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Purpose. Congenital hydrocephalus is one of the most common birth defects worldwide. Exosomal microRNAs (miRNAs) in body
fluids have been implicated in many diseases. However, their involvement in cerebrospinal fluid from congenital hydrocephalus is
not well understood. This study is aimed at investigating the role of dysregulated exosomal miRNAs in congenital hydrocephalus.
Methods. We collected cerebrospinal fluid samples from 15 congenital hydrocephalus patients and 21 control subjects. We used
miRNA sequencing to generate exosomal miRNA expression profiles in three pairs of samples. We identified 31 differentially
expressed exosomal miRNAs in congenital hydrocephalus and predicted their target mRNAs. Results. Three microRNAs (hsa-
miR-130b-3p, hsa-miR-501-5p, and hsa-miR-2113) were selected according to their fold changes and the function of their
target mRNAs, and only hsa-miR-130b-3p and hsa-miR-501-5p were confirmed their expression levels in all samples.
Moreover, upregulated hsa-miR-130b-3p might mediate the downregulation of the phosphatase and tensin homolog gene
(PTEN), which has been associated with hydrocephalus, via binding to its 3′-untranslated region by dual-luciferase reporter
assay. Conclusion. This study implicates that abnormally expressed exosomal miRNAs in cerebrospinal fluid may be involved
in the pathomechanism of congenital hydrocephalus.

1. Introduction

Congenital hydrocephalus (CH) is among the top five birth
defects worldwide, with a prevalence of 4.65 in 10,000 births
[1]. As one of the most common congenital central nervous
system anomalies, CH results from the accumulation of
cerebrospinal fluid in the brain ventricles, leading to severe
neurological damage. The main clinical manifestations are
ventriculomegaly, increased intracranial pressure, and brain
dysfunction, which may lead to dysgnosia, while ventriculo-
megaly can critically impair the developmental processes
affecting various anatomical and functional aspects of brain
maturation [2]. Ventriculoperitoneal shunts are common

treatments for CH; however, intracranial pressure may be
normal or even low in some patients, including those with
other structural brain abnormalities, and surgical shunting
may fail to improve the neurological impairment in those
patients [2, 3]. Furthermore, there is a high risk of postoper-
ative complications, such as intracranial infection. It is
therefore important to explore the etiology and pathogenesis
of CH to improve its prevention and treatment.

The underlying causes of CH are currently not well
understood, but it is generally believed to be a multifactorial
disease involving genetic and environmental interactions.
CH may be associated with chromosomal (e.g., abnormality
of chromosome 6q and Xp22.33) or single gene
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abnormalities [1], and mutations of at least 43 genes/loci
have been associated with CH in animal models or patients
[4]. In addition, gene expression disorders may also be
involved in the etiology of CH [5]. Among the factors regu-
lating gene expression, microRNAs (miRNAs; miR) are
responsible for modulating nearly one-third of genes and
thus regulating a variety of physiological processes [6].
Although miRNAs are found widely both inside and outside
cells, about 70% of all miRNAs are stably distributed in exo-
somes, instead of in their host cells [7]. Exosomes are phos-
pholipid bilayer vesicles, with a diameter of 40–100nm.
They are secreted by cells and form a cell-to-cell information
transmission system by carrying various biological mole-
cules (protein, DNA, mRNA, and miRNA), which in turn
affect the physiological state of the cells and are closely
related to the occurrence and process of a variety of diseases
[8]. Exosomes can cross the blood-brain barrier and are
readily accessible in various human biofluids, including cere-
brospinal fluid [9, 10]. The characteristics of exosomes with
a substantial miRNA content ensure to act as promising bio-
markers in some diseases. For instance, exosomal miR-181-
5p from blood samples was identified as a potential diagnos-
tic biomarker for early-stage non-small-cell lung cancer [8],
and exosomal miR-150 and miR-21 from blood samples
were indicated as biomarkers for the early detection of colo-

rectal cancer [11]. These exosomal miRNAs can be delivered
to recipient cells to exert their functions [12, 13] by affecting
the translation or stability of their target mRNAs via direct
interactions [9]. The existence and importance of exosomal
miRNAs in cerebrospinal fluid have been confirmed in sev-
eral neurological disorders, such as Alzheimer’s disease [14],
Parkinson’s disease [15], and intraventricular hemorrhage
(IVH) in preterm infants [16]. However, the role of exoso-
mal miRNAs in the cerebrospinal fluid in CH remains
unknown.

