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Key Points

� Kidney alterations in AKI are challenging to study directly due to the need for kidney biopsy or postmortem
analysis to obtain cells.

� Urine scRNAseq can be used to noninvasively characterize cellular diversity and identify altered pathways in
the setting of COVID-19 AKI.

� This study provides preliminary evidence that SARS-CoV-2 is capable of directly infecting urothelial cells.

Abstract
Background AKI is a common sequela of infection with SARS-CoV-2 and contributes to the severity and
mortality from COVID-19. Here, we tested the hypothesis that kidney alterations induced by COVID-
19–associated AKI could be detected in cells collected from urine.

Methods We performed single-cell RNA sequencing (scRNAseq) on cells recovered from the urine of eight
hospitalized patients with COVID-19 with (n55) or without AKI (n53) as well as four patients with
non–COVID-19 AKI (n54) to assess differences in cellular composition and gene expression during AKI.

Results Analysis of 30,076 cells revealed a diverse array of cell types, most of which were kidney, urothelial, and
immune cells. Pathway analysis of tubular cells from patients with AKI showed enrichment of transcripts
associated with damage-related pathways compared with those without AKI. ACE2 and TMPRSS2 expression
was highest in urothelial cells among cell types recovered. Notably, in one patient, we detected SARS-CoV-2
viral RNA in urothelial cells. These same cells were enriched for transcripts associated with antiviral and anti-
inflammatory pathways.

Conclusions We successfully performed scRNAseq on urinary sediment from hospitalized patients with
COVID-19 to noninvasively study cellular alterations associated with AKI and established a dataset that includes
both injured and uninjured kidney cells. Additionally, we provide preliminary evidence of direct infection of
urinary bladder cells by SARS-CoV-2. The urinary sediment contains a wealth of information and is a useful
resource for studying the pathophysiology and cellular alterations that occur in kidney diseases.
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Introduction
Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection triggers pathology across
multiple systems, including the kidney, and AKI is
associated with significant morbidity and mortality in
coronavirus disease 2019 (COVID-19) (1–5). Multiple
studies have demonstrated high rates of AKI among
hospitalized patients with COVID-19 (6), with some

reporting up to 50% of infected individuals developing
AKI (7–9). The primary SARS-CoV-2 receptor ACE2 is
expressed on epithelial cells throughout the urinary
system, including proximal tubule cells and urothelial
cells (10–13), although it is unclear if AKI in patients
with COVID-19 is due to direct viral infection of the
proximal tubules or is a result of the systemic response
to SARS-CoV-2 (14–22). Similarly, it is unclear if SARS-
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CoV-2 can cause viral cystitis via direct infection of urothelial
cells, although this possibility has been proposed (23–26).
Despite the high prevalence of COVID-19–associated AKI,
the underlying cellular alterations that occur in the setting of
AKI remain poorly understood.
COVID-19–associated AKI has remained largely under-

studied as access to kidney tissue requires biopsy or post-
mortem analysis (27). Recent studies have detected a
diverse array of kidney, bladder, and immune cells in the
urine (28–30). Thus, the urine may offer valuable insight to
noninvasively study kidney changes during COVID-
19–associated AKI. Here, we performed single-cell RNA
sequencing (scRNAseq) to characterize the cellular diversity
in the urine of hospitalized patients with COVID-19 with
and without AKI. We tested the hypothesis that kidney
alterations in COVID-19–associated AKI could be detected
in cells collected from urine. We also collected samples
from patients without COVID-19 and with AKI (non–
COVID-19 AKI). We found several inflammatory immune
cell populations and differentially activated pathways in
COVID-19–associated AKI as well as preliminary evidence
for direct infection of urothelial cells by SARS-CoV-2.

Materials and Methods
Participants and Variables
Adults aged 18 years old and older were screened during

admission or transfer to the University of Alabama at Bir-
mingham (UAB) hospital between March and May 2021.
Cases of AKI were identified using the Kidney Disease
Improving Global Outcomes definition as a rise in serum
creatinine (sCr) .0.3 mg/dl within 48 hours or .1.53
baseline creatinine. Controls with no change in creatinine
were selected on the basis of age and sex matching where
possible and processed with each respective AKI sample.
Baseline sCr was determined using the most recent sCr
value 7–365 days prior to hospitalization. Additional clini-
cal data regarding demographics, medical history, clinical
characteristics, and laboratory values were extracted from
patient charts through the UAB Center for Clinical and
Translational Sciences i2b2 team. Eight hospitalized
patients with COVID-19, five with AKI and three without
AKI, were included. This study and the specimen collec-
tions were approved by the UAB Institutional Review
Board. The UAB Acute Nephrology Consult Team also col-
lected samples from patients with non–COVID-19 AKI
(n54) to compare cellular changes with COVID-19–
associated AKI. These were collected under a different
institutional review board protocol that allows for collec-
tion of remnant urine samples and thus, are anonymous.

