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Abstract

Recent studies have shown that a strategy aiming for containment, not elimination, can control 

tumour burden more effectively in vitro, in mouse models and in the clinic. These outcomes are 

consistent with the hypothesis that emergence of resistance to cancer therapy may be prevented 

or delayed by exploiting competitive ecological interactions between drug-sensitive and drug-

resistant tumour cell subpopulations. However, although various mathematical and computational 

models have been proposed to explain the superiority of particular containment strategies, this 

evolutionary approach to cancer therapy lacks a rigorous theoretical foundation. Here we combine 

extensive mathematical analysis and numerical simulations to establish general conditions under 

which a containment strategy is expected to control tumour burden more effectively than applying 

the maximum tolerated dose. We show that containment may substantially outperform more 

aggressive treatment strategies even if resistance incurs no cellular fitness cost. We further provide 

formulas for predicting the clinical benefits attributable to containment strategies in a wide 

range of scenarios and compare the outcomes of theoretically optimal treatments with those of 

more practical protocols. Our results strengthen the rationale for clinical trials of evolutionarily 

informed cancer therapy, while also clarifying conditions under which containment might fail to 

outperform standard of care.
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The justification for aggressive anticancer therapies is to maximize the probability of a 

cure1,2. This rationale disappears if a cure cannot be expected. In some if not many 

cases, treating aggressively could be suboptimal due to treatment toxicity and selection 

for resistance3,4. A better strategy might be to use the minimal effective dose that contains 

the tumour subject to ensuring sufficient quality of life5-7.

The logic of aiming for containment rather than elimination is based on evolutionary 

principles. At the beginning of therapy, a tumour contains cells with different sensitivities 

to treatment. An aggressive treatment eliminates the most sensitive cells but can enable 

resistant cells—freed from competing with sensitive cells for space and resources—to thrive 

uncontrollably. This phenomenon, called competitive release, is well understood in ecology 

and pest management8-10. By maintaining a large population of treatment-sensitive tumour 

cells, a containment strategy aims to exploit cell–cell competition to prevent or delay the 

emergence of resistance.

Various protocols in this spirit have been found to be superior to conventional 

therapy in experimental models6,11,12, a preclinical trial13 and a small clinical trial 

in metastatic castrate-resistant prostate cancer4. Other clinical trials are active or 

recruiting (NCT03511196, NCT04388839). Yet, the underlying evolutionary theory is only 

imprecisely characterized in the cancer context. With the exception of Martin et al.5, 

previous mathematical and simulation studies4,6,11,12,14-22 have focused on particular model 

formulations, specific therapeutic protocols and typically untested assumptions about tumour 

growth rate, cell–cell interactions, treatment effects and resistance costs. Many previous 

findings are not readily generalizable because they are based on simulations rather than 

mathematical analysis. Sufficient conditions for successful tumour containment have not 

been established. In this study, we address this knowledge gap by synthesizing, generalizing 

and extending previous results to form a solid theoretical basis for pursuing evolutionary 

approaches to cancer therapy. Our work thus provides timely guidance for empirical research 

including the design of clinical trials.

Results

This study proves formal results for general models (Models 1 and 2; described in Methods). 

These models have two kinds of tumour cells: sensitive and fully resistant, with the 

subpopulation sizes S(t) and R(t), respectively. The total tumour size is N(t) = S(t)+R(t). 
Mutations occurring after treatment initiation are neglected, for reasons we will explain. 

Results are illustrated for a Gompertzian model5,14:

S
.

t = ρ ln K N t 1 − λC t S t
R
.

t = ρ ln K N t R t (model 3)

where C(t) is the drug dos, λ is a sensitivity parameter, K is the tumour carrying capacity 

(the hypothetical size at which the tumour would cease to grow) and ρ is the baseline 

per-cell growth rate. The parameters are described in Methods and Table 2; values are 

mostly taken from a previous study14.
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We compared the effect of various treatments including: containment at the initial tumour 

size, which stabilizes the tumour at its initial size as long as possible, subject to a maximum 

tolerated dose constraint C(t)≤Cmax (or as long as some sensitive cells remain in an idealized 

case, called ideal containment); containment at a larger size N*, which lets the tumour 

grow until size N* before stabilizing it; intermittent containment, which does not treat until 

N=Nmax, then treats at Cmax until N=Nmin and iterates as long as possible4; maximum 

tolerated dose (MTD), which is C(t) = Cmax throughout; and ideal MTD, which eliminates 

sensitive cells at treatment initiation.

These treatments are illustrated in Fig. 1. The outcomes considered are: time to progression, 

which is the time until the tumour exceeds its initial size, N0; time to treatment failure, until 

the tumour exceeds a threshold size Ntol, which we call the maximal tolerable size; and 

survival time, until the tumour reaches an hypothetical lethal size, Ncrit. Details are given in 

Methods.

When is containment optimal?

The optimal treatment strategy depends on the clinical objective. If the emphasis is on 

rapidly reducing tumour burden then MTD is clearly superior to containment. However, if 

the aim is to maximize time to progression, then our formal mathematical analysis proves 

that containment is likely to be optimal, or at least close to optimal, in a broad range of 

cases.

To see why, consider a tumour containing sensitive and fully resistant cells. The growth 

rates of these two subpopulations are expected to depend on the subpopulation sizes; 

the growth rate of sensitive cells will also vary with the treatment dose. Furthermore, if 

resource competition is the dominant ecological interaction between subpopulations, then 

it is reasonable to assume that, all else being equal, the larger the sensitive population, 

the lower the growth rate of the resistant population. To the best of our knowledge, this 

latter assumption holds for all proposed mathematical models with two cell types where 

the impact of mutations after treatment initiation can be neglected (see section 1 of the 

Supplementary Information for a review of previous studies).

If the objective is to maximize time to progression then, under the above assumptions, 

the best possible treatment is the containment strategy that precisely maintains the 

original tumour burden for as long as some sensitive cells remain, which we called 

ideal containment. Moreover, among the treatment strategies that eventually eliminate the 

sensitive population, the worst option is to eliminate sensitive cells from the start, that is, 

the ideal MTD treatment. Instead of maximizing time to progression, an alternative objective 

is to maximize the time until tumour burden exceeds a certain threshold. In this case, 

the optimal treatment maintains the tumour at precisely this threshold size. Formally, let 

tidContN* and talt denote the times at which tumour size exceeds N* under ideal containment 

at size N* ≥ N0 and under an arbitrary alternative treatment, respectively. Then tidContN* 

≥ talt (Supplementary Information, proposition 3). Besides standard regularity assumptions, 

this result requires only that the population of sensitive cells be maximized by not treating 

and the resistant cell growth rate function is non-increasing in S. The result is independent of 

our other assumptions.
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The intuitive explanation is that, whereas we can always reduce the sensitive population 

by using a sufficiently aggressive treatment, the only way to impair the growth of resistant 

cells is to exploit competition with sensitive cells. By assumption, this ecological form of 

control is most effective when the sensitive population is as high as can be permitted, that is, 

under containment. Conversely, competition is least effective when the sensitive population 

is smallest, that is, under MTD.