In the current study, we characterized the exosomal
miRNA profile of cerebrospinal fluid from patients with
CH using miRNA sequencing and bioinformatics analysis
and focused on three miRNAs (miR-130b-3p, miR-501-5p,
and miR-2113). We verified the differential expression of
the above three miRNAs in patients with CH, and we also
investigated the expression of phosphatase and tensin
homolog gene (PTEN), which was associated with hydro-
cephalus in previous reports [17] via the mechanism of these
miRNAs.

2. Materials and Methods

2.1. Patients and Samples. Cerebrospinal fluid samples were
obtained from the age-sex-matched 15 CH patients and 21

Table 1: Basic information of samples for miRNA sequencing.

Patient ID Age Sex Samples Phenotype

CH1 15 months Female 15ml cerebrospinal fluid Congenital hydrocephalus

CH2 2 months Male 15ml cerebrospinal fluid Congenital hydrocephalus

CH3 13 months Male 15ml cerebrospinal fluid Congenital hydrocephalus

CS1 14 months Male 15ml cerebrospinal fluid Intracranial space-occupying lesions

CS2 13 months Female 13ml cerebrospinal fluid Tethered cord syndrome

CS3 10 months Male 15ml cerebrospinal fluid Intracranial space-occupying lesions

CH: congenital hydrocephalus; CS: control subjects.

Table 2: Basic information of CH patients.

Patient ID Age Sex Samples Phenotype

CH1 15 months Female 15ml cerebrospinal fluid Hydrocephalus

CH2 2 months Female 15ml cerebrospinal fluid Hydrocephalus

CH3 14 months Male 15ml cerebrospinal fluid Hydrocephalus

CH4 9 months Female 7ml cerebrospinal fluid Hydrocephalus

CH5 29 days Male 7ml cerebrospinal fluid Hydrocephalus

CH6 5 months Male 15ml cerebrospinal fluid Hydrocephalus

CH7 6 months Male 7ml cerebrospinal fluid Hydrocephalus

CH8 4 months Female 8ml cerebrospinal fluid Hydrocephalus

CH9 24 months Male 15ml cerebrospinal fluid Hydrocephalus

CH10 9 months Female 8ml cerebrospinal fluid Hydrocephalus

CH11 24 months Female 15ml cerebrospinal fluid Hydrocephalus

CH12 60 months Male 25ml cerebrospinal fluid Hydrocephalus

CH13 15 months Female 11ml cerebrospinal fluid Hydrocephalus

CH14 14 months Male 9ml cerebrospinal fluid Hydrocephalus

CH15 2 months Male 9ml cerebrospinal fluid Hydrocephalus

CH: congenital hydrocephalus.
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control subjects (CS) from the Children’s Hospital of Fudan
University. The diagnosis of CH was carried out at the Chil-
dren’s Hospital of Fudan University and excluded trauma,
tumor, secondary hydrocephalus, and infection. The CS
were the patients diagnosed with three types of secondary
hydrocephalus (intracranial space-occupying lesions, intra-
cranial hemorrhage, and congenital tethered cord syn-
drome). The cerebrospinal fluid samples were maintained
in RNA-free centrifuge tubes after surgery and stored at
−80°C. miRNA sequencing was carried out using cerebrospi-
nal fluid samples from three CH patients and three CS
(Table 1). Cerebrospinal fluid samples from 15 CH patients
and 21 CS were used for further real-time quantitative qPCR
analysis (Tables 2 and 3).

