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Abstract

The study of epigenetics has improved our understanding of mechanisms under-
pinning gene-environment interactions and is providing new insights in the patho-
physiology of respiratory allergic diseases. We reviewed the literature on DNA
methylation patterns across different tissues in asthma and/or rhinitis and
attempted to elucidate differentially methylated loci that could be used to char-
acterize asthma or rhinitis. Although nasal and bronchial epithelia are similar in their
histological structure and cellular composition, genetic and epigenetic regulation
may differ across tissues. Advanced methods have enabled comprehensive, high-
throughput methylation profiling of different tissues (bronchial or nasal epithelial
cells, whole blood or isolated mononuclear cells), in subjects with respiratory con-
ditions, aiming to elucidate gene regulation mechanisms and identify new bio-
markers. Several genes and CpGs have been suggested as asthma biomarkers,
though research on allergic rhinitis is still lacking. The most common differentially
methylated loci presented in both blood and nasal samples are ACOT7, EPX,
KCNH2, SIGLECS8, TNIK, FOXP1, ATPAF2, ZNF862, ADORAS, ARID3A, IL5RA,
METRNL and ZFPM1. Overall, there is substantial variation among studies, (i.e.
sample sizes, age groups and disease phenotype). Greater variability of analysis
method detailed phenotypic characterization and age stratification should be taken

into account in future studies.
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1 | INTRODUCTION

Respiratory diseases associated with allergy, such as asthma and
rhinitis, constitute a major and continuously growing public health
concern specially in the western world. Notably, all atopies combined,
now affect approximately 20% of the global population.! Asthma is
unanimously accepted as an important socioeconomic issue that af-
fects roughly 300 million people. Allergic rhinitis (AR) shows an ever-
increasing prevalence on a global scale with more than 600 million
patients.? A considerable percentage present severe morbidity which
medication fails to control, leading in a sharp decrease of their life
quality. These statistics are bound to increase and rhinitis along with
asthma appear as major epidemics of current time and rapid initia-
tives need to be taken towards the direction of prevention, thera-
peutics and disease management. Evidence indicates that etiology of
asthma and allergic diseases is complex and has strong genetic and
environmental components. Since the epigenome is modified by
environmental factors, epigenomic and transcriptomic profiling may
provide added value for individual prediction models of asthma
outcomes, in addition to genomic profiling.®

Epigenetic mechanisms provide a new understanding of gene-
environment interactions. Modifications to the epigenome mediate
endogenous or exogenous environmental exposures on immune
development.* In mammals, DNA methylation regulates gene
expression and ensures genome stability. Methylation almost exclu-
sively occurs in the context of the CpG dinucleotide. In promoters
and other cis-regulatory sequences (i.e. enhancers, insulators) DNA
methylation may hamper transcription factor binding, further
contributing to gene silencing.® During fetal life and after birth, DNA
methylation continues to play a pivotal role in cellular commitment
and differentiation.®® Besides these programmed changes, gain and
loss of DNA methylation occur in various genomic regions as a
consequence of cellular and environmental stresses and stochastic
changes during lifetime. Because the respiratory system is commonly
exposed to environmental stimuli (chemicals, dust, bacteria, viruses,
etc.), the epigenome of the airway cells is prone to dynamic changes
that may, ultimately, affect gene expression. DNA methylation can be
assessed either over the entire genome (whole-genome methylation
profiling) or by candidate studies designed to search specifically for
differentially methylated regions (DMRs) or CpGs in specific genes or
regions in the DNA.2

2 | AGE-DEPENDENT EPIGENETIC CHANGES

One of the most prominent external factors influencing DNA
methylation changes is aging and it has been reported that the
chronological age can be determined by DNA methylation patterns.’
Aberrant DNAm level of aging-related genes has been recorded in
asthma patients.’® Accelerated epigenetic aging, meaning the dif-
ference between epigenetic age and chronological age, has been

associated with a large number of disease and an overall greater risk

of death? while longevity has been associated with decelerated
epigenetic aging.!! The development of allergic diseases is likely age-
dependent during childhood?; however, chronological age alone
does not fully explain disease variability. Epigenetic aging has now
also been assessed in the context of atopic or allergen sensitization
and asthma using a variety of different clocks.?>!* There are several

methods available to estimate epigenetic aging,”> 18

and among
them, the Horvath method for epigenetic age estimation (DNAmMAge)
is used widely and has shown high accuracy.?® Data have shown a
significant epigenetic age acceleration in children with current
asthma (0.74 years) and even greater age acceleration for children
with allergic asthma (1.30 years). For every 10-fold increase in FeNO,
the epigenetic age was accelerated by 1.11 years. In total, epigenetic
age of nasal samples is accelerated by asthma and is correlated with
elevated biomarkers of allergic disease such as IgE and FeNO.*®
Furthermore, accelerated epigenetic aging in children at 7-8 years of
age was associated with increased serum IgE levels and a 1.2- to 1.3-
fold increased risk of atopic sensitization, or sensitization to envi-
ronmental or food allergens for every year increase in epigenetic
age.1*

Machine learning approaches are increasingly used to address
healthcare problems; up to date, only one study has been conducted
to predict lung functions using machine learning approaches by uti-
lizing the effect of DNAmMAge and accelerating age on lung function.
Arefeen et al.2° suggested that apart from the previously described
factors height, weight, and sex, changes in epigenetic age accelera-
tion between 10 and 18 years can improve the prediction of FEV1
and FVC at 18 years of age and proposed five selected regression
models for machine learning techniques to be used for lung function
prediction.

DNA methylation patterns are tissue specific, and one critical
limitation for human epigenetic studies is that tissues that are rele-
vant for disease etiology cannot be easily obtained from patients and
study participants.?? Various biological specimens have been used to
analyze DNA methylation in airway diseases such as sputum, bron-
choalveolar lavage (BAL) and blood samples. Overall, nasal and
bronchial pseudostratified epithelia are similar in their histological
structure and cellular composition®; however, genetic and epigenetic
regulation may differ across tissues.

