
41: End algorithm

dataset consists of 1824 images including 912 images for normal cases
and the rest for COVID-19 affected cases. Fig. 3 shows three samples
of normal cases and also three samples of affected cases. Since CNN
requires input images to be the same size, we scaled all the images to
224 × 224 pixels.

4.2. Parameter setting

The proposed DNE framework uses eleven parameters that should
be learned automatically in a deep evolutionary scheme. With respect
to parameterization of the MCSO evolutionary model, we set the maxi-
mum number of iterations to 20 and population size to 30. For the sake
of fairness, all the algorithms used in the comparison phase, including
the one proposed, are executed 10 times, then the average accuracy
measurement is reported. Table 1 defines all hyperparameters and their
categorical or integer coding values in the proposed DNE algorithm. In
the experiments, we compare the proposed method with other models
based on three different scenarios. In the first scenario, the proposed
method is compared with other evolutionary algorithms used to opti-
mize the hyperparameters of CNN model. To have a fair comparison,
we set the maximum number of iterations and population size for all
the compared algorithms to exactly the values used for the proposed
method. Other specific parameters related to different evolutionary
algorithms are set according to the optimal values obtained through
a greedy search process or by their suggested values in their related
literature (Al-Betar et al., 2021; Yue & Zhang, 2021; Zhou et al., 2021).
In the second scenario, the proposed method is compared with other
supervised learning classifiers in which the values of their parameters
are set based on the best values reported in their corresponding papers,

https://data.mendeley.com/datasets/2fxz4px6d8/4
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Fig. 3. Samples from the X-ray image dataset.
Table 1
Involved hyperparameters in the evolutionary algorithm and their corresponding
values.

Symbol Description Values

K𝑠 Kernel size [1,25]
N𝑓 # Of filters [1500]
Opt Optimizer type [Adagrad, Adam, SGD, Adamax]
N𝑒 # Of epochs [1600]
B𝑠 Batch size [10,20, . . . .,600]
N𝑐 # Convolution layers [1,2, . . . ,15]
MP𝑠 Maxpooling size [1,25]
D𝑟 Dropout rate [0.2, 0.25, . . . ,0.65]
Act Activation function [Sigmoid, ReLU, Hard Sigmoid, Tanh]
L𝑟 Learning rate [0.001, 0.006, . . . , 0.1]
M𝑟 Momentum rate [0.05, 0.1, . . . ,0.95]

and also a greedy search process is performed to obtain the optimal
values for these models. Finally, in the third scenario, the state-of-
the-art image classification models are considered to compare with
the proposed method. In this case, the values of parameters for the
compared models are initialized based on the best values reported in
their corresponding papers. For implementing the proposed method
and other algorithms used in the experiments, we used TensorFlow
which is a high-level platform developed in the Python programming
language for machine learning techniques. Also, all algorithms are
performed on a machine with one GeForce GTX 1080 Ti GPU and one
16 GB RAM.

4.3. Performance evaluation metrics

We employed standard performance metrics including accuracy,
precision, recall, area under the curve (AUC), and F1-score to evaluate
the prediction efficiency of the compared models. In these metrics,
the number of positive samples correctly predicted is denoted by true
positive (TP) while the number of positive samples wrongly predicted is
represented by false negative (FN). On the other hand, the true negative
(TN) is the accurately predicted number of negative samples, whereas a
false positive (FP) is the wrong predicted number of negative samples.
The equations related to the evaluation metrics are defined as follows:

• Precision is expressed as the ratio of samples correctly classified
in truly positive patients which is obtained by:

Precision = TP
TP + FP

(16)

• Recall shows the rate of total positive samples correctly classified
by the algorithm which can be calculated as follows:

Recall = TP (17)
7

TP + FN
• F1-score (𝐹1) is the harmonic average of two other metrics pre-
cision (P) and recall (R) defined as follows:

𝐹1 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅

(18)

• Accuracy is defined as the rate of the corrected classified cases:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
(19)

• AUC is described as the area under the ROC (receiver operat-
ing characteristic) curve showing the performance of classifica-
tion/detection model. It is defined as follows:

AUC = ∫

1

0

TP
𝑃

d FP
𝑁

= 1
𝑃 .𝑁 ∫

1

0
TP d FP (20)

4.4. Results and discussion

In this section, we perform an extensive performance comparison
with different evolutionary algorithms, classifiers, and state-of-the-
art deep learning architectural models to show the competency and
efficiency of our proposed MCSO-CNN model.