2.2. Exosome Isolation and RNA Extraction. The cerebrospi-
nal fluid samples were centrifuged for 30min at 900g and
4°C to remove cells and large debris. The supernatant was
collected and filtered through a 0.22μm filter to remove
additional cellular fragments. Exosomes were isolated and
purified from the supernatant using an exoEasy Maxi Kit
(Qiagen, Hilden, Germany) following the manufacturer’s
protocol. Total exosomal RNA was extracted using TRIzol
reagent (Invitrogen, USA) according to the manufacturer’s
instructions. The RNA quality and concentration were eval-
uated based on the optical density 260/280 and 260/230
ratios using a Nano Drop ND-2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). RNA integ-
rity was assessed by agarose gel electrophoresis.

2.3. miRNA Sequencing and Data Analysis. Exosomal
miRNA libraries were constructed using total RNA samples
from exosomes and assessed using an Agilent 2100 Bioana-
lyzer (Agilent, California, USA). The 3′ and 5′ adapters were
ligated to total RNA samples, respectively, and cDNAs were
synthesized with the adapter-ligated miRNAs and used as
templates for polymerase chain reaction (PCR) amplifica-
tion. Amplified fragments of 135-155 base pairs were
selected to construct miRNA libraries, which were then
denatured with 0.1M NaOH and sequenced using a TruSeq
Rapid SR Cluster Kit (Illumina, CA, USA) with Illumina
NextSeq 500, according to the manufacturer’s instructions.
Raw reads were subjected to quality control to assess the
suitability of the raw data for subsequent analysis. Trimmed
data were obtained by removing the 3′ adapters and shorter
reads (≤15 base pairs) from the raw data. The subsequent
reads were aligned with the human reference genome anno-
tated with miRNA to generate an miRNA expression value
(counts per million reads; CPM) using miRDeep2 [17].
The detected miRNAs were determined based on an average
CPMvalue > 1.

2.4. Differential Expression of Exosomal miRNAs. Differen-
tially expressed exosomal miRNAs were identified using
edgeR with a threshold fold change ðFCÞ > 1:5 and P value
≤ 0.05. We used the CPM value of significantly expressed
exosomal miRNAs to perform hierarchical clustering analy-
sis and reveal the expression patterns of the exosomal miR-
NAs and samples. Scatter plots were generated to assess the

Table 3: Basic information of CS.

Patient ID Age Sex Samples Phenotype

CS1 15 months Male 15ml cerebrospinal fluid Intracranial space-occupying lesions

CS2 12 months Female 13ml cerebrospinal fluid Congenital tethered cord syndrome

CS3 17 months Male 15ml cerebrospinal fluid Intracranial space-occupying lesions

CS4 5 months Male 8ml cerebrospinal fluid Congenital tethered cord syndrome

CS5 14 months Male 15ml cerebrospinal fluid Intracranial space-occupying lesions

CS6 22 months Female 15ml cerebrospinal fluid Congenital tethered cord syndrome

CS7 6 days Male 15ml cerebrospinal fluid Intracranial hemorrhage

CS8 4 months Male 10ml cerebrospinal fluid Congenital tethered cord syndrome

CS9 108 months Female 10ml cerebrospinal fluid Intracranial hemorrhage

CS10 24 months Male 20ml cerebrospinal fluid Congenital tethered cord syndrome

CS11 36 months Male 8ml cerebrospinal fluid Intracranial space-occupying lesions

CS12 48 months Male 7ml cerebrospinal fluid Congenital tethered cord syndrome

CS13 21 months Female 20ml cerebrospinal fluid Intracranial hemorrhage

CS14 9 days Male 5ml cerebrospinal fluid Congenital tethered cord syndrome

CS15 72 months Female 12ml cerebrospinal fluid Congenital tethered cord syndrome

CS16 12 months Female 10ml cerebrospinal fluid Intracranial hemorrhage

CS17 2 months Male 6ml cerebrospinal fluid Congenital tethered cord syndrome

CS18 60 months Female 10ml cerebrospinal fluid Congenital tethered cord syndrome

CS19 20 days Male 20ml cerebrospinal fluid Congenital tethered cord syndrome

CS20 23 months Female 15ml cerebrospinal fluid Intracranial space-occupying lesions