A literature review was conducted in PubMed database for
articles published up to August 2021. The search terms used were
‘asthma’ or ‘allergic asthma’ or ‘allergic rhinitis’ or ‘allergic respira-
tory diseases’ and ‘epigenetics’ or ‘DNA methylation’ or ‘epigenome
wide association study’. The identified studies were divided into
categories regarding the type of tissue used, that is, bronchial
epithelial cells, nasal epithelial cells and blood cells. This review aims
to describe DNA methylation patterns across different tissues which
are associated with allergic respiratory diseases such as asthma and
rhinitis. Using a state-of-the-art perspective, including the concept
of epigenetic aging and machine learning, we try to elucidate
differentially methylated loci that could be used as immune age

biomarkers.
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3 | DIFFERENTIAL DNA METHYLATION IN
BRONCHIAL EPITHELIAL CELLS

Over the last decade, 11 relevant studies were identified, which
assessed the methylation status of the genome in asthmatic bronchial
epithelial cells (BECs), the primary cell type exposed to inhalants, and
the corresponding effect on gene expression (Table 1). BECs are the
primary cell type exposed to inhalants, but their location makes
collection more technically challenging compared to nasal cells, hence
less studies are inclined to include them. Nevertheless, several CpGs
were identified as having an altered methylation status, along with
various DMRs, both when comparing asthmatics to controls, as well
as different asthma subgroups to each other. Although not always,
this difference in methylation was often found to directly or indi-
rectly affect proximal or distal gene expression levels. Various sample
sizes were employed, however, most had n < 25, and only three were
larger with n > 50. Apart from two studies that included children,
most focused on adults, roughly between their twenties and forties,
and used the lllumina 450k Beadchip, on par with the rest of the
epigenome field.

Notably, two of the three largest studies thus far, were con-
ducted by the same research group.2*2 The first looked into the
epigenetic response of cultured BECs to interleukin 13 (IL-13), a
key cytokine involved in asthma pathogenesis,>* and identified in the
IL-13-treated cells an epigenetic fingerprint consisting of 6522
differentially methylated CpG sites (44% hypermethylated, 56%
hypomethylated) compared to controls, most of which (77%) were
near a gene body (41%), or gene transcription start site (36%),
totaling 3771 genes. Some genes were associated with multiple of
these CpGs, with the authors singling out Tenascin B (TNXB), a
member of the tenascin family of extracellular matrix glycoproteins
with anti-adherence effects, due to the presence of 12 hypomethy-
lated CpGs, as well as Chitinase 3-like 1 (CHI3L1), an asthma
biomarker.®? Gene expression analysis revealed extensive tran-
scriptomic changes, with 63% of assessed genes (8524/13,532) being
differentially expressed (52% increase, 48% decrease), with the au-
thors singling out Chemokine (C-C motif) ligand 26 (CCL26), a che-
mokine elevated in asthmatic airways, as well as the T helper 2-high
asthma biomarkers Periostin (POSTN) and Serpin Family B Member 2
(SERPINB2).3%34 |nterestingly, 21% of genes within 1500 kb of an
assayed CpG site were in or near a minimum of one IL-13-responsive
CpG site, and were significantly enriched for genes associated with
asthma. When the methylation status of the 6522 previously iden-
tified IL-13-responsive CpG sites were subsequently assessed in
freshly isolated cells from asthmatics, 31% were found to also be
differentially methylated compared to controls, 74% of which had the
same direction of methylation effect compared to the cell culture
model. Lastly, a weighted gene co-expression network analysis
identified two clusters of highly correlated genes which correlated
with clinical phenotypes of either asthma severity and lung function
or eosinophilia. These results suggest that part of the epigenetic
variation seen in asthmatics may be induced by IL-13, via persistent

methylation changes in asthmatic airways.

The same group subsequently published a study?® which pre-
sented a full analysis of the comparison between asthmatics and
controls from mostly the same population which they previously used
to compare the results with their IL-13 in vitro model. They identified
40,892 differentially methylated CpG-sites in asthmatics (54%
hypermethylated, 46% hypomethylated), and gene expression anal-
ysis showed the DMRs modestly correlated with their nearest gene
expression, including asthma-associated genes, with the authors
singling out the previously mentioned CCL26, and Mucin 5AC
(MUC5AC), with roles in airway defense against particulates/patho-
gens. Furthermore, a linear model framework showed 9.89% among
all CpGs within 5kb of a SNP and 11.96% of DMRs were associated
with at least one methylation quantitative trait locus.

Out of the remaining studies comparing asthmatics to controls,
one study found no difference in methylation levels,?? and another
measured similar overall methylation levels, with the only difference
being a CpG motif in the promoter of Lipocalin 6 (LCNé), which is
involved in male fertility. The rest found significant differences, with
a study identifying 864 DMRs associated with 428 genes,?® including
the following asthma-associated genes with the greatest effect: Dual
Specificity Phosphatase 22 (DUSP22), with roles such as regulation of
cell proliferation and migration, Kalirin RhoGEF Kinase (KALRN),
with roles such as nervous system development and axon guidance,
and Wnt Family Member 7B (WNT7B) of the Wnt signaling pathway.
Another study did not directly measure methylation changes, but
targeted epigenetic modifying enzymes instead and assessed
expression of 82 genes across 5 families(30), with linear regression
showing reduced mRNA expression of the kinase Aurora Kinase A
(AURKA), the ligase DZIP3, the methyltransferases Euchromatic
Histone Lysine Methyltransferase 2 (EHMT2) and Suppressor Of
Variegation three to nine Homolog 1 (SUV39H1), as well as increased
mRNA expression of the acetyltransferases CREB Binding Protein
(CREBBP) and E1A Binding Protein P300 (EP300). Notably, regarding
genes involved in epigenetic processes, Tet Methylcytosine Dioxy-
genase 1 (TET1), which is involved in DNA demethylation, was found
to be methylated in another study which used in air-liquid interface

cultures of asthmatic BECs,*

whereas Protein Arginine Methyl-
transferase 1 (PRMT1), a histone methyltransferase, was not. The
same study also found higher global methylation levels in asthmatic
BECs, and their list of the top 100 group of highly methylated genes
includes the previously mentioned LCN6, CCL26, CREBBP and
TNXB, with several of the rest of the genes associated with cyto-
skeletal remodeling, cell growth, ion transport, metabolism, T-cell
signaling pathway, and bronchial barrier regulation (Table 1).