4.4.1. Performance comparison based on different evolutionary algorithms
In order to demonstrate the impact of the proposed MSCO approach

on the optimization of CNN, we compare it to different evolutionary al-
gorithms including GA (genetic algorithm) (Jalali, Kebria et al., 2019),
DE (differential evolution) (Deng et al., 2020), PSO (particle swarm
optimization) (Tan et al., 2019), MFO (moth-flame optimization) (Li
et al., 2016), WOA (whale optimization algorithm) (Mirjalili & Lewis,
2016), SSA (salp swarm algorithm) (Yang et al., 2019), HHO (Harris
hawks optimization) (Heidari et al., 2019), GOA (Grasshopper opti-
mization algorithm) (Saremi et al., 2017), and the original CSO. Table 2
reports the results obtained by the different EAs based on the evaluation
metrics mentioned above. These results demonstrate that the proposed
method outperforms all other algorithms on all the performance met-
rics. It can be shown that, based on AUC, the proposed method can
improve the classification accuracy with an average of approximately
3 percent compared to the second best algorithm (i.e., HHO). Moreover,
MSCO achieved the highest number of true classifications reflected
in the recall and precision measures. One of the effective ways to
evaluate the performance of classification models is the comparison of
their confusion matrix. The confusion matrix divides the input samples
into four subsets according to true/false predictions. Fig. 4 shows the
confusion matrix of different EA models. As we can see from this figure,
the proposed method presents a better confusion matrix than other
models. This is due to the fact that the number of true classifications
obtained by the proposed method is more than other classifiers. The
box plots of different evolutionary algorithms based on the accuracy
metric are shown in Fig. 5. These results reveal that the proposed
method is more accurate than other models as the average accuracy
of the proposed method is higher than other evolutionary algorithms.
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Fig. 4. Confusion matrices of different evolutionary algorithms.
Moreover, this figure shows that the proposed MCSO model does not
have an horizontal line on the top compared to other models. Therefore,
it can be concluded that the proposed model has a better variance
value than the other models. The convergence speed of the EA models
8

is compared and the results are shown in Fig. 6. It can be seen from
this figure that the convergence speed of the proposed method is better
than other EA models. Moreover, the proposed method obtains the best
accuracy among other EA models in different iterations.
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Fig. 4. (continued).
4.4.2. Performance comparison based on different supervised learning clas-
sifiers

In this section, we consider the effect of different classification
algorithms such as Decision Tree, Random Forest, LightGBM, AdaBoost,
9

SoftMax, and Bagging on the proposed framework and compare them
with the KNN algorithm. In the proposed method, we use the KNN
algorithm to classify the input images into two classes including COVID-
19/Non-COVID-19 cases. The results of experiments based on different
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Fig. 4. (continued).
classification algorithms are reported in Table 3. These results reveal
the superiority of the proposed method in comparison to other classi-
fication algorithms. The accuracy of the proposed method is 0.985673
while the Bagging algorithm obtains the accuracy of 0.919771 as the
second best performer. Therefore, the proposed method can improve
10
the classification accuracy by up to 7 percent. Moreover, the proposed
method outperforms other models in terms of other metrics including
precision, recall, F-measure, and AUC. Fig. 7 shows the confusion ma-
trix of different classification algorithms. As we can see from this figure,
the confusion matrix of the proposed method presents better result than
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Fig. 4. (continued).
Fig. 5. Box plots of different evolutionary algorithms for accuracy metric as the fitness function.
Table 2
The results of experiments based on different evolutionary algorithms.