CS21 30 months Female 6ml cerebrospinal fluid Intracranial space-occupying lesions

CS: control subjects.
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Figure 1: Differential expression profiles of exosomal miRNAs in CH patients and CS. (a) Hierarchical clustering analysis of exosomal
miRNAs between the CH patients (CH1, CH2, and CH3) and CS (CS1, CS2, and CS3). Expression values are represented by red and
green shades, indicating expressions above and below the median expression level across all samples, respectively. (b) The scatter plot of
910 exosomal miRNAs. Pearson’s correlation coefficient was 0.849. The red dots indicate upregulated genes, the green dots indicate
downregulated genes, and the black dots indicate nondifferentially expressed genes. (c) The volcano plot of 910 exosomal miRNAs. The
fold change threshold is 1.5 and P value ≤ 0.05. The red dots indicate upregulated genes, the green dots indicate downregulated genes,
and the black dots indicate nondifferentially expressed genes.
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distribution trends of the miRNAs in the CS and CH
patients. Differentially expressed exosomal miRNAs were
screened based on a log2FC and −log10P value to generate
volcano plots demonstrating the relationship between the
FC of differential expression and statistical significance.

2.5. The Target Genes of miRNA Prediction, Functional
Annotation, and Pathway Enrichment. The miRDB and Tar-
getScan algorithms were used to predict the target genes of
exosomal miRNAs that were differentially expressed
between the CS and CH patients. Functional enrichment of
the target genes was then determined by Gene Ontology
(GO) (http://www.geneontology.org/) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) (http://www.genome.jp/
kegg) analyses.

2.6. Quantitative Polymerase Chain Reaction (qPCR).
cDNAs were synthesized from 1μg total RNA using a Pri-
meScript RT Reagent Kit with gDNA Eraser (Takara, Tokyo,
Japan), and qPCR was conducted with SYBR Premix Ex
Taq™ (Takara) on a StepOnePlus™ Real-Time PCR System
(Thermo Fisher Scientific). The relative expression levels of

miRNAs and mRNAs were normalized to the housekeeping
gene U6 and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), respectively, and were calculated by the relative
quantification method (2−ΔΔCt).

The primers used were as follows: hsa-miR-2113-GSP:
GGGGATTTGTGCTTGGCTC, hsa-miR-2113-R: GTGC
GTGTCGTGGAGTCG; hsa-miR-130b-3p-GSP: GGGCAG
TGCAATGATGAAA, hsa-miR-130b-3p-R: GTGCGTGTC
GTGGAGTCG; hsa-miR-501-5p-GSP: GGAGAATCCTT
TGTCCCTGG, hsa-miR-501-5p-R: GTGCGTGTCGTGGA
GTCG; U6-F: GCTTCGGCAGCACATATACTAAAAT,
U6-R: CGCTTCACGAATTTGCGTGTCAT; PTEN-F:
ACACGACGGGAAGACAAGTT, PTEN-R: CTGGTCCTG
GTATGAAGAATG; and GAPDH-F: GGGAAACTGTG
GCGTGAT, GAPDH-R: GAGTGGGTGTCGCTGTTGA.

2.7. Cell Culture. Human embryonic kidney 293 (HEK293T)
cells were seeded in Dulbecco’s modified Eagle’s medium
(Biological Industries, Kibbutz Beit HaEmek) with 10% foe-
tal bovine serum (Biological Industries) at 37°C in 5% CO2.
All cell culture dishes and culture plates were purchased
from Hangzhou Xinyou Biotechnology Co., Ltd.