Which containment strategy works best depends on the objective (Fig. 1f,h). Time to 

progression is maximized by ideal containment at the initial size; time to treatment failure 

is maximized by ideal containment at the maximal tolerable size. In theory, survival time 

would be maximized by ideal containment just below the lethal tumour size. However, 

attempting this would be extremely dangerous, both due to adverse effects on patient’s 

quality of life and because too optimistic a guess of the lethal burden would lead to quick 

patient death.

Clinical gains strongly depend on competition intensity.

The superiority of ideal containment is qualitatively very robust and holds for both 

frequency- and density-dependent models. However, quantitatively, clinical benefits strongly 

depend on the intensity of competition. In frequency-dependent models11,12, a key 

parameter is the relative fitness of resistant cells when rare11. Similarly, in density-

dependent models4,5,14,17,23, a key quantity is by how much the growth rate of resistant 

cells increases when sensitive cells are eliminated. In the widely used Gompertzian model of 

tumour growth, the per-cell growth rate decreases relatively rapidly with increasing tumour 

size, leading to a strong competition effect and substantial clinical gains for containment 

versus aggressive treatment. Mathematical models that describe weaker competition, such 

as the logistic growth model, predict smaller, possibly much smaller clinical gains5. Those 

that describe stronger competition, such as the von Bertalanffy growth model24, predict 

larger gains (Fig. 2c and Extended Data Fig. 2; Supplementary Information, section 4.1.1). 

Important differences between model predictions underscore the need to advance the 

understanding of the ecological interactions that govern intratumour dynamics25, which are 

only poorly characterized.

Other important biological parameters.

Simple mathematical expressions may be derived to quantify the effects of containment and 

MTD strategies in various density-dependent scenarios and in some frequency-dependent 

ones (Supplementary Information, section 3). This enables us to examine the impact of 

varying any parameter on time to progression, time to treatment failure and survival time. 

Recall that these three outcomes are defined, respectively, as the times until the tumour 

becomes larger than N0 (the size at treatment initiation), Ntol (a hypothetical maximum 

tolerable size) and Ncrit (the hypothetical lethal tumour size). For idealized treatments, these 

outcomes are independent of the treatment’s mode of action (for example, whether it results 

in a log kill rate, a Norton–Simon kill rate proportional to the net growth rate of an untreated 

tumour1 or some other effect).
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For Model 3, the times to progression under ideal containment at the initial size and ideal 

MTD are:

tprog idContN0 = 1
ρ

ln N0 R0
ln K N0

and
tprog idMTD = 1

ρ ln 1 +
ln N0 R0
ln K N0

respectively, where ln is the natural logarithm. In terms of time to progression, the absolute 

clinical benefit of ideal containment over ideal MTD is the difference between these 

numbers; the relative benefit (or fold change in progression time26) is the following ratio:

tprog idContN0
tprog idMTD = x

ln 1 + x with x = ln N0 R0
ln K N0

(1)

These formulas reveal the importance of three patient-specific factors: the baseline growth 

rate, ρ; the initial frequency of resistant cells, R0/N0; and the initial tumour size compared to 

the carrying capacity, N0/K.

For idealized treatments, decreasing the growth rate parameter (ρ) has no effect on the 

relative clinical benefits of containment; however, by slowing the dynamics, it leads to 

higher absolute benefits. Instead, decreasing the initial frequency of resistant cells (R0/N0) 

increases both absolute and relative clinical gains of containment versus MTD. This is 

in part because aggressive treatments are especially suboptimal when resistance is very 

rare, as they then cause a drastic reduction in tumour size, which permits rapid expansion 

of the resistant population. Lastly, a higher value of the ratio N0/K implies more intense 

competition at the initial tumour size. This increases both absolute and relative benefits of 

containment at the initial size. Fig. 2a illustrates some of these effects for Model 3. The 

impact of a large initial tumour size on the relative benefits of containment at the maximal 

tolerable size is more complex (Fig. 2b and Supplementary Information, section 4.1.2).

Practical treatment strategies can be close to optimal.

In the mathematical analysis outlined above, we assumed no restriction on maximum dose, 

which permits the ideal containment strategy of maintaining the tumour precisely at a 

target size until it becomes fully resistant. In reality, toxicity constraints typically impose a 

maximum instantaneous dose Cmax.

In Fig. 1a-e, we compared tumour dynamics and doses under ideal containment and under 

containment strategies. In the latter case, the stabilization phase is shorter because it finishes 

before all sensitive cells have been removed. This results in shorter times to progression or 

treatment failure (Fig. 2d,e,g,h).

For Model 2 (Methods) with specific cellular kill rate functions, the stabilization time may 

be quantified with explicit formulas (Supplementary Information, section 3). For Model 3, 

for instance, provided that the tumour is initially sufficiently sensitive to be stabilized by a 
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dose no higher than Cmax, the time at which tumour size exceeds the stabilization size Nstab 

under containment is:

tNstab Cont =

1
ρ ln

ln K N0
ln K Nstab

+
ln N0 R0

ln K Nstab
−

ln λCmax λCmax − 1
ln K Nstab

Omitting the last term in the bracket gives the corresponding time tNstab (idCont) under 

idealized containment. Provided that resistant cells are initially rare (long stabilization 

phase) and treatment is sufficiently effective (few sensitive cells remain when containment 

fails), non-idealized containment performs almost as well as ideal containment (Fig. 2g). 