Metric GA DE PSO MFO WOA SSA HHO GOA CSO MCSO (Proposed)

AVG 0.948424 0.879656 0.936963 0.934118 0.896848 0.937718 0.959885 0.945559 0.897091 0.985673
STD 0.027857 0.028322 0.030082 0.018272 0.016444 0.015544 0.026981 0.025433 0.022989 0.010329

Accuracy Best 0.963189 0.900377 0.951132 0.945489 0.919887 0.949899 0.967782 0.961089 0.910082 0.994258
Worst 0.901882 0.839555 0.885334 0.893778 0.867442 0.902313 0.912287 0.921055 0.869988 0.980227

AVG 0.931034 0.931507 0.967949 0.939394 0.943184 0.910112 0.975309 0.951515 0.84375 0.988024
STD 0.017291 0.016891 0.011838 0.013949 0.015623 0.012234 0.018996 0.026744 0.057239 0.011017

Precision Best 0.959888 0.953998 0.973553 0.945772 0.958669 0.922043 0.981544 0.968892 0.890665 0.990881
Worst 0.925343 0.936886 0.946767 0.910093 0.924883 0.887877 0.959882 0.927751 0.800487 0.982626

AVG 0.964131 0.809524 0.898823 0.922619 0.839286 0.965233 0.940476 0.934524 0.968893 0.982143
STD 0.042911 0.033578 0.063431 0.051967 0.049677 0.056444 0.019843 0.020729 0.019759 0.019556

Recall Best 0.986567 0.788992 0.945539 0.958882 0.886321 0.976621 0.948881 0.952881 0.978992 0.989945
Worst 0.910533 0.846653 0.812322 0.865531 0.786928 0.870032 0.925521 0.911899 0.947721 0.972774

AVG 0.947368 0.866242 0.932099 0.930931 0.886792 0.936416 0.957576 0.942943 0.893378 0.985075
STD 0.035201 0.031878 0.029889 0.022213 0.027344 0.020992 0.024434 0.027666 0.028891 0.018847

F-measure Best 0.969189 0.906675 0.957877 0.960219 0.907682 0.948977 0.970221 0.968891 0.919884 0.993927
Worst 0.903888 0.824844 0.896763 0.911661 0.865433 0.918896 0.933833 0.928823 0.869066 0.978863

AVG 0.948994 0.877138 0.935593 0.933685 0.894781 0.937944 0.959188 0.945162 0.89927 0.985547
STD 0.032367 0.026767 0.031198 0.019421 0.022322 0.017669 0.019006 0.021424 0.025589 0.016383

AUC Best 0.972081 0.903278 0.963122 0.945488 0.917066 0.945543 0.969928 0.965881 0.918553 0.990394
Worst 0.888977 0.837655 0.890789 0.910886 0.865518 0.913908 0.940133 0.919998 0.877001 0.978963
11



Expert Systems With Applications 201 (2022) 116942S.M.J. Jalali et al.

M

t
t
i
o
F
o
m
i
t
c
i

4
t

p
i
i

Table 3
The results of experiments based on different supervised learning classifiers.

Metric Decision Tree Random Forest LightGBM AdaBoost SoftMax Bagging KNN (Proposed)

AVG 0.914844 0.905444 0.899713 0.902579 0.914048 0.919771 0.985673
STD 0.005888 0.006131 0.006254 0.007677 0.007147 0.006222 0.010329

Accuracy Best 0.919422 0.912554 0.905334 0.913183 0.920839 0.931064 0.994258
Worst 0.897532 0.890411 0.883633 0.897712 0.901899 0.911441 0.980227

AVG 0.901163 0.929936 0.907975 0.852632 0.965577 0.897727 0.988024
STD 0.012277 0.011899 0.014884 0.049899 0.037877 0.04402 0.011017

Precision Best 0.927478 0.939988 0.917888 0.913233 0.971322 0.956566 0.990881
Worst 0.903536 0.921443 0.898666 0.811171 0.908788 0.853887 0.982626