Specimen Collection and Processing
All steps were performed on ice. Urine was collected

either as a voided specimen or from a urinary catheter. Sam-
ples were immediately transferred to a biosafety level 21
laboratory for processing. Urine samples were transferred to
a 50-ml conical tube and centrifuged at 10003g for 10
minutes at 4�C. Cell pellets were washed with ice-cold PBS,
filtered through a 40-mm filter, and centrifuged again. Live
cells were purified using the MACS Debris Removal Kit
(Miltenyi Biotec) followed by the EasySep Annexin V Dead

Cell Removal Kit (StemCell). Briefly, cells were resuspended
in ice-cold PBS and mixed with debris removal solution.
Cold PBS was overlaid on the mixture and centrifuged at
3003g for 10 minutes at 4�C. The top two phases were aspi-
rated, and then, remaining cells were washed with PBS.
Cells were resuspended and mixed with Dead Cell Removal
Cocktail, Biotin Selection Cocktail, and then, RapidSpheres
before separation in an EasySep magnet. Cells were washed
and resuspended in 52 ml of PBS (no calcium or magnesium)
10.04% BSA (Fisher Scientific) for scRNAseq processing.

scRNAseq
Purified cells were transferred to the UAB Flow Cytome-

try and Single Cell Core and immediately processed using
the Chromium 39 Single-Cell RNA Sequencing Kit (103
Genomics) according to the manufacturer’s instructions.
The cell suspension was counted, combined with the 103
Chromium reagent mixture, and loaded into a microfluidic
single-cell partitioning device in which lysis and reverse
transcription occur in microdroplets. The resulting cDNA
was amplified by PCR and subsequently processed to yield
bar-coded sequencing libraries. Paired-end sequencing was
carried out on the Illumina NovaSeq6000 or NextSeq500
sequencing platform (Illumina). Reads were processed
using the 103 Genomics Cell Ranger Single-Cell Software
Suite version 6.0 on the UAB Cheaha High Performance
Computing Cluster. BCL files were converted to FASTQ
files using the CellRanger mkfastq function. CellRanger
mkfastq was used to align FASTQ files to a custom genome
consisting of the hg38 human genome (GRCh38.p13) with
the SARS-CoV-2 genome (NC_045512.2) inserted as an
exon (31). The genes table, barcodes table, and transcrip-
tional expression matrices were created for the analysis
indicated below.

Data Analyses
Analyses were carried out using packages created for the

R statistical analysis environment (version 4.06). Data were
primarily analyzed in Seurat version 3.2.3 (32,33) and its
associated dependencies. Data from each individual patient
were imported using the Read103 function and then struc-
tured into a Seurat object using CreateSeuratObject. For
quality control, cells with unique feature counts over 2500
or under 200 and cells with mitochondrial proportions
.15% were filtered out. Data were normalized using Log-
Normalize and scaled to prepare for linear dimensional
reduction. Objects from individual patients were labeled
with unique group identifications and then merged into a
single object using the Seurat merge function. Patient sam-
ples were integrated with the RunHarmony function using
the Harmony R package (34). Principal component analysis
was performed, and then, cells were clustered on the basis
of differential gene expression as determined by the Seurat
FindAllMarkers function set to a resolution of one. Dimen-
sional reduction was performed using uniform manifold
approximation and projection. Cell types were identified
by comparing the differentially expressed transcripts for
each cluster with known transcripts associated with specific
cell types (29,35,36). The Escape R package was used to run
Gene Set Enrichment Analysis (GSEA) (37). WebGestaltR
was used for gene ontology analysis to identify pathways
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using the Biologic Process and Kyoto Encyclopedia of
Genes and Genomes databases (38).