Moreover, after the stabilization phase, both tumour size and resistant population size grow 

more slowly under containment than under ideal containment. This is because the tumour 

is still partially sensitive and hence responds to treatment while the remaining sensitive 

cells slow the growth of resistant cells. Due to the latter effect, the resistant population 

is never higher under containment than under ideal containment. The number of resistant 

cells is actually never higher under containment at size Nstab than under any treatment that 

treats at Cmax when N > Nstab (Supplementary Information, proposition 4). Thus, provided 

that sensitive cells become eventually rare, survival time should be at least as long under 

containment as under any such treatment, including MTD and ideal containment. This is 

confirmed by simulations (Figs. 1a,d and 2f,i). Differences between ideal and non-ideal 

containment outcomes are further discussed in Supplementary Information, section 4.2.

An additional consideration is that a continuous containment strategy requires continuous 

monitoring of tumour size, which is typically unfeasible. More practical protocols include 

intermittent containment, constant dose therapy and metronomic therapy.

Intermittent containment.—The question of whether it is better to implement 

containment via a continuous low-dose or an intermittent high-dose treatment has yet to be 

settled. Both strategies have worked well in mice13. Although Zhang et al.4 obtained highly 

promising clinical results from intermittent high-dose treatment, a continuous low-dose 

treatment might have performed even better, as, if anything, seems to be the case in mice13, 

although the evidence is too scarce to be conclusive. Mathematical models that account for 

cell cycle dynamics, pharmacodynamics and drug-induced resistance may be able to predict 

the optimality of a specific intermittent treatment, provided they can be parameterized 

precisely. However, in our simple setting, higher tumour burden implies slower growth of 

resistance. Therefore, containment between the upper and lower bounds Nmax and Nmin 

is intermediate between containment at the upper threshold and containment at the lower 

threshold. This holds both in terms of resistant population sizes and, in idealized cases, in 

terms of the time at which tumour size exceeds Nmax (Supplementary Information, section 

2.3 and propositions 5 and 6). Thus, containment seems superior to intermittent containment 

but the difference between the two types of protocol is small provided that Nmin is a large 

fraction of Nmax (compare Fig. 1g and 1h; see the explicit formulas in the Supplementary 

Information (section 3.1.5), Extended Data Fig. 1, section 3.3 and Supplementary Table 4, as 
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well as the numerical results in Table 1 and Supplementary Table 5; see also section 4.3 and 

Extended Data Fig. 4).

Constant dose.—To maximize time to progression in Model 3, the optimal constant dose 

is slightly higher than C=1/λ, which corresponds to C=1 in Fig. 3a. The constant dose 

C=1/λ stabilizes the sensitive population size, whereas containment uses the evolving dose 

C=N/λS = 1/λ+R/λS to stabilize tumour size. According to our definition, the former 

approach leads to immediate progression because it allows the overall tumour size to 

increase from the start of treatment. However, provided that resistant cells are initially 

rare, the dose C=1/λ maintains tumour size close to the initial size for nearly as long as 

under containment (Fig. 3a,c). Differences that emerge after resistant cells become abundant 

are relatively unimportant. Thus, for a given patient, the dose C=1/λ is expected to lead 

to similar outcomes as containment at the initial size. Similarly, delaying treatment until 

tumour size reaches Ntol and then applying dose C=1/λ has similar outcomes as containment 

at the maximum tolerable size (Fig. 3b,e). Table 1 gives examples of times to progression, 

times to treatment failure and survival times for various constant doses and other treatments. 

Constant dose treatments may lead to higher survival time than containment at the initial 

size (Fig. 3a and Extended Data Fig. 7) but to the cost of quicker progression; they always 

lead to lower survival time than containment at sufficiently higher sizes.

Adaptive treatments may be close to optimal for all patients.—Since delaying 

treatment until N=N* and then treating at an appropriate constant dose is predicted to yield 

similar outcomes as containment at N*, why should we not opt for this apparently simpler 

treatment rather than containment? A problem is that the parameters that determine the 

best constant dose for a particular patient are typically unknown. Giving slightly too little 

or too much treatment can be far from optimal (blue and red curves in Fig. 3c-e). Any 

constant dose that works relatively well for some patients will inevitably be suboptimal for 

others and the constant dose that gives the best average result for a cohort of patients will 

typically be further from containment than the best constant dose for a single patient (Fig. 

3c-e and Supplementary Information, section 4.7). By contrast, a containment strategy will 

be close to optimal for every patient because it entails continuously adjusting the dose as 

a function of patient response without requiring any parameter to be known in advance 

(except that the tolerable tumour burden Ntol must be chosen by the physician or revealed 

during treatment). Similarly, in the absence of an initial induction phase where treatment is 

given at MTD, which could trigger competitive release, conventional metronomic therapy—

where low doses are given at regular, predefined intervals—may look similar to intermittent 

containment. However, intermittent containment, a particular form of adaptive therapy4, has 

the important additional benefit of adapting doses to the evolution of the tumour and to 

patient-specific parameters without knowing these parameters in advance3.

Fitness costs of resistance are unnecessary.

A review article27 noted that “the theory behind adaptive therapy typically focuses on 

the phenotypic costs of the molecular mechanism(s) of resistance”. Indeed, proponents 

of cancer adaptive therapy have emphasized resistance mechanisms—such as upregulation 

of membrane extrusion pumps—that are energetically costly so that resistant cells are 
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less fit than sensitive cells in the absence of treatment27,28. A related hypothesis is that, 

under intermittent containment, the frequency of resistant cells decreases during the gaps 

between doses due to the cost of resistance. For a sufficiently high cost, tumour composition 

might then remain almost unchanged after each on–off treatment cycle, enabling potentially 

indefinite tumour containment.

This intuition is not entirely correct. For tumour composition to remain the same after an 

on–off treatment cycle, the number of resistant cells should decrease during the gap between 

doses and not only their frequency, at least if the number of resistant cells increases during 

the treatment phases. Previously proposed mathematical models typically do not satisfy this 

condition4,5,14,17.

Most importantly, in our preceding results we have not assumed any costs of resistance. 

Nevertheless, we have shown that containment may substantially outperform more 

aggressive treatment strategies. The key assumption is not that resistance entails a fitness 

cost but rather that additional sensitive cells reduce the growth rate of resistant cells.

Fitness costs of resistance can amplify clinical gains from containment.