2.8. Dual-Luciferase Reporter Assay. The recombinant plas-
mid pGL3-promoter-PTEN-WT (wild-type PTEN 3′
-untranslated region (UTR)) and pGL3-promoter-PTEN-
Del (deleted PTEN 3′-untranslated region (UTR)) were con-
structed. Mimics and NC oligonucleotides for hsa-miR-
130b-3p were obtained from RiboBio Co., Ltd. (China).
HEK293T cells (Cell Bank, Shanghai, China) were seeded
in 96-well plates at 1 × 104 cells per well and incubated over-
night at 37°C. The respective mimics and NC oligonucleo-
tides were cotransfected into HEK293T cells with pGL3-
promoter-PTEN-WT/pGL3-promoter-PTEN-Del and
pGL3-Renilla using Lipofectamine 3000 (Invitrogen). Cells
were then harvested 48 h after transfection. Both firefly and
Renilla luciferase activities were measured using a Dual-
Luciferase Reporter Assay System (Promega, USA), and the
firefly luciferase activities were normalized to Renilla lucifer-
ase activities.

The primers used were as follows: PTEN-3utr-Xba1-F:
GCTCTAGAGCtggcaataggacattgtgtc and PTEN-3utr-Xba1-
R: GCTCTAGAGCgctgccttttctagcaccaatatgc.

2.9. Statistical Analysis. All experiments were repeated three
times. All statistical analyses were performed by paired two-
tailed Student’s t-tests using GraphPad Software (GraphPad
Inc., La Jolla, CA, USA). A value of P < 0:05 was considered
significant.

3. Results

3.1. Analysis of Differentially Expressed Exosomal miRNAs in
CH Patients and CS. Differential expression of miRNAs in
cerebrospinal fluid exosomes from three CH patients and
three CS was analyzed using edgeR. The criteria for differen-
tial miRNA expression were an FC threshold of 1.5, P value
≤ 0.05, and mean CPM ≥ 1. Log2FC was calculated to repre-
sent differential miRNA expression, with a positive value

Table 4: Upregulated and downregulated miRNAs in the volcano
plot.

Upregulated miRNAs Downregulated miRNAs
miRNA ID Log2FC miRNA ID Log2FC

hsa-miR-2113 7.910966974 hsa-miR-501-5p -6.405186884

hsa-miR-302d-3p 7.163506356 hsa-let-7e-3p -3.172160369

hsa-miR-137-5p 3.781667006 hsa-miR-29c-5p -2.72261609

hsa-miR-320e 3.453737277 hsa-miR-223-5p -1.647330356

hsa-miR-320c 3.379260772 hsa-miR-584-5p -1.59751174

hsa-miR-320c 3.373467094

hsa-miR-320b 3.223989228

hsa-miR-129-5p 3.194153868

hsa-miR-129-5p 3.194153868 c

hsa-miR-320b 3.143871008

hsa-miR-130b-3p 3.037326563

hsa-miR-4429 3.015750545

hsa-miR-320d 3.008370049

hsa-miR-320d 2.93745457

hsa-miR-412-5p 2.780774639

hsa-miR-296-3p 2.607140495

hsa-miR-708-3p 2.537461519

hsa-miR-320a-3p 2.480146691

hsa-miR-1224-5p 2.413574833

hsa-miR-134-5p 2.381827533

hsa-miR-1298-5p 2.24115725

hsa-miR-760 2.091967229

hsa-miR-136-5p 2.0757691

hsa-miR-181a-3p 2.051552079

hsa-miR-193a-5p 1.813698773

hsa-miR-7704 1.784297108

FC: fold change.
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Figure 2: Continued.
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indicating upregulation and a negative value indicating
downregulation. We identified thousands of differentially
expressed human miRNAs.

We performed differential expression analyses of three
miRNAs by hierarchical clustering, scatter plots, and vol-
cano plots, respectively. Hierarchical clustering analysis of
exosomal miRNA signal intensities revealed evidence of sig-
nificant differential expression of exosomal miRNAs
between the CH patients and CS (Figure 1(a)). There were
910 miRNAs in the scatter plot, of which 314 and 274 were
upregulated and downregulated, respectively (Figure 1(b)).
Pearson’s correlation coefficient was 0.849. Among these
miRNAs, 26 and 5 were significantly upregulated and down-
regulated in the volcano plot, respectively (Figure 1(c),
Table 4).