When comparing atopic to non-atopic asthmatics, one study
found no difference between the methylation signatures,?? however
when it compared non-asthmatic atopic children to asthmatic it did
find 8 differentially methylated CpG sites associated with 8 genes:
Early Growth Response 4 (EGR4), S100 Calcium Binding Protein A2
(S100A2), Inhibitor Of DNA Binding 1, HLH Protein (ID1), Cell
Adhesion Molecule 4 (CADM4), Cysteine Rich Protein 1 (CRIP1;
expression increased in asthmatics), Fibroblast Growth Factor Re-
ceptor 1 (FGFR1), Signal Transducer And Activator Of Transcription
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5A (STAT5A; expression decreased in asthmatics), Integrin Subunit
Alpha 2 (ITGA2), whose functions include cell adhesion, mitogenesis,

Reference

differentiation, cell cycle progression, senescence, cell growth and
proliferation. The other study found six DMRs in six genes hyper-
methylated among atopic asthmatics, whereas 47 DMRs in 46 genes
were hypomethylated,?® with a gene ontology analysis associating
these 52 genes with the categories: multicellular process, response to
organic substance, hormone metabolic process, and growth factor

disease and allergy):
PAX8ECHDCS3, LSP1

HLA-DQB1

FRG1B
CCR5, CCL5, HLA-

DMB, HLA-DMA,

CXCRé6

receptor binding.

Important findings
STAT4, IL32, STAT1,

KANSL1

The third, and most recent, larger study compared persistent
asthma and remission (subjects that had not had an asthma attack or
wheeze in the last 3 years, and did not use asthma medication), and
identified a different methylation profile between them.?? Four
differentially methylated CpGs and 42 DMRs were identified,
including cg08364654, which had 6% lower methylation in remission
and was associated with Atypical Chemokine Receptor 2 (ACKR2)

measurement method

Methylation

expression, cg00741675, which had 11% lower methylation in
remission, and was located within and associated with expression of
Diacylglycerol Kinase Theta (DGKQ), cg23805470, which resides in
but is not associated with the expression of TNXB (also identified by
the first large study,?* and the second most significant DMR which

was associated with Ribosomal Protein L13a (RPL13 A) expression,

Sampling
method

with a role in chronic inflammation amelioration. When comparing
remission to controls, 1163 CpG sites and 328 DMRs were identified
as differentially methylated, with around one-third of CpGs and 20%
of DMRs being more methylated in remission. Out of the top 10
CpGs, with the exception of PDZ and LIM Domain 4 (PDLIM4), ETS
Variant Transcription Factor 6 (ETVé6), Guanosine Monophosphate

previous year

Reductase (GMPR), they did not correlate with the expression of

Asthma/AR diagnosis
wheeze in the

their nearby genes, but did so with several dozen distant genes.
Interestingly, unlike other studies, it examined the cell type compo-
sition differences between groups and showed that it can have sig-
nificant impact to the results.

Hospital
population-

OR

based
cohort

Two of the studies produced results relating to 17q12-21, the

most replicated asthma-related locus. Firstly, Nicodemus-Johnson

|26

et a utilized an advanced omics approach to identify an asthma

regulatory locus, outside the linkage disequilibrium block of 17q12-

Gender
(male%)

21, which correlated specifically with the expression of ORMDL
Sphingolipid Biosynthesis Regulator 3 (ORMDL3; located in 17q12-
21), whose associated functions include sphingolipid homeostasis,
myelination, ceramide metabolic process, neutrophil degranulation,

and smooth muscle contraction. The second relevant study by
127

Age [average
(range), or:
mean + SD/
SEM]

Moussette et a utilized an immortalized human BEC line to
examine the effects of a DNA demethylation agent on the expression
of five genes of 17q12-q21. Out of those genes, ORMDL3 and
IKAROS Family Zinc Finger 3 (IKZF3) expression was unaffected,
Gasdermin B (GSDMB) expression increased, whereas Gasdermin A
(GSDMA) and Zona Pellucida Binding Protein 2 (ZPBP2) expression

were highly upregulated. DNA methylation assays showed ORMDL3

Ethnicity-
origin

(Continued)

promoter hypomethylation, decrease in ZPBP2 promoter methyl-
ation from 16% to 5%, decrease in GSDMA promoter methylation
from 57% to 25%, with GSDMA-CG1 promoter methylation reduced
from 9% to 0% (previously found to be hypomethylated in asthmatic

population

TABLE 2
Study
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females.>® The study also demonstrated how changes in DNA
methylation could affect allele expression ratios, specifically finding
changes in allelic bias of ZPBP2 and ORMDLS3.

Overall, although the findings between the studies were not
highly comparable, a somewhat common finding was the differential
DNA methylation of epithelial barrier genes responsible for functions
including adhesion and immune response regulation, as well as genes
responsible for cell proliferation, migration and differentiation, along
with several epigenetic modifier genes all of which is relevant in
asthma, since the condition is characterized by airway hyper-

responsiveness, airway wall remodeling and airway inflammation.

4 | DNA METHYLATION IN NASAL EPITHELIAL
CELLS (NECS)

Cells of the nasal epithelium have properties resembling bronchial
epithelial cells and nasal brushing is much less invasive than bron-
chial brushing or BAL; thus, this technique represents a good sur-
rogate model for lower respiratory tract studies.>®3” There is
evidence that the study of the nasal methylome allows for making
reliable conclusions about DNA methylation in the lungs.®8%?
Furthermore, evidence show that the bronchial epithelium and
blood are twice as distant as the bronchial and nasal epithelium,
emphasizing that DNA methylation in blood samples may not be
informative enough to draw conclusions about methylation marks in
the airway.*® In the current decade, quite a few nasal methylome
studies have been conducted elucidating the complex molecular
patterns involved in asthma. In total, methylome studies present a
great variability in demographic (age and gender distribution) and
clinical characteristics (disease definition, medication, acute infec-
tion, smoking, pet exposure); however, it is noteworthy that none of
the studies distinguishes subgroup of asthma and/or AR (Table 2).
Although, most studies do not include direct association to specific
clinical characteristics, few of them have reduced results' variation
through adjustment corrections of major components (age,
gender).*%%~47 Four studies directly examined the effect of smoke
on DNA methylation. Zhang et al.*® and Qi et al.,*° did not find any
association to second-hand smoking but Yang et al.*’ identified 48
DMRs that are significantly associated with environmental tobacco
smoke (ETS). Furthermore, Zhu et al.*’ 2019 showed that DMPs
which are associated to asthma severity are also associated to
second-hand smoking.