Given that resistance costs are not necessary for containment to improve on MTD, the next 

question is whether they are useful. That is, do costs of resistance increase clinical gains 

from containment? Generally the answer is yes but the size of the effect depends on the type 

of resistance cost. The most beneficial resistance costs are those that grow in the presence of 

sensitive cells. Consider the following model:

S
.

t = ρs ln Ks
S t + αR t 1 − λC t S t

R
.

t = ρr ln Kr
R t + βS t R t

(model 4)

In this model, the baseline growth rates ρs, ρr and the carrying capacities Ks, Kr are specific 

to sensitive and resistant cells, respectively. In the denominators, total tumour size has been 

replaced by a weighted sum of the resistant and sensitive population sizes as is commonly 

assumed in ecological models. The higher the competition coefficient β, the greater the 

impact of sensitive cells on resistant cells. If β = 1, then resistant cells are affected equally 

by all cells and R+βS = N, as in Model 3.

In Model 4, a resistance cost may correspond to: a reduction in growth rate, independent of 

competition intensity (low ρr); a general inability to compete with other cells (low Kr); and a 

specific inability to compete with sensitive cells (high β).

All of these costs improve outcomes for all treatments but how do they affect comparisons 

between treatments? A first effect is that resistance costs slow down the emergence of 

resistant cells before treatment initiation, leading to a smaller initial resistant population. If 

a cure is impossible and assuming (as we argue in the Supplementary Information, section 

6.3) that mutations after treatment initiation can be neglected, this effect tends to increase 

the benefit of containment more than MTD does (Fig. 2; see also refs. 14,26).
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A second effect is that resistance costs also slow the growth of resistance after treatment 

initiation. Whether this is more beneficial to outcomes of containment or MTD depends on 

the type of cost. Given the same initial conditions, survival times under idealized treatments 

are inversely proportional to ρr. Thus, halving ρr doubles the time to progression under ideal 

containment but also under ideal MTD: the relative benefit is unchanged. This is because 

the impact of lowering ρr is independent of the number of sensitive cells. In a model that 

accounts for mutations from sensitive to resistant, lowering ρr may even decrease the relative 

benefit of containment17.

In contrast, lowering Kr or increasing β increases relative benefits because it harms resistant 

cells proportionally more in the presence of sensitive cells. In particular, a sufficient increase 

in the competition coefficient β can prolong survival indefinitely under containment (see the 

next section) while having no effect on the outcomes of ideal MTD. Some of these effects 

are illustrated in Fig. 4 (see also refs. 17,29). Since different types of resistance cost have 

such different impacts, it is important to study not only whether costs are typically present in 

tumours but also how these costs arise and how they can be modelled.

When can a tumour be contained forever?

In Model 4, unless a fully sensitive or fully resistant tumour is intrinsically benign (Ks < Ntol 

or Kr < Ntol, respectively), indefinite containment under the maximum tolerable size requires 

two conditions: first, resistant cells are harmed more from competition with sensitive cells 

than from competition with other resistant cells (β > 1); second, the resistant population 

would decline in an almost fully sensitive tumour of threshold size Ntol.

The latter condition is equivalent to Kr < βNtol. Since the resistant population’s carrying 

capacity is likely to be substantially larger than the threshold tumour size, this condition 

typically requires a large competition coefficient β. Therefore, at least in this model, 

indefinite containment is possible only if sensitive cells greatly impair the fitness of resistant 

cells (green region of Fig. 4a and green and yellow regions of Fig. 4b). These results are 

derived in the Supplementary Information, section 5.1.

Discussion

Theoretical support for MTD therapy relies on the assumption that resistant cancer cells 

are absent1 or arise only during treatment2. Given that many if not most large solid 

cancers are expected to harbour pre-existing resistance30, we sought to build a firm 

theoretical foundation for understanding when containment strategies are likely to improve 

on conventional approaches. The logic of containing tumours is fundamentally simple: if 

some cells are fully resistant to treatment then the only way to fight them is via competition 

with sensitive cells, where ‘competition’ includes any process that leads to a decrease in the 

resistant population growth rate due to the presence of sensitive cells. Moreover, given the 

constraint of maintaining tumour size below a certain threshold, competition is maximized 

under containment treatment strategies. We have shown that this logic can be formalized and 

given a rigorous mathematical form in a general setting. It follows that model details are 

qualitatively irrelevant, provided that resistant cells are highly resistant and that increasing 

the number of sensitive cells always decreases the resistant population growth rate.
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However, identifying conditions under which containment strategies are expected to perform 

well also emphasizes that the case for containment is weaker when these conditions are 

not met. If resistant cells do not compete with sensitive cells, or if tumour growth is 

superexponential31, then containment is likely to do worse than MTD (Supplementary 

Information, section 6.1). Also if resistant cells are only partially resistant then the logic 

changes: resistant cells can then be attacked not only via competition with sensitive cells but 

also by the treatment. Switching to MTD before the failure of low-dose treatment may then 

be superior to a pure containment strategy, even for idealized treatments (Supplementary 

Information, section 6.2). When to switch and whether the difference in outcomes is 

substantial is an important topic for further investigation. Finally, although we have checked 

that random genetic mutations from sensitive to resistant occurring after treatment initiation 

do not substantially affect our results (Supplementary Information, section 6.3 and Extended 

Data Fig. 5), we have not investigated treatment-induced mutations32,33, accumulation of 

driver mutations nor models involving quiescent cancer stem cells.

On the other hand, in our framework, the time until tumour size exceeds any particular 

threshold is maximized by maintaining tumour size precisely at this threshold for as long 

as there are sensitive cells, even if resistance has no cellular fitness cost. This suggests 

that tumour containment experiments and trials should not be restricted to cases where 

a resistance cost is assumed to exist. Our results also underline a trade-off between 

maximizing time to progression and maximizing the time at which tumour size is higher 

than some larger threshold. Since clinical evidence supporting containment strategies is 

limited, it seems safer to test containing tumours at their initial size or some relatively low 

size. If results are convincing, more ambitious strategies aiming at increasing intratumour 

competition by letting the tumour grow to its maximal tolerable size before containing it 

could be attempted. This maximal tolerable size would not have to be known in advance but 

could be discovered during treatment, based on the quality of life of the patient.

To implement containment strategies, the nature of the resistance mechanism, the frequency 

of resistant cells or other patient-specific parameters need not be known but a tumour 

burden indicator is required. In our models, when resistant cells are initially rare, applying 

a dose close to the initial stabilizing dose throughout typically leads to results similar to 

containment at the initial size. However, in practice tumour growth is much more irregular. 

Thus, finding a dose, or schedule, that initially results in tumour stabilization is not enough; 

regular monitoring and dose adjustment are required. In the Supplementary Information, 

section 7, we propose a new protocol that takes into account how far tumour size is from its 

target and how much it recently increased or decreased.