AVG 0.922619 0.869048 0.880952 0.964008 0.857143 0.940476 0.982143
STD 0.022968 0.024344 0.023534 0.011433 0.045936 0.015366 0.019556

Recall Best 0.944542 0.879231 0.911488 0.973134 0.918334 0.959189 0.989945
Worst 0.890181 0.831066 0.867578 0.938788 0.819878 0.920066 0.972774

AVG 0.911765 0.898462 0.89426 0.905028 0.905668 0.918605 0.985075
STD 0.006989 0.007461 0.008644 0.006079 0.006256 0.005587 0.018847

F-measure Best 0.933543 0.916466 0.909689 0.924157 0.921177 0.935525 0.993927
Worst 0.909978 0.896366 0.880343 0.900758 0.901333 0.917578 0.978863

AVG 0.914348 0.904137 0.89904 0.904795 0.911997 0.920514 0.985547
STD 0.005979 0.006365 0.006887 0.006989 0.006425 0.005479 0.016383

AUC Best 0.922432 0.916576 0.906966 0.912089 0.927816 0.935455 0.990394
Worst 0.903879 0.899932 0.883588 0.891777 0.903133 0.912189 0.978963
Fig. 6. Convergence curves of different evolutionary algorithms and the proposed
CSO algorithm.

he other models. It is worth noting that a confusion matrix with more
rue predicted samples can be considered as a better result. Therefore,
t can be concluded that the proposed method based on KNN algorithm
btains better performance than the other classification algorithms.
ig. 8 shows the box plots of different classification algorithms based
n the accuracy metric. It can be seen from this figure that the proposed
ethod is the best performer among all classification algorithms as

t obtains the best average accuracy. Therefore, it can be concluded
hat the KNN algorithm can provide better classification strategy in
omparison to other models to classify the input COVID/Non-COVID
mages.

.4.3. Performance comparison with the-state-of-the-art image classifica-
ion models

The experiments in this section are carried out to compare the
roposed method with the-state-of-the-art approaches related to the
mage classification. To this end, several pre-trained deep learning
12

mage classification approaches including DenseNet121, MobileNet,
InceptionV3, XCeption, ResNet50, VGGNet19, and two well-known
approaches in COVID-19 detection named DeCoVNet Brunese et al.
(2020) and Zheng et al. (2020) are considered in the experiments.
Experimental results for different image classification methods based
on the used evaluation metrics are reported in Table 4. These results
demonstrate that the proposed method can achieve better performance
than the other image classification methods in terms of all evaluation
metrics. For instance, the average accuracy of the proposed method
is 0.985673 while the second best result is obtained by the XCeption
method as 0.977077. It is obvious that the classification accuracy
is a vital issue in real applications especially for the detection of
coronavirus disease. Therefore, it can be concluded that the proposed
method can open a promising research direction in the field of the
coronavirus disease detection. The experiments are repeated and their
results are shown in Fig. 9 as the confusion matrices of different image
classification methods. As we can see from these results, the confusion
matrix of the proposed method contains more true classified cases
than the other models. Therefore, the proposed method significantly
outperforms other image classification methods by providing a better
model to detect COVID/Non-COVID cases. Moreover, Fig. 10 shows the
box plots of different image classification methods based on the accu-
racy metric. As illustrated in this figure, the accuracy of the proposed
method is higher than other compared methods. Thus, it can be inferred
from these results that the ability of the proposed method in detecting
COVID/Non-COVID cases is much better than other state-of-the-art
image classification approaches.

Fig. 11 shows the Violin plots representing the distributions of the
hyperparameters evolved in the CNN architectures. It can be revealed
that the range of evolved CNN hyperparameters values that has been
selected by the MCSO approach incorporates to the minimum values of
the hyperparameters range. This is valuable and important since these
selected values show the higher capability of MCSO for having the best
performance and lowest computational costs during the evolutionary
process.