Results
We performed scRNAseq on urine sediment from eight

hospitalized patients with COVID-19, five with AKI and
three without AKI. Four additional urine samples from
hospitalized patients without COVID-19 and with AKI
were also collected to compare potential differences in AKI
in the context of COVID-19. The average sCr in patients
with COVID-19–associated AKI was 2.4 mg/dl as com-
pared with 0.83 mg/dl in control patients at the time of
collection. Notably, two of the patients with COVID-
19–associated AKI had prior diagnoses of CKD, which has
been shown to worsen outcomes from COVID-19 (39,40).
Comorbidities and other variables differed slightly between
the AKI and no AKI control populations (Table 1).
Consistent with prior reports (29), cell numbers were

highly heterogeneous between patients (Supplemental
Figure 1, A and B). In total, 65,234 cells were sequenced,
and 30,076 cells were retained through quality control. Inte-
grated uniform manifold approximation and projections of
all 12 patient samples revealed a diverse array of kidney,
urothelial, and immune cells (Figure 1, A, E, and F). We
were able to detect most kidney cells, including podocytes
and VCAM11 kidney cells, demonstrating the ability to
noninvasively study the kidney through analysis of urine.
There is clear heterogeneity in the urothelial cell popula-
tion, which falls outside the scope of this study but war-
rants further investigation. The cell types captured varied
between AKI and non-AKI groups (Figure 1, B–D) as well
as between each patient (Supplemental Figure 1C). As
expected, larger numbers of immune cells were detected in
the COVID-19–associated AKI samples.
GSEA revealed upregulation of apoptotic genes, IFN

response elements, and various other signaling pathways

in both COVID-19–associated and non–COVID-19 AKI and
non-AKI control samples (Figure 2C, Supplemental Figure
2). Because of the high energy requirements and mitochon-
drial content, the proximal tubule is one of the structures
most sensitive to insult during AKI (41), and its severity of
injury is related to overall outcomes (42). Pathway analysis
of proximal tubule cells from patients with AKI revealed
enrichment of pathways related to apoptosis, DNA repair,
and cellular responses to reactive oxygen species and stress
in contrast to patients without AKI (Figure 2, A and B).
Similar pathway upregulation was detected in other kidney
tubular cells. Pathways related to damage were upregu-
lated in the setting of AKI, but enrichment of reactive oxy-
gen species, DNA damage, and apoptotic pathways in the
proximal tubules, loop of Henle, and collecting duct was
more apparent in COVID-19–associated AKI in comparison
with the non–COVID-19 AKI samples. We suspect that
there are many overlapping pathways in AKI due to the
combination of injury mechanisms, including ischemia,
inflammation, or drug toxicity. The additional enrichment
of damage-related pathways in COVID-19–associated AKI
may be due to the other inflammatory processes occurring
in the COVID-19 disease process. This may explain the
metabolic differences seen in urine of patients with
COVID-19–associated AKI (43).

The viral entry receptor, ACE2, is abundantly present in
a variety of tissues, including the kidneys. ACE2 and
TMPRSS2 transcripts were detected on various epithelial
cells from the kidney and were particularly abundant in
urothelial cells (Figure 3A). Because SARS-CoV-2 is an
RNA virus with a poly-A tail (44), we created a customized
genome for alignment where the SARS-CoV-2 genome was
added as an exon to the hg38 human genome. Interestingly,
although we did not detect any SARS-CoV-2 viral tran-
scripts in the kidney cells in patients with AKI, we did
detect trace transcripts in the urothelial cells of patient 7
(who had COVID-19 without AKI), suggesting direct

Table 1. Baseline characteristics and demographics of study participants

Variable

Coronavirus Disease 2019 AKI Coronavirus Disease 2019 No AKI Control

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8

Age, yr 32 62 46 49 81 60 62 38
Sex M M F M M M F M
Race AA AA AA AA White White AA White
BMI, kg/m2 32.1 40.5 26.6 28.4 35.2 29.1 34.2 58.0
sCr baseline, mg/dl 1.8 1.3 0.8 1.2 0.7 0.8 0.7 0.8
sCr at collection, mg/dl 3.5 2.1 1.5 2.6 2.3 0.8 0.8 0.9
Comorbidities
Diabetes X X X X X
HTN X X X X
Hyperlipidemia X X X X X
CAD X X X
COPD/asthma X
Baseline GFR ,60 X X X
Foley catheter X