Importantly, although the ideal form of containment is impractical, our simulations and 

theoretical arguments predict that more feasible containment strategies will also improve 

substantially on MTD treatment. These more practical approaches include adaptive therapy6, 

which has an important advantage over constant dose or metronomic protocols, in that the 

optimal dose need not be known in advance. On the other hand, our theoretical results imply 

that an on–off implementation of adaptive therapy—as was employed in the only clinical 

trial of tumour containment to date4—may be suboptimal because it causes tumour size to 

deviate substantially below the maximum tolerable threshold. Further research is needed to 
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establish optimal dosing protocols in the presence of biological factors not accounted for in 

our framework, such as spatial structure16,34.

By deriving explicit formulas for predicted clinical gains due to containment, we have 

shown that a crucial factor is the intensity of competition between sensitive and resistant 

cells. For tumours that obey the Gompertzian growth law, clinical gains are predicted to 

be substantial, at least when resistant cells are initially rare and the initial tumour size 

is not very small (at least 0.1% of carrying capacity). Less conventional tumour growth 

models predict either smaller or larger clinical gains. Therefore, our findings underscore the 

need to characterize intratumour competition25. A useful indicator that could be measured 

experimentally is the amount by which the resistant population growth rate increases—if at 

all—on elimination of sensitive cells.

Although we have investigated various extensions and variants of our basic model, we 

have not considered all potential clinical costs and benefits of containment. By maintaining 

a substantial tumour burden, containment might increase the risk of metastasis, cancer-

induced illness such as cachexia or the emergence of more aggressive tumour clones 

via mutation35. On the other hand, containment has the important advantage of reduced 

treatment toxicity. Stabilizing tumour size might additionally lead to a more stable tumour 

microenvironment and better drug delivery, which would be consistent with the finding 

that, in preclinical trials in mice, tumour size could be stabilized using progressively 

lower doses13. Further experimental and theoretical research is needed to clarify whether 

the benefit of containment in terms of prolonging survival always outweighs its potential 

downsides. Notwithstanding these important caveats, our findings generally strengthen the 

case for conducting further experimental and clinical trials of tumour containment strategies.

Methods

Models.

For qualitative results, we considered a general model with two types of tumour cells, 

sensitive and fully resistant, with the subpopulation sizes S(t) and R(t), respectively. The 

total tumour population size is denoted by N(t) = S(t) + R(t), with the initial value N0 = S0 + 

R0. Tumour dynamics are described by:

S
.

t = gs S t , R t , C t S t ; S 0 = S0 ≥ 0
R
.

t = gr S t , R t R t ; R 0 = R0 > 0
(model 1)

where Ṡ and Ṙ denote derivatives and gs and gr are the per-cell growth rate functions; the 

quantity C(t) is the drug dose at time t, which is assumed to equate with treatment level, 

neglecting details of pharmacokinetics and pharmacodynamics.

In quantitative analyses, we considered more particular density-dependent models of the 

form:
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S
.

t = gs N t , C t S t
R
.

t = gr N t R t (model 2)

with gr non-increasing and gs(N, 0) = gr(N), that is, in the absence of treatment, sensitive and 

resistant cells grow at the same rate. These models permit us to obtain explicit formulas for 

the time at which tumour size exceeds a given threshold under various treatments.

For numerical simulations, we use the Gompertzian growth model studied by Monro and 

Gaffney14 (see also Martin et al.5) and introduced as Model 3 at the beginning of the Results 

section.

S
.

t = ρ ln K N t 1 − λC t S t
R
.

t = ρ ln K N t R t (model 3)

Recall that λ is a sensitivity parameter, K is the tumour carrying capacity (the hypothetical 

size at which the tumour would cease to grow) and ρ is the baseline per-cell growth rate. We 

focused on this model in our numerical simulations to facilitate comparison with previous 

analysis14 and because Gompertzian growth has been shown to describe tumour growth 

better than alternative models, such as logistic growth36,37. Where not explicitly varied, the 

values of ρ, K, N0 and R0 are the same as in Monro and Gaffney14 (Table 2), except that we 

neglect mutations and back mutations after treatment initiation. We also consider a variant of 

Model 3 to study the impact of various types of resistance cost (Model 4) in the section titled 

‘Fitness costs of resistance can amplify clinical gains from containment’).

Assumptions.

We made 4 key assumptions regarding Model 1. First, the growth rate of sensitive cells is 

positive in the absence of treatment and decreases as the treatment dose is increased (gs is 

non-increasing in C). Second, resistant cells are fully resistant (gr does not depend on C).

Third, all else being equal, the larger the subpopulation of sensitive cells, the lower the 

growth rate of resistant cells (gr is non-increasing in S). This is a standard assumption in 

the adaptive therapy literature (Supplementary Information, section 1), which might result 

from density dependence (the larger the tumour, the larger its doubling time5,14,26 as in the 

Gompertzian Model 3), frequency dependence (the rarer the resistant cells, the larger their 

doubling time11,12), a combination of those two factors4,11,15,17,18,21 or some other form of 

inhibition of resistant cells by sensitive cells. It is important to note that this assumption does 

not imply a fitness cost of resistance; we allowed the possibility that resistant cells are as fit 

or even fitter than sensitive cells in the absence of treatment.

Fourth, mutations between the sensitive and resistant phenotypes that occur after treatment 

initiation may be neglected. This assumption is justified in Supplementary Information, 

section 6.3, in Supplementary Table 6 and in Extended Data Fig. 5. On top of standard 

regularity assumptions on growth rate functions, this is enough for our key results. Some 

results also require that increasing the resistant population does not increase the growth 

rate of sensitive cells (gs is non-increasing in R), excluding cooperative interactions. This 
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assumption is not satisfied in models with a Norton–Simon kill rate, for example, Model 

3; however, for most of our results, it may be replaced by the assumption that the number 

of sensitive cells is maximized by not treating. This holds in Model 3 and any instance of 

Model 2 (Supplementary Information, section 2.4). Finally, the instantaneous dose C(t) is 

assumed no higher than a maximal tolerated dose Cmax, although this assumption is relaxed 

in our idealized treatments (below).

Treatments.

The three main treatment strategies we considered are the following: MTD, C(t) = Cmax 

throughout; containment at the initial tumour size N0: this treatment continuously adjusts the 

dose to maintain total tumour size at N(t) = N0 as long as possible with a dose C(t) ≤ Cmax, 

then treats at Cmax once N > N0 (unless the tumour size returns to N0, in which case it is 

again stabilized at N0 for as long as possible and so on). Mathematically, the stabilizing dose 

is found by solving the equation Ṅ(t) = 0. In the Gompertzian Model 3, this leads to C(t) 
= N(t)/λS(t). The dose administered is the minimum of this stabilizing dose and of Cmax. 