4.4.4. Statistical analysis
To infer the validity of the reported results, a ranking statistical

test called the Friedman ranking test is employed to assess and analyze
the performance of the proposed model and all benchmark algorithms.
As can be seen in Table 5, our proposed deep MCSO-CNN model
statistically achieves the first rank and is recognized as the most ef-
ficient algorithm among 23 benchmark models, followed by XCeption,
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Fig. 7. Confusion matrices of different classifiers.
ResNet50, HHO, GA, and GOA, as the top five comparative models. The
second (i.e., XCeption) and third (i.e., ResNet50) rank algorithms indi-
cate the effectiveness of the pre-trained deep state-of-the-art algorithms
in classifying the X-ray images for COVID-19 detection. We should
13
also acknowledge that the proposed framework hybridized with other
powerful evolutionary algorithms including HHO, GA, and GOA have
achieved the optimal performance over the remaining deep learning
benchmark algorithms.
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Fig. 7. (continued).
4.5. Run-time analysis

In this section, we analyze the run-time of our proposed algorithm
and other benchmarking methods for COVID-19 diagnosis. The time
consuming results for all algorithms in terms of optimization, training,
14
and testing times are tabulated in Table 6. As can be seen from
this table, in terms of optimization time consumption, our proposed
algorithm has the shortest time among other methods that have used
the optimization method. Furthermore, among all methods, including
those that have used optimization and non-optimization methods, our



Expert Systems With Applications 201 (2022) 116942S.M.J. Jalali et al.
Fig. 7. (continued).
Fig. 8. Box plots of different classification algorithms for accuracy metric as the fitness function.
Table 4
Performance comparison of the proposed method with different state-of-the-art image classification approaches.

Metric DenseNet121 MobileNet InceptionV3 XCeption ResNet50 VGGNet19 DeCoVNet Brunese et al. MCSO-CNN

AVG 0.939828 0.937745 0.934097 0.977077 0.974212 0.902666 0.925501 0.942693 0.985673
STD 0.002357 0.002002 0.002155 0.011622 0.012113 0.034463 0.025306 0.016311 0.010329

Accuracy Best 0.947612 0.942991 0.940911 0.982833 0.981202 0.948821 0.945599 0.957781 0.994258
Worst 0.929881 0.922881 0.916833 0.961198 0.957088 0.870924 0.899006 0.938876 0.980227

AVG 0.924855 0.962025 0.950311 0.987805 0.970414 0.838384 0.961039 0.974359 0.988024
STD 0.015516 0.011909 0.018922 0.014481 0.018899 0.066718 0.014456 0.013367 0.011017

Precision Best 0.950888 0.978811 0.972033 0.990629 0.978884 0.903318 0.969938 0.979665 0.990881
Worst 0.909442 0.937022 0.931992 0.970666 0.959993 0.782229 0.948994 0.968834 0.982626

AVG 0.952381 0.904762 0.910714 0.964286 0.976193 0.980095 0.880952 0.906772 0.982143
STD 0.011828 0.021185 0.026811 0.009999 0.008888 0.009725 0.043198 0.039293 0.019556

Recall Best 0.969022 0.933966 0.930019 0.973811 0.981194 0.992322 0.934823 0.928282 0.989945
Worst 0.916671 0.885917 0.876614 0.979948 0.971191 0.981106 0.835558 0.869949 0.972774

AVG 0.938416 0.932515 0.930091 0.975904 0.973294 0.907104 0.919255 0.938272 0.985075
STD 0.003496 0.003891 0.004029 0.016669 0.012279 0.031835 0.027657 0.022004 0.018847

F-measure Best 0.945589 0.947112 0.941992 0.981885 0.978888 0.945433 0.940278 0.949773 0.993927
Worst 0.931058 0.922516 0.921001 0.955322 0.955931 0.869028 0.882996 0.917005 0.978863

AVG 0.940279 0.935806 0.933258 0.976618 0.974283 0.905644 0.923902 0.941331 0.985547
STD 0.002902 0.003322 0.003102 0.017744 0.022882 0.032918 0.025946 0.021966 0.016383

AUC Best 0.949881 0.942554 0.941921 0.986464 0.979669 0.938883 0.944888 0.958892 0.990394
Worst 0.934155 0.929973 0.926767 0.955032 0.933992 0.869399 0.908873 0.922883 0.978963
15
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Fig. 9. Confusion matrices of different state-of-the-art deep learning architectures.
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Fig. 9. (continued).
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Fig. 9. (continued).