3.2. Target Gene Prediction for Differentially Expressed
Exosomal miRNAs. The top ten most upregulated exosomal
miRNAs (hsa-miR-129-5p, hsa-miR-130b-3p, hsa-miR-
2113, hsa-miR-302d-3p, hsa-miR-320b, hsa-miR-320c,

hsa-miR-320d, hsa-miR-320e, hsa-miR-4429, and hsa-miR-
137-5p) and the top four most downregulated exosomal
miRNAs (hsa-let-7e-3p, hsa-miR-223-5p, hsa-miR-501-5p,
and hsa-miR-584-5p) were selected for evaluation. Target
genes were predicted using TargetScan and miRDB, generat-
ing 4640 potential target genes, including 3542 genes for
upregulated and 1098 genes for downregulated miRNAs.

3.3. Functional Analysis of Differentially Expressed Exosomal
miRNA Target Genes. To further highlight the functional
features of exosomal miRNAs, the target genes were anno-
tated using GO terms. The target genes of upregulated miR-
NAs were mainly enriched in “regulation of nitrogen
compound metabolic process” (208 genes, P = 3:14E − 12),
“nuclear lumen”(145 genes, P = 6:31E − 10), “double-
stranded DNA binding” (47 genes, P = 4:34E − 07), and so
on (Figures 2(a), 2(c), 2(d), and 2(e), Table S1). The target
genes of downregulated miRNAs were mainly enriched in
“response to water deprivation” (two genes, P = 6:25E − 04),
“dendritic_spine” (four genes, P = 7:63E − 03), “HMG_box_

Intracellular_organelle [72]
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Figure 2: GO terms analysis of the predicted target genes of differentially expressed exosomal miRNAs in CH patients. (a) Enriched GO
terms of differentially upregulated miRNA target genes in CH patients compared with CS. (b) Enriched GO terms of differentially
downregulated miRNA target genes in CH patients compared with CS. (c, d, e) The top 10 GO terms of biological process, cellular
component, and molecular function in differentially upregulated miRNA target genes according to the gene counts included in each
term. (f, g, h) The top 10 GO terms of biological process, cellular component, and molecular function in differentially downregulated
miRNA target genes according to the gene counts included in each term. BP: biological process; CC: cellular component; MF: molecular
function.
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domain_binding” (two genes, P = 3:18E − 03), and so on
(Figures 2(b), 2(f), 2(g), and 2(h), Table S2).

KEGG enrichment analysis demonstrated that target
genes were significantly enriched in 54 signaling pathways,
of which “mTOR signaling_pathway” (12 genes, P = 1:83E
− 04) was the most significantly enriched pathway of upreg-
ulated miRNA target genes (Figures 3(a) and 3(c), Table S3),
and “spliceosome” (three genes, P = 2:62E − 02) was the
most significantly enriched pathway of downregulated
miRNA target genes (Figures 3(b) and 3(d), Table S3).
These results suggest that CH has various genetic and
phenotypic characteristics.

3.4. Real-Time qPCR Validation of Differentially Expressed
Exosomal miRNAs. Among these signaling pathways, we
selected PTEN as a target gene in “nervous system develop-
ment”, because this has been related to hydrocephalus in
previous reports [17] (Figure 4(a), Figure S1). The miRNA
corresponding to PTEN was hsa-miR-130b-3p. In addition,
hsa-miR-2113 and hsa-miR-501-5p were noticeably
differentially expressed in the CH patients (Table 4).
Future studies should be carried out focusing on larger
samples at an individual level. We performed real-time
qPCR validation of these three miRNAs in cerebrospinal

fluid exosomes from 15 CH patients and 21 CS and
revealed that hsa-miR-130b-3p was upregulated, while hsa-
miR-501-5p was downregulated, in CH patients compared
with CS (Figures 4(b) and 4(c)). However, there was no
significant difference in hsa-miR-2113 expression between
CH patients and CS (Figure 4(d)). The trends in
expression levels of these two miRNAs according to qPCR
were in accordance with the miRNA sequencing results.