In practice, containment would only be approximative and the appropriate dose would be 

found by regular monitoring of the patient and dose adjustments. This would not require 

to differentiate between sensitive and resistant cells. Possible protocols are discussed in 

Supplementary Information, section 7; and containment at some other threshold size N*; this 

treatment does not treat until tumour size reaches N* (if N*≥N0) or treats at the maximal 

tolerated dose until tumour size is reduced to N* (if N* < N0), and then contains the tumour 

at this threshold as above.

To reveal the logic of containment as clearly as possible, we also considered idealized 

versions of these treatments, with no constraint on the maximum instantaneous dose so 

that the sensitive population can be reduced instantly to any desired size. These idealized 

treatments, although biologically unrealistic, help reveal the basic logic of containment and 

provide reference points largely independent of model details. In the idealized form of MTD 

treatment (ideal MTD), the sensitive population is instantly eliminated so that S(t) = 0 for 

all t > 0. This is called ‘aggressive treatment’ by Hansen et al.17 and Hansen and Read26, 

and ‘elimination’ by Hansen et al.38. We may think of this as a treatment inducing an infinite 

cellular kill rate. Ideal containment at the initial tumour size maintains the tumour at its 

initial size as long as some sensitive cells remain. The tumour is then fully resistant, hence 

its later growth independent of the treatment. Ideal containment at some other threshold N* 

lets the tumour grow to N* or instantly reduces tumour size to N* if N* < N0, then stabilizes 

tumour size at this threshold as long as some sensitive cells remain. Containment in the 

sense of Hansen et al.17, from which we borrow this vocabulary, corresponds to our ideal 

containment treatment except that we do not allow for an instantaneous increase in tumour 

size.

Containment and MTD treatments are illustrated in Fig. 1. We also considered other 

possibilities, such as constant dose or delayed constant dose treatments, studied by Monro 

and Gaffney14; intermittent containment (Fig. 1g), where tumour size is maintained between 

a high and a low threshold, as in Zhang et al.4; and forms of metronomic therapy, where 

treatment is turned on and off at predefined times.
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Outcomes.

Our three main outcomes were: time to progression; time to treatment failure; and survival 

time.

Time to progression.—This is defined as the time until the tumour exceeds its initial 

size, N0. The response evaluation criteria in solid tumours criterion is that progression 

occurs when tumour size is 20% larger than at treatment initiation. This 20% buffer makes 

sense in medical practice, due to imperfect monitoring of the tumour and imperfect forecast 

of treatment’s effect. However, in our mathematical models this buffer is not needed and 

would only obscure the analysis, so we used a more basic definition.

Time to treatment failure.—This is the time until the tumour exceeds a threshold size 

determined by the physician and patient, Ntol, which we called the maximal tolerable size. 

This may be thought of as the maximal tumour size at which the tumour is not quickly 

life-threatening, based on physician expertise, and does not result in too-severe side effects 

for the patient. Due to this second requirement, the maximal tolerable size would only be 

revealed during treatment. To fix ideas, we assumed that it is higher than the initial tumour 

burden, N0. The case where it is lower is studied in the Supplementary Information.

Survival time.—This is the time until the tumour reaches a hypothetical lethal size, 

Ncrit, after which the patient is assumed to die quickly. This lethal tumour burden is also 

patient-specific.

Mathematical tools and intuition.

Formal mathematical proofs of our results on Model 1 can be found in the Supplementary 

Information, section 2. They are based on a differential equation tool called the comparison 

principle (a variant of Gronwall’s lemma) but the basic intuition is simple (see also ref. 
17): between time t and t+dt, where dt is a small time increment, the resistant population 

increases from R(t) to R(t + dt) ≃ R(t) + R′(t)dt, hence by a quantity

dR ≃ R′ t dt = gr R t , S t R t dt

So, if we fix a resistant population size R1 and a small size increment dR, the time it takes 

for the resistant population size to grow from R1 to R1 + dR is roughly:

dt ≃ dR R1gr R1, S1 (2)

where S1 is the sensitive population size when R = R1. Assuming R0 ≤ R1 ≤ N0, under 

ideal containment at the initial size, S1 + R1 = N0, so S1 = N0 – R1. Before progression, 

under any other treatment, S1 ≤ N0 – R1. By assumption, the larger the sensitive population, 

the lower the resistant population growth rate, hence the higher the duration dt in equation 

(2); it follows that the time it takes for the resistant population to grow from R1 to R1 + 

dR is maximized by ideal containment and minimized by ideal MTD, since then S1 = 0. 

Iterating this argument shows that the resistant population Ridcont(t) under ideal containment 

at the initial size will be smaller than the resistant population R(t) under any alternative 
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treatment, at least as long as none of these treatments lead to progression. Since under 

ideal containment at the initial size, progression occurs when Ridcont(t) = N0, this implies 

that progression occurs later than under any other treatment. Other results require more 

sophisticated arguments but the intuition is similar.

Impact of the stabilization size.—If follows from section 2 in the Supplementary 

Information that containment at higher sizes than the initial size leads to larger clinical gains 

in terms of survival time, at least when comparing ideal containment to ideal MTD, but 

typically also for more realistic treatments. The general intuition is that letting the tumour 

grow increases competition between sensitive and resistant cells and hence slows down even 

more the growth of resistant cells than stabilizing the tumour at its initial size. This intuition 

may be made more precise in Model 2.