Among the first potential biomarkers in nasal epithelial cells
proposed for asthma was TET1 as the hypomethylation of its pro-
moter was associated with childhood asthma in African Americans.*?
Of note, the methylation level of this CpG site was highly correlated
across nasal cells, PBMCs and saliva, making it a potential cross-
tissue biomarker for childhood asthma. Notwithstanding, TET1 has
been found up-methylated in BECS from asthmatics compared to
controls. TET1 encodes a dioxygenase that consecutively converts 5-
methylcytosine (5 mC) into 5-hydroxymethylcytosine (5hmC), 5-
formylcytosine (5 fC) and 5-carboxylcytosine (5caC), thus playing a

key role in active DNA demethylation and resulting in transcriptional
activation of downstream genes such as VEGFA, which is known to
be associated with lung function,? particulate matter exposure
and asthma.**>>37%5 Apart from TET1, the same group later in the
Exposure Sibling Study (ESS) identified other two differentially
methylated—non SNP CpG sites (cg00112952 and cg14830002)
within the promoter region of OR2B11, also located approximately
4000 bp downstream the transcription end site of NLRP3, which
consist a biological plausible regulator of inflammation, immune
response and neutrophilic asthma.*®

Another pioneer study of DNA methylation in nasal cells from
asthmatics (n = 35, Caucasian children population) showed that
FeNO (fractional exhaled nitric oxide) is negatively associated with
IL6 and iNOs methylation. While global methylation has been found
higher in BECs of asthmatics,>® Alu and LINE1-global methylation
was not linked to FeNO and FEV1 (Forced Expiratory Volume) in
nasal epithelial cells (NECs). Decreased methylation of IL6 promoter
was associated with higher FENO as shown in multivariable regres-
sion in an independent fashion of the iINOS promoter status. Nasal
cell LINE-1 methylation showed a negative correlation with IL-6 and
a positive correlation with iNOS methylation.*° In contrast, a rela-
tively recent EWAS (Project VIVA) revealed multiple differentially
methylated CpGs and DMRs for various parameters including FeNO,
allergic and current asthma, allergen sensitization, AR, and lung
function with the largest number of differentially methylated sites
and DMRs to be associated with FeNO levels. Discovered DMRs
annotated to genes implicated in allergy and asthma, Th2 activation
and eosinophilia (EPX, IL4, IL13, PRG2, CLC and ZFMP1) and genes
previously associated with asthma and IgE in an EWAS of blood
(ACOT7, SLC25A25). Solute carriers and intracellular transport
genes such as SLC25A25, SLC39A4, DNAH17 and VTI1A were
differentially methylated among allergic asthmatics, and were spe-
cifically associated with FeNO. Other observed differential nasal
DNAm of asthma-associated genes for FeNO was associated with T-
cell activation, oxidative stress, and mucin production. Hypo-
methylation of a gap junction protein gene (GJA4) was observed for
sensitization to environmental allergens,’®> and lower DNAm of
several CpGs in genes regulating eosinophilic and Th2 responses was
associated with FeNO and allergic asthma. Greater DNAm of several
CpGs annotated to the PRTN3 gene, levels of which have previously
been shown to differ in the nasal epithelium of individuals with
current AR,>® was associated with higher FeNO and allergic asthma.
Differential methylation of IL-4 and IL-17 signaling pathways
appeared to be affected by FeNO in asthma, as well as allergic
asthma.®® The replication external cohort for allergic asthma
confirmed 61% differentially methylated CpGs (58 CpGs), including
several sites annotated to the ACOT7, ZFPM1, PRG2, EPX and EVL
genes. Of note, multiple DMRs (EPX, ACOT7 and SORCS2 genes)
were overlapping across phenotypes like FeNO, allergic asthma,
environmental IgE sensitization, and total IgE. Bronchodilator
response (BDR) was the only trait with a unique nasal DNAm
signature, 130 distinct CpGs, showing no overlap with any of the

other phenotypes considered.
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Some years earlier, in 2017, Yang et al. (Inner City Consortium)*’
was the first to reveal atopic asthma-specific DNA methylation in
nasal epithelial cells from allergic asthmatics (n = 36) when compared
to age-matched healthy subjects. In particular, they identified 119
genome-wide significant DMRs associated with 118 unique genes
and 118 single CpG motifs (DMPs) associated with 107 unique genes.
The median percent methylation difference between allergic asth-
matics and controls was quite high (6.8% for DMRs and 13.6% for
DMPs). Among the 186 (DMR and/or DMP) differentially methylated
genes associated to allergic asthma in the nasal epithelium, there are
genes with established roles in asthma and atopy, immunity, cell
adhesion, epigenetic regulation, airway obstruction, obesity and
autophagy.

Another large cohort study (EVA-PR) showed that 8664 CpGs
were differentially methylated by atopy, with some of the most sig-
nificant CpGs annotated to genes including CDHR3, CDH26, SLC9A3,
PCSKé6, FBXL7 and NTRK1, which are biologically plausible candidate
genes for atopy. 1570 CpG-gene expression pairs were revealed,
including 11 of the top 30 EWAS results.*® An enrichment analysis
revealed that the methylation signals linked to atopy or atopic
asthma are in pathways related to gap junction signaling and immune
regulation, including antigen presentation and Th1/Th2 signaling.
Several CpG/gene pairs showed significant mediation, including
SLC9A3, CDH26, PCSK6 and MAP3K14; others, such as FBXL7 or
NTRK1, showed little or non-significant mediation, suggesting that
the link between methylation and atopy occurs through other
mechanisms.*®