3.5. Upregulation of hsa-miR-130b-3p Decreased Expression
of PTEN via the Predicted Binding Site. PTEN is a potential
target gene of hsa-miR-130b-3p. PTEN was downregulated
in the 15 CH patients compared with 21 CS, according to
the real-time qPCR results, in contrast to the trend for
hsa-miR-130b-3p (Figure 5(a)). The TargetScan showed
the predicted binding sites in the 3′-UTR of PTEN with
hsa-miR-130b-3p (Figure 5(b)). hsa-miR-130b-3p mimics
significantly suppressed luciferase reporter activity com-
pared with NC mimics, after transfection with pGL3-pro-
moter-PTEN-3′-UTR (Figure 5(c)). To avoid unspecific
binding, the binding site in pGL3-promoter-PTEN-3′-UTR
was deleted. Transfection of hsa-miR-130b-3p mimics sig-
nificantly inhibited pGL3-promoter-PTEN-3′-UTR-WT

Sig pathway of target genes of downregulated miRNA
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Figure 3: KEGG pathway significantly enriched in the predicted target genes of differentially expressed exosomal miRNAs in CH patients.
(a, c) Enriched top 5 pathways of differentially upregulated miRNA target genes in CH patients compared with CS. (b, d) Enriched top 3
pathways of differentially downregulated miRNA target genes in CH patients compared with CS. Size and color of the bubble
represented the amount of differentially expressed genes enriched in the pathway and enrichment significance, respectively.
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activity, but had no effect on pGL3-promoter-PTEN-3′-
UTR-Del activity (Figure 5(d)). These results show that
upregulation of hsa-miR-130b-3p regulated downregulation
of PTEN via the predicted binding site.

4. Discussion

Extracellular circulating miRNAs exist in most human body
fluids, including cerebrospinal fluid, and are highly stable

[18]. The delivery of miRNAs to recipient cells in circulating
exosomes provides a novel method of intercellular commu-
nication. Dysregulation of exosomal miRNAs is an emerging
element in a number of diseases, which reveals the impor-
tant roles of exosomal miRNAs in both physiological and
pathological pathways [9]. Several studies have implicated
the function of exosomal miRNAs in some kinds of hydro-
cephalus. For example, Spaull et al. provided the first evi-
dence for exosomes and exosomal miRNA expression in
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Figure 4: Real-time qPCR validation of differentially expressed exosomal miRNAs. (a) The GO-BP term “nervous system development”
indicated by the black line was our concern. (b, c, d) The relative expression levels of hsa-miR-130b-3p, hsa-miR-501-5p, and hsa-miR-
2113 in CH patients compared with CS by real-time qPCR. Values are represented as the mean ± SEM. n = 3; ∗P < 0:05.

13Disease Markers



the cerebrospinal fluid in patients with posthemorrhagic
hydrocephalus, and the increase in miR-1991-5P following
the development of posthemorrhagic hydrocephalus made
this an interesting potential biomarker [19]. hsa-miR-4274
was identified as a potential cerebrospinal fluid biomarker
for idiopathic normal pressure hydrocephalus, with diagnos-
tic potential, as well as the ability to predict the response to
shunt treatment [20]. A prolonged elevation was shown in
grade IV vs. grade III of intraventricular hemorrhage with
higher miR-155 and miR-181b expression in cerebrospinal
fluid at days 41-60 after intraventricular hemorrhage. These
alterations may contribute to the development of later clini-
cal complications in this clinical condition [21]. However,
the role of exosomal miRNAs in the cerebrospinal fluid of
patients with CH remains unclear. We therefore sequenced
exosomal miRNAs in cerebrospinal fluid samples from three
CH patients and three CS to compare the miRNA expression
profiles and explore their functions in CH. As it has been
reported that age and gender differences affect the expres-
sion pattern of miRNA in exosomes, the CH patients were
compared with the age-sex-matched CS in our study [22,
23]. We identified 31 significantly expressed exosomal miR-
NAs in CH, including 26 that were upregulated and 5 that
were downregulated. Among these differentially expressed
miRNAs, hsa-miR-2113 and hsa-miR-501-5p were the most
significantly upregulated and downregulated, respectively.
Previous studies indicated that hsa-miR-2113 was associated
with epithelial-mesenchymal transition in diabetes [24] and

hepatocellular carcinoma [25], while hsa-miR-501-5p played
an important role in modulating tumor progression, e.g., in
hepatocellular carcinoma [26], gastric cancer [27], and colo-
rectal cancer [28]. However, their roles in CH have not been
investigated.