Indeed, the clinical gain of ideal containment at size N* ≥ N0, compared to no treatment, 

is then the duration of the stabilization phase. Moreover, due to the absence of cost of 

resistance, the proportion of resistant cells at the beginning of the stabilization phase is 

always R0/N0, independently of the stabilization size. The clinical gain of ideal containment 

is thus the time it takes for the resistant population to be multiplied by a factor N0/R0 (from 

R0/N0 to 1) while tumour size is maintained at N*. But the larger N*, the smaller the growth 

rate of resistant cells when N = N*, hence the larger the gains from ideal containment.
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Extended Data

Extended Data Fig. 1 ∣. Ideal intermittent containment between Nmin and Nmax.
Times to progression are shown for ideal intermittent containment between Nmin and N0 

for varied Nmin value (solid curve), compared to ideal containment at either N0 (dashed 

curve) or Nmin (dotted curve), according to a Gompertzian growth model (Model 3 in the 

main text). Non-varied parameter values are as in main text Table 2. The kinks in the curve 

for ideal intermittent containment are due to the discontinuity of the treatment when a new 

cycle is completed, or in mathematical terms, to the integer part that appears in the explicit 

formula.
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Extended Data Fig. 2 ∣. Outcomes for five models with different forms of density dependence.
a, Untreated tumour growth curves for a Gompertzian growth model (black curve; Model 

3 in the main text), a logistic growth model (red), a von Bertalanffy growth model (blue), 

an exponential model (yellow) and a superexponential model (grey). Parameter values for 

the Gompertzian growth model are as in Table 2 of the main text. Parameter values of the 

logistic and von Bertalanffy models are chosen so that their growth curves are similar to the 

Gompertzian model for tumour sizes between N0 and Ncrit (the lethal size), as would be the 

case if the models were fitted to empirical data. In the logistic growth model, K = 6.4×1011 

and ρ = 2.4×10−2. In the von Bertalanffy growth model, K = 5×1013, ρ = 90 and γ = 1/3 

(the latter value is conventional in tumour growth modelling [24, 37]). In the exponential 

model, ρ = 0.0175. In the superexponential model, ρ = 4.5×10−6 and γ = 1/3 (the latter value 

has been inferred from data [32]). b, Relative benefit, in terms of time to treatment failure, 

for ideal containment (at size Ntol) versus ideal MTD, for the five models with varied initial 

frequency of resistance (parameter values are the same as in panel a). Note that relative 

benefits for all models are independent of ρ.
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Extended Data Fig. 3 ∣. Evolution of total tumour size under containment and MTD treatment in 
a Gompertzian growth model (Model 3 in the main text).
The initial resistant subpopulation size (R0) is varied. The maximum dose is Cmax = 2. Fixed 

parameter values are as in Table 2 of the main text.

Extended Data Fig. 4 ∣. Containment at N0 and intermittent containment between N0 and 0.8 N0 
in a Gompertzian growth model (Model 3 in the main text).
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Dashed vertical lines indicate time to progression under containment (dashed grey) and 

intermittent containment (dashed black). Intermittent containment leads here to a slightly 

larger time to progression than containment at the upper level. However, as follows from 

Proposition 6 (Supplementary Material), the resistant population is larger under intermittent 

containment (red) than under containment (pink). After progression, tumour size quickly 

becomes larger under intermittent containment (solid black curve) than under containment 

(solid grey curve). Parameter values are as in Table 2 of the main text.

Extended Data Fig. 5 ∣. Influence of ongoing mutation in a Gompertzian growth model (Model 3 
in the main text).
Outcomes are shown for a model in which mutations are neglected after the tumour reaches 

size N0 (solid lines) and for a model that explicitly accounts for ongoing mutation from the 

sensitive to the resistant phenotype at rate τ1 (broken lines). Two different mutation rates 

are illustrated. The second row contains the same data as the first row of panels but with 

different axes so as to make visible the subtle differences between curves. Fixed parameter 

values are as in Table 2 of the main text.
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Extended Data Fig. 6 ∣. Evolution of total tumour size under ideal and non-ideal treatments in a 
Gompertzian growth model (Model 3 in the main text).
The initial resistant subpopulation size (R0) and the maximum dose (Cmax) are varied. Fixed 

parameter values are as in Table 2 of the main text.
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Extended Data Fig. 7 ∣. Constant dose treatments in a Gompertzian growth model (Model 3 in 
the main text).
Tumour size for various constant dose treatments are compared to containment at the initial 

size (subject to Cmax = 2), MTD (C = Cmax) and ideal MTD. Dose 1.09 maximizes time 

to progression and 0.74 maximizes survival time among non-delayed constant doses (but is 

inferior to the optimal delayed constant dose). Parameter values are as in Table 2 of the main 

text.

Extended Data Fig. 8 ∣. Consequences of costs of resistance in a Gompertzian growth model 
(Model 4 in the main text).
Relative benefit, in terms of time to treatment failure, for ideal containment (at size Ntol) 

versus ideal MTD, for varied values of Kr and β. The figure is obtained from simulations, 

while Fig. 4a in the main text is obtained from our approximate formula. Contour lines are at 

powers of 2. Fixed parameter values are as in Table 2 of the main text.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Illustration of containment and MTD treatments in Model 3.
a, Tumour size under no treatment (black), ideal MTD (dashed) and containment at the 

initial size for various values of the maximum tolerated dose Cmax. The case Cmax = ∞ 
(light blue) corresponds to ideal containment. The patient is assumed to die shortly after 

tumour size becomes greater than Ncrit. b, Drug dose under the containment treatments 

of a. If Cmax < 1, the tumour cannot be stabilized and containment boils down to MTD. 

c, Tumour size under MTD, ideal MTD and containment at the initial size and resistant 

population size under MTD and containment. The effect of varying R0 is illustrated in 

Extended Data Fig. 3. d, Tumour size under MTD, containment at the maximum tolerable 

size and their idealized counterparts. The effect of varying Cmax is illustrated in Extended 

Data Fig. 6. e, Drug dose under containment and ideal containment at the maximum 

tolerable size, as represented in d. f, Tumour size under no treatment, ideal MTD and 

ideal containment at three different tumour sizes. g, Tumour size under no treatment, ideal 

MTD and intermittent containment between Nmax and Nmin = Nmax/2 for 3 different values 

of Nmax. h, Times to progression (blue), treatment failure (green) and survival time (red) 
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under ideal containment at a threshold size varied from R0 to Ncrit (ideal containment at R0 

is equivalent to ideal MTD). The time until the tumour exceeds a certain size is maximized 

by ideal containment at that size. The exact formulas for the idealized treatments are found 

in the Supplementary Information, section 3.
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Fig. 2 ∣. Comparison of clinical benefits of containment and MTD treatments in Model 3.
a, Relative benefit, in terms of time to progression, for ideal containment at size N0 versus 

ideal MTD (that is, ratio tprog(idContN0)/tprog(idMTD)), as a function of initial tumour size 

and frequency of resistant cells. b, Relative benefit, in terms of time to treatment failure, for 

ideal containment at size Ntol versus ideal MTD (that is, ratio tfail(idContNtol)/tfail(idMTD)), 

as a function of initial tumour size and frequency of resistant cells. c, Relative benefit, in 

terms of time to treatment failure, for ideal containment at size Ntol versus ideal MTD for a 