Distinct nasal epithelial DNAm were also observed between non-
severeand severe asthma in African-American children and may be
useful in predicting disease severity. Several of the annotated genes,
play a critical role in asthma.’”~%? Six DMPS, which revealed to be
associated with asthma severity, annotated to TMEM51, WDR25,
HIPK3, and KLF11,%° were associated with clinical features of asthma
in Project VIVA,®® supporting the involvement of these identified
CpGs in regulation of asthma severity. DNAm levels of 39 DMPs
significantly correlated with mRNA levels in children with RNA-seq
data available. Moreover, enrichment was observed for three regu-
latory histone marks associated with functional gene regulatory el-
ements around CpG sites associated with asthma severity,*’
confirming the hypothesis that histone modifications are essential for
the pathogenesis and progression of asthma, which regulates gene
function together with, or independent, of DNAm.*3%*

Regarding AR, data indicating its association with the methyl-
ation of nasal epithelial cells is scarce. To the best of our knowledge
only two independent cohorts have been conducted to explore the
differences in nasal DNAm profiles between people with or without
rhinitis. Qi et al. recruited 455 cases with asthma or rhinitis or a
combined asthma/rhinitis phenotype to uncover possible shared
epigenetic associations (PIAMA cohort). In total, 81 CpG sites were
significantly associated with rhinitis and 75 were associated with the
combined asthma/rhinitis phenotype (AsRh) while most of them were
replicated in the EVA-PR cohort. A total of eight CpG sites in nasal

epithelium showed association with all three phenotypes, five of

which are near known biologically plausible genes related to allergic
disease, including NCF2, which is involved in the oxidative stress
pathway and related to asthma®*; NTRK1, an epigenetic target of IL-
13 involved in allergic inflammation GJA4, the expression of which
has been associated with airway inflammation and bronchial hyper-
responsiveness®®; CYP27B1, an enzyme, the activity of which has
been associated with IgE-dependent mast cell activation®®; and
ANO1 (anoctamin 1), which is related to chloride conductance in
airway epithelial cells and is upregulated in epithelial cells of patients
with asthma.’® On the other hand, the study by Cardenas et al.*®
concluded in no associations between nasal DNAm and AR. Never-
theless, the important role of bacterial colonization of the upper
airways during early life (1 week), where the children with AR
showed lower richness in nasal microbiota compared to children
without AR, has been proved in shaping epigenetics profiles of nasal
epithelium that persist at least to later childhood (6 years), and
contribute as a significant factor to the development of AR.%”

The epigenome is determined by the genome and genetic vari-
ation and epigenetic variation influence each other.?® Several CpGs
in the human genome are implicated in Methylation Quantitative
Trait Loci (mQTLs), that is, the methylation level is at least partly
determined by genetic variants in cis or in trans. However, the pro-
portion of the variance in the methylation levels explained by genetic
variation is in most cases rather limited.®® Studies analyzing epige-
netic and genetic variation at large scale in the same individuals are
so far limited in allergic diseases. Evidence from GWAS has shown
that SNPs are not always associated with expression of nearby genes,
but rather that of more distant cis-genes within 1 Mb. While geno-
type does not change as disease progresses, both epigenetic regu-
lation and transcriptomic activity change as the disease develops or
worsens. Thus, studying eQTM (genome-wide expression quantita-
tive trait methylation) may complement findings from genetic or
eQTL studies and add novel
pathogenesis.

insights into asthma/rhinitis

DNA methylation affects gene expression; thus, Qi et al. exam-
ined whether DNA methylation was associated with local gene
expression by cis-eQTM analyses. Association was found for 24 of
the 68 investigated CpG sites. The most significant negative associ-
ation was ¢g18297196-TREM1. TREM1-associated neutrophilic
signaling pathway proteins have been reported to be significantly
suppressed in eosinophilic nasal polyps of patients with chronic rhi-
nosinusitis.”® A total of 20 CpG site-gene pairs showed significant
association between CpG sites and genes where the CpG sites were
located, including PCSKé6 (proprotein convertase subtilisin/kexin type
6), FBXL7 (F-box and leucine rich repeat protein 7) and CISH (cyto-
kine inducible SH2 containing protein). PCSK6 (NFkb pathway acti-
vato-r)’* FBXL2 (involved in inflammation), FBXL7 (involved in
corticosteroid response’?; and CISH (increased in allergen chal-
lenge”® are genes associated with allergy or inflammation. Genes
identified by eQTM were enriched in pathways related to immune
functions and inflammatory responses.’® Another eQTM analysis in
nasal airway epithelium was conducted by Kim et al. 2020 including
subjects from the EVA-PR study. The top 500 eQTM genes were
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enriched in pathways for immune processes and epithelial integrity,
and more likely to have been previously identified as differentially
expressed in atopic asthma. Most of the top eQTM genes have been
implicated in lung disease for example PAX8; associated with bron-
chodilator response in children with asthma, ECHDC3 with obesity
and asthma in children, LSP1 with acute lung inflammation, HLA-
DQB1 with asthma and total IgE, and KANSL1 with pulmonary func-
tion. Few of the most significant eQTM methylation-gene pairs found
in EVA-PR cohort, also replicated in another publication, were
STAT4, IL32, STAT1, CCR5, CCL5, HLA-DMB, HLA-DMA and
CXCR6. Some of the 10-transcription factor (TF) binding site motifs
in enhancer regions associated with differentially methylated CpGs
and differentially expressed genes (DEGs) in atopic asthma are
FOXA, ALOX5 and GATA-6.°*

DNAm and corticosteroid treatment seems to present a bilateral
relationship; acute systemic steroid treatment modifies nasal DNAm in
good responders but nasal DNAm can differentiate response to
treatment as well. Xiao et al. suggested that VNN1 as a biomarker for
corticosteroid treatment response due to its altered methylation at
the CpG site of the promoter. In particular, the methylation level at the
CpG4 site trended to decrease in the poor responders, but increase in
good responders following treatment. Moreover, there was a positive
correlation between the change in DNA methylation at CpG4 (mT1-
mTO0) and VNN1 mRNA expression.41 An EWAS indicated that varia-
tion in DNAm levels was associated with treatment response, in
particular 309 CpGs were identified whose DNAm levels were asso-
ciated with treatment response—182 overlap with common SNPs
including LDHC, DNHD1 and PRRC1 and 127 do not have SNP co-
localization including GALNTL4, SRD5A3, MED12L-GPR87 locus and
CARD14. Similarly, systemic steroid treatment significantly altered the
nasal methylome within 24 h in good responders; specifically, the
promoter of OTX2 showed significantly decreased methylation. The
OTX2 gene encodes a transcription factor with key roles in the

brain74,75 76,77

t,78

craniofacial and sensory organs and pituitary develop-

men 2,7980

directly interact with Foxa which has been implicated in
suppression of goblet cell metaplasia during allergen challenge and the
production of IL13, IL33, CCL20 and CCL17 from airway epithelial
cells and inhibits allergen-induced goblet cell differentiation,®!
through reprogramming of Th2-mediated inflammation and innate
immunity.*? Contrary Yang et al.*” showed no DMRs/DMPs associa-
tion with nasal corticosteroid use among asthmatics, after adjustment
for multiple comparisons; thus, the relationship of corticosteroid
treatment and DNAm remains to be clarified.