Fig. 10. Box plots of different state-of-the-art deep learning architectures for accuracy metric as the fitness function.
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Table 5
The average results of the Friedman ranking test for the proposed and other benchmark models based on different classification performance metrics.
Model DenseNet121 MobileNet InceptionV3 XCeption ResNet50 VGGNet19 DeCoVNet Brunese et al. GA DE PSO MFO WOA SSA HHO GOA CSO Decision Tree Random Forest LightGBM AdaBoost SoftMax Bagging MCSO-CNN

ACC 8 9 13 2 3 19 14 7 5 24 11 12 23 10 4 6 22 16 18 21 20 17 15 1
Precision 17 8 11 2 5 24 9 4 15 14 6 13 12 18 3 10 23 20 16 19 22 7 21 1
Recall 9 17 15 6 3 2 19 16 7 24 18 13 23 5 10 12 4 13 21 19 8 22 10 1
F-measure 7 10 13 2 3 17 14 8 5 24 11 12 23 9 4 6 22 16 20 21 19 18 15 1
AUC 8 10 13 2 3 18 14 7 5 24 11 12 23 9 4 6 21 16 20 22 19 17 15 1

Summation 49 54 65 14 17 80 70 42 37 110 57 62 104 51 25 40 92 81 95 102 88 81 76 5
Average 9.8 10.8 13 2.8 3.4 16 14 8.4 7.4 22 11.4 12.4 20.8 10.2 5 8 18.4 16.2 19 20.4 17.6 16.2 15.2 1
Final Ranking 8 10 13 2 3 16 14 7 5 24 11 12 23 9 4 6 20 17 21 22 19 17 15 1
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Fig. 11. Violin plots of the evolved hyperparameters utilized in the MCSO-CNN model.
proposed method has the lowest consumption time for training and
testing time indicators.

4.6. Remarks

In this section, we provide some discussions about the insight of the
main results and also the reasons why the tested results are achieved.
It is worth mentioning that the contributions of the proposed method
can be investigated in three different perspectives. First, we proposed
a novel evolutionary algorithm by incorporating three evolutionary
operators: Cauchy mutation, evolutionary boundary constraint han-
dling, and tent chaotic map into the search process of the original
version of competitive swarm optimizer model. Second, the Softmax
layer of CNN model is replaced with a KNN classifier to improve the
classification accuracy. Third, the proposed evolutionary algorithm is
applied to automatically achieve the optimal values of hyperparam-
eters of CNN model. In order to show the efficiency of these three
contributions, several experiments have been conducted in this paper.
For the first perspective, the performance of the proposed evolutionary
algorithm is compared with a number of state-of-the-art evolutionary
methods including GA, DE, PSO, MFO, WOA, SSA, HHO, GOA, and
20

CSO. The results of these experiments are reported in Table 2 where
it is shown that the proposed method outperforms other compared
methods. The main reason to obtain such results is to consider the three
evolutionary operators in the proposed evolutionary algorithm which
leads to a significant improvement in the accuracy of classification
method. In other words, the proposed evolutionary algorithm makes a
balance between the exploration and exploitation phases which results
in increasing convergence speed and reducing the probability of falling
into local optima. For the second perspective, the proposed method is
compared with different supervised learning classifiers to investigate
the performance of the KNN classifier in comparison to other models
including Decision Tree, Random Forest, LightGBM, AdaBoost, Soft-
max, and Bagging. The results of these experiments are reported in
Table 3 where we can see that the KNN classifier performs better than
other models. This is due to the fact that the KNN classifier takes into
account the agreement of the neighborhood labeling which results in
achieving accurate outputs in the last layer of CNN model. Finally, for
the third perspective, the performance of the proposed classification
method is compared with different deep learning based classifiers to
investigate that how the deep CNN model optimized by the proposed
evolutionary algorithm can outperform other compared models. To this
end, the proposed method is compared with DenseNet121, MobileNet,
InceptionV3, XCeption, ResNet50, VGGNet19, and DeCoVNet models.
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Table 6
Run-time (in second) of the proposed model and other competitive algorithms for the
COVID-19 dataset.