Because the main mechanism of miRNA is that it can
recognize the target mRNA through base complementary
pairing and guide the silencing complex to degrade the tar-
get mRNA or block the translation of the target mRNA
according to the degree of complementarity, we predicted
the target mRNAs of differentially expressed exosomal miR-
NAs and carried out GO and KEGG pathway enrichment
analyses to reveal the biological processes and functions of
the target mRNAs. Then, we found hsa-miR-130b-3p was
predicted to be combined with PTEN, which was enriched
in the “nervous system development” pathway. hsa-miR-
130b-3p is known to be involved in cancer progression and
various inflammatory diseases [29], and no studies have
reported on the association between hsa-miR-130b-3p and
CH; PTEN is located on 10q23.3 and encodes a lipid phos-
phatase with important roles in intracellular signal transduc-
tion through dephosphorylation of substrates such as Akt
and S6 kinase [30]. Previous studies have suggested that
PTEN was required for brain formation, and that dysregula-
tion of PTEN resulted in abnormal brain development and
progressive hydrocephalus [17]. A novel germline mutation
of the PTEN gene is associated with VATER hydrocephalus
syndrome [31]. And hsa-miR-130b-3p has been reported to
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Figure 5: Upregulation of hsa-miR-130b-3p decreased expression of PTEN via the predicted binding site. (a) PTEN was downregulated in
the 15 CH patients compared with the 21 CS by qPCR analysis. (b) The predicted binding site of PTEN and hsa-miR-130b-3p. The white
area indicates the binding site of PTEN and hsa-miR-130b-3p. (c, d) The normalized luciferase activity of PTEN following transfection with
hsa-miR-130b-3p mimics and NC mimics. Values are represented as the mean ± SEM. n = 3; ∗P < 0:05 and ∗∗∗P < 0:001.
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negatively regulate PTEN by binding to the 3′-UTR in
PTEN [29–31]. These suggested that hsa-miR-130b-3p was
likely to play a pivotal role in the development of CH by tar-
geting PTEN.

We therefore selected these three miRNAs (hsa-miR-
2113, hsa-miR-501-5p, and hsa-miR-130b-3p) and PTEN
for real-time qPCR validation. Because the cerebrospinal
fluid samples were difficult to collect and susceptible to
infection, we only collected 15 CH patients and 21 CS for
real-time qPCR validation. hsa-miR-130b-3p and hsa-miR-
501-5p were upregulated and downregulated, respectively,
in CH patients compared with CS, in accordance with the
miRNA sequencing results, while there was no significant
difference for hsa-miR-2113. miRNA sequencing is a screen-
ing method in small samples, and the results of comparison
between groups only suggest the possible differences and the
false positive results also exist. Furthermore, real-time qPCR
showed that PTEN was downregulated in CH patients, in
contrast to the trend for hsa-miR-130b-3p. Dual-luciferase
reporter assay showed that hsa-miR-130b-3p regulated the
expression of PTEN by binding to the predicted site on the
3′-UTR. Therefore, upregulation of hsa-miR-130b-3p may
be involved in the development of CH via interacting with
PTEN and mediating its downregulation.

To the best of our knowledge, this study provides the
first report of the expression profiles of exosomal miRNAs
in CH. Exosomal hsa-miR-130b-3p and hsa-miR-501-5p
may be involved in the development of CH. The mechanism
of hsa-miR-130b-3p in CH has also been partly revealed.
These findings will help to provide new diagnostic and ther-
apeutic targets for CH.
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