Potential causes of methylation changes include pet exposure,
cigarette smoke,®? air pollution®® and farming aerosols®* which affect
the epigenome, while pet exposure at early life has also been impli-
cated.85"87 Pet exposure at secondary school age has been positively
associated with current nasal methylation levels of cg03565274
annotated to ZMYND10 (a gene related to related to primary ciliary
dyskinesia).2® The methylation level of the later is negatively asso-
ciated with a compared asthma-rhinitis phenotype (AsRh) suggesting

that some environmental exposures could affect DNA methylation in

the nasal epithelium, which may have protective effects on AsRh.
Methylation-related expression of ZMYND10 in AsRh is lower in
nasal epithelial cells, or alternatively, it may be explained by a lower
subset of differentiated ciliated cells in AsRh compared with healthy
controls, as was recently discovered in patients with chronic rhino-
sinusitis through use of scRNAseq.8? The influence of environmental
exposures on the nasal epithelial epigenome was highlighted by
identifying 48 DMRs in 46 unique genes that are significantly asso-
ciated with environmental tobacco smoke.*” Nevertheless, regarding
AsRh, no significant associations have been shown with exposures to
other potential risk factors for allergic disease, such as smoking,
secondhand smoking, moulds and dampness.>®

Microbial species are also known to influence the epigenome,32-84
for instance, respiratory virus infections affect NECs DNA methyl-
ation. Analysis of Alu methylation indicated increased global methyl-
ation occurred in NECs of asthmatics in response to virus infection.*®
The ‘Inner City’ genome-wide methylation analysis after rhinovirus
(RV) infection identified 27,517 CpGs differentially methylated, clas-
sified into 11 different functional groups, of which 10,498 was
increased, while 15,155 CpGs showed a decrease when asthma was
compared with controls.** DNA methylation profiles in response to
infection in NECs from both healthy and asthmatic subjects were not
dominated by loci associated with proinflammatory or antiviral im-
mune responses; a principal component analysis pointed to a common
locus where SNORA12 is located. While the function of SNORA12 in
HRYV infection remains to be determined, changes in SNORA12 gene
expression during virus infection have been observed. Despite being
common in response to infection, SNORA12 methylation differed in
atopic asthmatic and healthy subjects and a relationship between
SNORA12 gene expression and lung function within the different
groups was observed, implying that methylation-mediated changes in
gene expression caused by underlying respiratory disease may also
have functional consequences.*> Another study revealed 471 CpGs
significantly different between asthmatics and controls, comprising in
total 268 genes to have HRVI-induced asthma-specifically modified
DNA methylation and mRNA expression. Of these, 16 (AGPAT1, BAT3,
NEU1,ANAPC11,MGST3,CCT6A, MICB,SMN1,L0C442454, KLHLS,
SLC16A3, GP1BA, DNAJC7, VDAC2, FBXO7 and TP53I3) showed a
change in DNA methylation of greater than 3% which were accompa-
nied by an mRNA expression change greater than 0.1 RPKMS (Reads
per kilo base per million mapped reads).** Some of them such as BAT3
and NEU1 have been previously investigated in the context of asthma
and HRVI. HRVI-induced BAT3 expression was reduced in children
with asthma compared to children without asthma. BAT3, also known
as HLA-B-associated transcript 6 (BAG6), encodes for a cytoplasmic
protein which is involved in mammalian cell apoptosis and prolifera-
tion?>?! and in the activation process of natural killer cells initiating
IFN-y and TNF-a cytokine release.’>?2 The catalytic enzyme Neur-
aminidase 1 (NEU1) plays a role in the T helper type 2 (Th2)-mediated
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airway inflammation in a murine acute asthma model”™™ and forms

complexes with Toll Like Receptors (TLR2, 3, 4) activating TLR

signaling.”>%¢
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5 | DNA METHYLATION IN BLOOD

Methylation status in either whole blood or PBMCs and the linkage
to asthma has been widely studied’”"%? and has been extensively
discussed in a plethora of reviews; however, only few studies
discriminate allergic asthma and atopy. There is a significant inter-
action effect among global DNA methylation levels in blood, asthma
severity, race/ethnicity, and socioeconomic status; particularly Afri-
can American children present higher levels of global DNA methyl-
ation than children of other races/ethnicities.'®® Apart from race/
ethnicity, gender-specificity of DNAm changes have been recorded
and have been associated with asthma acquisition from pre-
adolescence to late- or post-adolescence in birth cohorts. A partic-
ular subset of CpGs has been linked with male gender while other loci
are affecting mostly women, without a specific gender direction;
nevertheless, CpGs are likely to play a role in the underlying mech-
anisms of sex-specific asthma acquisition.’°* DNA methylation levels
in PBMCs significantly differ between children with IgE sensitization
compared to non-sensitized children including genes related with the
mTOR signaling pathway and the MAP kinase pathways. Of note, the
differences in DNA methylation associated with IgE sensitized chil-
dren at 5 years of age can be detected already in maternal PBMCs,
cord blood, and at age 2Y making them as potential candidate for
biomarker.1°2 In general, allergic subjects present mainly a decreased
DNAm and the CpGs are annotated to genes with biological functions
relevant to allergic sensitization such as the regulation of ILs pro-
duction.®® In a large EWAS from the MEDALL consortium using four
European birth cohorts and further seven validated cohorts, child-
hood asthma was found to be associated with a number of differ-
entially methylated CpG positions in whole blood.*%*