Gompertzian growth model (black curve; Model 3), a logistic growth model (red) and a von 

Bertalanffy growth model (blue). Parameter values for the Gompertzian growth model are as 

in Table 2. Parameter values of the other models are chosen so that untreated tumour growth 

curves are similar for tumour sizes between N0 and Ncrit (the lethal size). See Extended 

Data Fig. 2 for details. d–f, Time to progression (d), treatment failure (e) and survival 

time (f) versus initial frequency of resistance. Outcomes are shown for MTD treatment and 

containment at N0, both in the ideal case (Cmax = ∞) and subject to Cmax = 2. g, Relative 
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benefit, in terms of time to treatment failure for containment versus ideal containment (at 

size Ntol), as a function of maximum dose threshold (Cmax) and initial frequency of resistant 

cells (the formulas are shown in Supplementary Information, section 3.3). The contour lines 

are at intervals of 0.05. h,i, Time to treatment failure (h) and survival time (i) versus initial 

frequency of resistance. Outcomes are shown for MTD treatment and containment at Ntol, 

both in the ideal case (Cmax = ∞) and subject to Cmax = 2.
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Fig. 3 ∣. Constant dose and delayed constant dose treatments in Model 3.
a, Tumour size for various constant dose treatments compared to containment at the initial 

size (subject to Cmax = 2) and ideal MTD. b, Tumour size for various delayed constant dose 

treatments (the dose is applied continuously from the first time when N = Ntol) compared to 

containment at Ntol (subject to Cmax = 2) and ideal MTD. Until N = Ntol, all curves are the 

same, except ideal MTD. c, Times to progression for two patients whose tumours differed in 

treatment sensitivity (parameter λ) under constant dose treatments, as a function of the dose. 

The yellow line is the mean of the two patient outcomes and the dashed line is the time to 

treatment failure under ideal containment at N0, which is the same for both patients, and the 

maximal time to progression. d, Times to treatment failure for two patients whose tumours 

differed in treatment sensitivity under constant dose treatments, as a function of the dose. 

The yellow line is the mean of the two patient outcomes and the dashed line is the time to 

treatment failure under ideal containment at Ntol, which is the same for both patients, and 

the maximal time to treatment failure. e, Times to treatment failure for two patients whose 

tumours differed in treatment sensitivity under delayed constant dose treatment. (The dose 

starts to be applied when N = Ntol for the first time.) The yellow line is the mean of the two 

patient outcomes and the dashed line is the time to treatment failure under ideal containment 

at Ntol, which was the same for both patients, and the maximal time to treatment failure.
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Fig. 4 ∣. Consequences of the costs of resistance in Model 4.
a, Relative benefit, in terms of time to treatment failure, for ideal containment (at size Ntol) 

versus ideal MTD, for varied values of Kr and β. This figure is based on approximate 

formulas that are highly accurate for the selected parameter values (Supplementary 

Information, section 5.2). Extended Data Fig. 8 shows an alternative version of this plot 

based on simulations. Contour lines are at the power of 2. b, Eventual outcomes of ideal 

containment (idCont) and ideal MTD (idMTD) treatment strategies based on exact formulas 

(Supplementary Information, section 5.1). The ‘infinite’ region in a corresponds to the ‘TI’ 

region in b. Fixed parameter values are as in Table 2.
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Table 1 ∣

Time to progression, treatment failure and survival time for Model 3

Treatment t prog t fail t surv

No treatment 0 77 226

Ideal MTD 186 263 412

MTD (Cmax = 2) 236 314 463

C = 1.09 303 397 549

Containment at N0 (Cmax = 2) 318 418 568

Ideal containment at N0 340 417 566

C = 1.07 from N = Ntol 0 543 731

Containment at Ntol (Cmax = 2) 0 580 767

Ideal containment at Ntol 0 615 764

Intermittent containment (Cmax = 2) between 0.5 N0 and N0 317 398 547

Intermittent containment (Cmax = 2) between 0.8N0 and N0 325 411 561

Ideal intermittent containment between 0.5 N0 and N0 320 397 546

Ideal intermittent containment between 0.8N0 and N0 333 410 559

The constant dose or delayed constant doses C = 1.09 and C = 1.07 maximize tprog and tfail, respectively, among all constant dose or delayed 

constant dose treatments. Times are measured in days. Note that intermittent containment between N0 and Nmin=0.8N0 leads to a larger time to 

progression than containment at N0, but to a lower time to treatment failure and survival time. This is discussed in the Supplementary Information, 

section 4.3.
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Table 2 ∣

Parameter values

Parameter Meaning Value Model(s)

K Tumour carrying capacity 2 × 1012 Model 3

K s Carrying capacity of a fully susceptible tumour 2 × 1012 Model 4

K r Carrying capacity of a fully resistant tumour Varied Model 4

ρ, ρr, ρs Baseline per-cell growth rate (per day) 0.005928 Models 3 and 4

α Competition coefficient 1 Model 4

β Competition coefficient Varied Model 4

λ Treatment sensitivity 1 Models 3 and 4

C max Maximal instantaneous tolerated dose 2 Models 3 and 4

N 0 Initial tumour size 1010 Models 3 and 4

R 0 Initial resistant cell population size 2.3 × 105 Models 3 and 4

N tol Tumour size corresponding to treatment failure 7 × 1010 Models 3 and 4

N crit Lethal tumour size 5 × 1011 Models 3 and 4

Except when otherwise specified, numerical results use the following parameter values. Model 4 is introduced later on. The initial size of the 

resistant subpopulation is derived through the Goldie–Coldman formula2: R0 = 1 − N0
−2τ N0 2, where τ=10−6 is the mutation and back 

mutation rate of Monro and Gaffney14 and N0 is the initial tumour size. The value of Ntol is arbitrary (in log scale, this is almost the average 

of N0 and Ncrit). The value of Cmax is for consistency with the clinical trial results reported by Zhang et al.4. On average, the cumulative dose 

given in that trial was 47% of the MTD, which is consistent with values of Cmax between 2 and 2.5 assuming the initial tumour is highly sensitive 

(higher values otherwise). Since λCmax = 2, it takes as much time for a fully sensitive tumour size to double in the absence of treatment as to be 

halved under MTD; the dose C = Cmax/2 would precisely stabilize a fully sensitive tumour.
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