Model Optimization time Training time Test time

DenseNet121 – 1863 357
MobileNet – 1812 353
InceptionV3 – 1875 416
XCeption – 1794 331
ResNet50 – 1783 345
VGGNet19 – 1631 337
DeCoVNet – 1611 321
Brunese et al. – 1523 311

GA 3830 1278 293
DE 3810 1263 296
PSO 3794 1231 287
MFO 3840 1539 304
WOA 3820 1381 298
SSA 3780 1216 286
HHO 3835 1372 291
GOA 3793 1201 271
CSO 3789 1123 263
Decision Tree 3642 1217 269
Random Forest 3621 1108 234
LightGBM 3597 1116 212
AdaBoost 3607 1173 225
SoftMax 3543 989 183
Bagging 3589 1009 195
MCSO-CNN 3431 824 154

The results of these experiments are shown in Table 4 where it can be
seen that the proposed method is better than other models. Therefore,
we can conclude that considering the KNN classifier in the last layer
of CNN model and also using the proposed evolutionary algorithm to
optimize the hyperparameters of CNN model significantly improve the
classification accuracy.

In addition, to prove that the experimental results are statistically
significant, we performed a ranking statistical test called the Friedman
ranking test to theoretically evaluate and analyze the performance of
the proposed model and all benchmark algorithms. The results of this
statistical test reported in Table 5 prove that the experimental results
are statistically significant. Also, the run time of the proposed method
is compared with other methods and the results are shown in Table 6
based on optimization time, training time, and test time. These results
demonstrate that the proposed classification method performs in a
shorter time with respect to other compared models. Therefore, it can
be concluded that the proposed method not only achieves more accu-
rate classification results, it also performs faster than other compared
methods.

5. Conclusion

Coronavirus disease (COVID-19) has become a very challenging
issue in the world and made enormous problems in different countries.
One of the main approaches to detect COVID-19 cases is to investigate
chest X-ray images by physicians. Due to the high performance of deep
neural networks in interpreting images, several COVID-19 detection
approaches have already been developed. However, these approaches
mainly ignore the tuning of hyperparameters of deep neural networks
optimally and utilize a static way to manually set the values of these
hyperparameters. To address this challenge, we proposed a novel image
classification method in this paper to detect COVID-19 cases based
on the chest X-rays images. Specifically, we utilized CNN model as
a deep neural network to make a trained classification model based
on the input samples. Moreover, to optimize the hyperparameters of
the CNN model, we used an improved evolutionary algorithm to find
21

optimal values leading to enhance the classification accuracy. In the
improved evolutionary algorithm, three effective operators are incor-
porated to make a balance between the exploration and exploitation
phases and speed up the algorithm’s convergence. Therefore, different
to other previous approaches, our proposed method can automatically
find the optimal values of CNN’s hyperparameters leading to improve
the classification accuracy. Extensive experiments are performed based
on a real-world dataset to assess the effectiveness of the proposed
classification method. Experimental results showed the superiority of
the proposed image classification method in comparison to other state-
of-the-art models. In addition, we analyzed the run time of different
algorithms where the results showed that the proposed method can
perform in a faster way than the other models. As the future works,
other evolutionary algorithms can be employed to obtain better results
for the CNN model. Moreover, other deep neural network models can
be developed to make a better representation of the input images and
provide better performance for the detection of coronavirus disease.
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