Nevertheless, the vast majority of the large cohorts (ewas
studies) involve either whole blood or PBMCs while only a few also
included blood cell populations that are sorted in limited size cohorts.
Of note, up to 40% of the differences in methylation profiles of in-
dividuals could be attributed to the cell-type heterogeneity of white
blood cells.!®> The best studied type of blood cells is eosinophils;
purified circulating eosinophils showed an altered DNA methylation
profile, usually hypomethylation, suggesting a differential activation
state which affect immune functions of this subpopulation, the
interaction with other PBMCs and certain lung functions.”®1°* Genes
implicated in airway remodeling, surfactant secretion and nitric oxide
production in airways, as well as genes associated with cytokine
production and signaling and phagocytosis in blood are characterized
by decreased methylation in asthmatic subjects.%®

Four recent large epigenome wide association studies have been
conducted concerning the relationship of atopy and DNA methyl-
ation. Distinct methylation signals are found between non-atopic and
atopic asthma as well as between atopic and healthy subjects. In
Agricultural Lung Health Study, several hundred CpG sites were
differentially methylated in blood DNA from adults with non-atopic
or atopic asthma compared to adults with neither asthma nor
atopy while 99.5% of these CpG sites presented decreased methyl-

ation. Atopic asthma CpG sites were enriched in pathways involved in

inflammatory response or characterized by chronic inflammation
consistent with the inflammatory nature of atopic asthma.*®”

Differential methylation has been revealed in peripheral blood
associated with atopic sensitization, environmental and food allergen
sensitizations (Project Viva/Generation R Study®® and oW study!®®
during mid-childhood and adolescence, respectively; methylation
sites were annotated to genes that have been implicated in asthma
pathway and with biological functions relevant to allergicsensitiza-
tion, mTOR signaling, inositol phosphate metabolism and the regu-
lation of IL-5 production.'®>1°8 Although studies suggest that
epigenetic marks in cord blood DNA may serve as early biomarkers
of allergic susceptibility in childhood as some of these CpGs had
nominal associations with cord blood and genes involved in airway
remodeling, there are not enough data to support this suggestion.'°®

The cohort of Wu et al.*%? (MeDALL study) revealed 80 CpGs
differentially methylated in whole blood to be associated with allergy
in the discovery phase but after meta-analysis of the results from 8
different cohorts, they concluded in 21 decreased methylated CpG
sites. Contrary to the findings of Acevedo et al.1°2 and Peng et al.2%®
DNA methylation at these 21 CpG sites in cord blood was not pre-
dictive of allergy during early childhood, indicating that postnatal
changes in DNA methylation may play an important role in the
development of allergy. Correlation of these 21 CpG sites with
genome-wide gene expression revealed clusters of genes linked to
airway inflammation, pathogenesis of lung diseases, development of
immune responses, genes correlated with blood eosinophil counts,
activation of granulocyte production and genes associated to
asthma.%?

6 | DNA METHYLATION COMPARISONS AMONG
STUDIES AND ACROSS TISSUES

Our comparison of the aforementioned EWAS brings up some
important gene loci that overlap in each tissue (Figure 1A,B).
For instance, the comparison of the four EWAS in whole blood
samples> 107110111 hishlights the following genes: KCNH2, ACOT7,
EPX, NHLRC4 (Table S1). When we compared the three EWAS in
NECs (EVA-PR study, Inner City Consortium and Project VIVA; Ta-
ble S2), after considering only the methylation status of allergic/
atopic asthma and including all the presented genes with statistical
significance, two shared gene loci are identified: PCSKé and TSHR.
PSCKé has also been differentially expressed in bronchial brushings
between cigarette smoking severe asthma and nonsmoking severe
asthma®*! and has been mentioned to be induced in vitro by inter-
leukin (IL)-4 and IL-13, to activate NF-kB, IL-1, and IL-6,%° to have a
paracrine role in activating matrix metalloproteases®® and participate
in glycoprotein metabolic process and endopeptidase inhibitor ac-
tivity. Giovannini-Chami et al.}1° included PSCK6 among the 61 most
discriminant genes between dust mite AR and healthy children. TSHR
encodes a hormone ligand-binding receptor, known for its role in
autoimmune thyroid disease which participate in mediating anti-

inflammatory cytokine production as well as cAMP and G-protein
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FIGURE 1

Project Viva/ Generation R Study

MeDALL

(A) Venn diagram representing the shared differentially methylated gene loci associated with atopic asthma in nasal epithelium

samples among three large EWAS: Project Viva,!® Inner City Consortium,*” EVA PR study.*® B, Venn diagram representing the shared
differentially methylated gene loci associated with allergic sensitization and allergic asthma in whole blood samples among four large EWAS

signaling pathways. TSHR does not have a well-established associa-
tion to asthma and/or atopy, but human fibrocytes, whose increased
number is implicated in asthma with chronic airflow obstruction,
express the thyrotropin receptor. TSHR-engaged fibrocytes generate
extremely high levels of several inflammatory cytokines. This is a
gene that warrants further exploration in the context of respiratory
allergy.

There are several other DMRs in allergic asthma that appeared
at least in two of the NECs studies (Table S2). Cardenas et al.*®
comparing their results with ‘Inner City Consortium’ and ‘EVA-PR’
studies indicated 53% and 61% of replicated CpGs respectively, all
with consistent direction of association including multiple CpGs an-
notated to EVL and EPX genes. Notably, several of the top differ-
entially methylated CpGs revealed by Cardenas et al.X® were shown
to be associated with the expression results of EVA-PR including
METTL1 for environment IgE sensitization, NTRK1 for allergic
asthma, and several genes, such as MAP3K14, NTRK1, FBXL7,
PCSKé6, SLC9A3, CDH26, CAPN14 and MAP3K14 for FeNO. Pech
et al.** suggested that 14 shared asthma-specific CpGs (annotated to
the following genes: LDLRAD3, METTL1, CDC45, C150rf54, DUOX1,
ZFPM1, LDLRAD3, ALOX15, POSTN and CTCS) after a comparison
of ‘Inner City Consortium’ and their study ‘ALLIANCE’.

When considering the same type of tissue, several common
differentially methylated loci have been revealed. Of importance is
also whether methylation differences are established across tissues.
The first indication comes from a Project VIVA comparison where
13/14 asthma associated CpG sites tested in whole blood®* were
found also differentially methylated in nasal cells samples.*®> On the
other hand, nasal DNAm findings presented a minimal overlap with
cord blood DNAm patterns prospectively linked to development of
childhood asthma and allergy. The comparison between data of
complete remission versus persistent asthma from whole blood

samples**? and from bronchial biopsies?? indicated one common CpG

(cg13525448), annotated to LBX1 and TLX1 genes to have the same
direction of effect. This consistency suggests that the methylome
signature in asthma can be stable in whole blood, nasal cells, and
potentially other tissues. Contrary, some other genes, that GWAS
and EWAS in nasal samples have correlated to asthma, did not show
a similar methylation pattern in whole blood samples suggesting that
the nasal cellular compartment may be more sensitive to asthma-
associated DNAm differences, and potentially an optimal tissue for
detecting epigenetic modifications of known biological relevance.*®

However, the question remains whether there are differentially
methylated loci annotated to common genes across the various
tissues in allergic asthma. A comparison of genes to which signifi-
cant CpGs and DMR were annotated from available EWAS dealing
with allergy and allergic asthma reveals a few common genes in
whole blood and nasal epithelium samples but no shared genes
with bronchial epithelium samples. The inconsistency of results
between the studies could be attributed to the great variability in
age and gender distribution between studies, as well as clinical
features such as disease's definition and severity and other factors
such as smoking. Thirteen differentially methylated loci were pre-
sented in at least four studies including both blood and nasal
samples making them possible candidates for biomarkers (Ta-
ble S3). A Reactome-pathway analysis of these genes, demon-
strated at a cytoscape diagram (Figure 2), revealed the most
relevant significantly enriched pathways) including pathways
involved in immune system, cytokine signaling and metabolic pro-
cedures (gluconeogenesis, glycose-lipid-carbohydrate metabolism)
The results of this comparison are in agreement with the results of
a meta-analysis by Reese et al.”® which correlated ACOT7, EPX,
KNHC2, ZNF862, IL5RA and ZFPM1 with childhood asthma. Of
note, the ACOT7 gene was present in 6/8 compared studies
including whole blood and nasal samples. Considering this gene, its

methylation status has also been significantly associated with total
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FIGURE 2 Cytoscape diagram presenting the network of common differentially methylated genes in at least three studies and the

enriched pathways are implicated using reactome-pathway analysis tool

IgE.1*3 A life course analysis of IgE hypersensitivity studying the
change in methylation between cord blood and mid-childhood DNA
revealed significant postnatal differentially methylated sites located
within ACOT7 (four sites) and ZNF862 (three sites).}** EPX plays a
role in various immune system pathways such as the defense to
microorganisms, regulation of ILs, response to oxidative stress and
neutrophil degranulation. The association of EPX levels with
asthma is well studied; both urinary and serum EPX levels have
been linked to childhood asthma and have been suggested in the
past as biomarkers.'*®> Concerning IL5RA, there are plenty of data
linking it with asthma in a positively correlating manner. Moreover,
polymorphisms in IL5RA account as a genetic risk factors for

116,117

asthma development, especially in atopic populations.

Furthermore, its function in inflammatory response, signaling

transduction, like the cytokine mediated signaling pathway and
MAPK cascade is known; thus, it consists a biologically plausible
candidate marker for asthma development.

Unfortunately, EWAS studies that involve bronchial epithelial
samples, the kind of tissue that is ‘closer’ to asthma, comparing
methylated gene loci between healthy individuals and allergic asth-
matics are scarce. In our comparisons, only one study?® evaluating
the genome-wide methylation profile of the bronchial mucosa of
allergic asthmatics compared to non-allergic was included, which is

apparently not sufficient.

7 | CONCLUSIONS

In conclusion, epigenomic and transcriptomic profiling has provided a
means of exploring how gene-environment interactions contribute to
the pathology of asthma and other allergic respiratory conditions.
Several genes and CpGs have been suggested as asthma biomarkers,
though research is currently lacking on AR. In both blood and nasal
samples, the most presented differentially methylated loci were an-
notated to ACOT7, EPX, KCNH2, SIGLECS, TNIK, FOXP1, ATPAF2,
ZNF862, ADORAS, ARID3A, IL5RA, METRNL, ZFPM1, making them
possible candidates for allergic respiratory disease biomarkers.
Overall, there is significant heterogeneity among studies, in respect
to sample sizes, age groups, disease phenotype, statistical methods;
however, the field appears to be very conscious of limiting factors,
and a steady improvement is certainly evident over time in the
quality and scope of newer studies.

BECs are not easily available but more clinically relevant to
airway diseases compared to other types; therefore, more EWAS
studies on BECs, including comparisons between healthy individuals
and atopic asthmatics, are required for more precise associations.
Distinguishing between atopic and non-atopic asthma should be
taken under consideration in future studies, as epigenetic differences
between the two groups can be striking. In general, accumulated

evidence suggests that NECs are comparable in diagnostic
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performance to BECs. However, it should be noted that most
epigenetic studies were conducted on pediatric populations of
varying age, with very few cases of older subjects. Studying DNA
methylation differences in blood samples is technically easier.
Nevertheless, their results may be less informative, regarding
methylation marks in airway, despite some identified shared signals
with NECs, that indicate the presence of cross-tissue epigenetic
mechanisms, which overlap both at the pathway and gene level.

Importantly, DNA methylation profiles were different depending
on sample isolation techniques, which should therefore be strongly
considered in future research. Only few studies assessed cell type
composition, even though this variation can affect the results. Single
cell RRBS is a promising method to assess the role of cell types, since
the current approaches average out results, and do not consider the
contribution of differences in individual cells. Additionally, a lack of
variability in the analysis method has been noticed; thus, the com-
bination of different methodologies, such as RRBS and WGBS, may
be beneficial for reproducible conclusions and for the evaluation of
new biomarkers.

Finally, it is essential to focus on more detailed investigation
processes at all levels, in order to identify targeted methylation loci
as potential biomarkers. The clinical characterisation of patients, the
sampling procedure, the choice of technique and the analysis pro-
tocol play a role in DNA methylation results variability and repeat-
ability. Wider studies in age groups with specific clinical
characteristics and using more precise protocols will elucidate
differentially methylated loci that could be used as immune age

biomarkers in the future.
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