AKI was defined using the Kidney Disease Improving Global Outcomes criteria of rise in sCr of .0.3 mg/dl or 1.53 baseline.
Clinical data from patients with noncoronavirus disease 2019 AKI (patients 9–12) were not obtained as samples were collected
anonymously. M, male; F, female; AA, Black; BMI, body mass index, sCR, serum creatinine; X, patients with comorbidity; HTN,
hypertension; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease.
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Figure 1. | Single-cell RNA sequencing of urine from patients with coronavirus disease 2019 (COVID-19) with and without AKI and
patients with non–COVID-19 AKI. (A) Integrated uniform manifold approximation and projection (UMAP) plot of 30,076 cells sequenced
from patient urine sediment. (B–D) UMAP plot subsetted by COVID-19 and AKI status showing the difference in collected cell popula-
tions. Cell-type labels are the same. (E) Heat map of differentially expressed genes of integrated clusters. (F) Dot plot of known marker
genes for identification of cells. B, B lymphocyte; CD, collecting duct; IC, intercalated cell; KRM, kidney resident macrophage; LOH, loop
of Henle; Mac, macrophage; Neut, neutrophil; Podo, podocyte; PT, proximal tubule; RBC, red blood cell; SMC, smooth muscle cell; T, T
lymphocyte; Uro, urothelial.
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infection of these bladder cells (Figure 3A). Individual anal-
ysis of patient 7 revealed few kidney-derived cells. Most of
the cells isolated were immune and urothelial cells. Viral
RNA was found exclusively in urothelial cells with high
ACE2 expression (Figure 3B, Supplemental Figure 3). Uri-
nalysis of this patient showed leukocyturia without evi-
dence of a bacterial infection (negative leukocyte esterase
and nitrite) (Figure 3C). Pathway analysis of the urothelial
cells revealed enrichment of pathways involved in type 1
IFN signaling, an acute inflammatory response, and

leukocyte responses (Figure 3D, Supplemental Figure 2B),
which is consistent with a viral infection of these cells.

Lack of detection of viral RNA in proximal tubule cells
in the urine does not rule out direct infection by SARS-
CoV-2. Other groups have reported evidence for and
against viral tropism in the kidney (14–22). The detection of
viral RNA in urothelial cells and the enrichment of tran-
scripts associated with antiviral pathways in these cells
suggest direct infection and a possible case of viral cystitis.
Viral cystitis due to SARS-CoV-2 has been noted, but
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evidence of direct infection has been lacking. The mecha-
nism of entry would be from the basal side of the urothelial
cells if from the blood or the luminal side if from the urine.
A previous study suggested that ACE2 is expressed on
both the basal and luminal surfaces of the urinary bladder
(23). The detection of viral cystitis using scRNAseq is

consistent with the clinical characteristics from patient 7
(Figure 3C). Although the virus was only detected in a
small number of cells, we suspect that the majority of
virally infected cells could have been filtered out during
the urine processing and data analysis quality control steps
in which we removed dead and dying cells.
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Figure 3. | Detection of direct infection of urothelial cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). (A) Violin
plots of ACE2, TMPRSS2, and SARS-CoV-2 gene expression among sequenced cell types. Cell types with identified SARS-CoV-2 gene expres-
sion are identified in blue to identify overlap between SARS-CoV-2 receptor and gene expression. (B) Individual analysis of patient 7: UMAP
plots and ACE2 and SARS-CoV-2 expression identifying the presence of SARS-CoV-2 gene expression within urothelial cells. (C) Urinalysis
laboratory values from urine samples taken from patient 7 2 days prior and 12 days after urine collection for single-cell RNA sequencing.
(D) Gene enrichment analysis using the WebGestaltR Biologic Process to identify upregulated pathways in the urothelial cells of patient 7.
Pathways involved in viral infection and immune response are shown in blue with a false discovery rate (FDR) of #0.05. Sq Epi, squamous
epithelial cells; Leuk Est, leukocyte esterase; lmm, immune cells; Neg, negative; SG, specific gravity; WBC, white blood cell.
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Discussion
A limitation of this study is the small number of patients

sampled. Sample collections were restricted to new hospital
admissions to control for other variables, such as the vari-
ous medications used as treatments for COVID-19. Hospi-
talized patients with COVID-19 and without AKI were
used as controls because healthy controls do not secrete
many cells in urine. An additional limitation is having to
process urine before sequencing; however, this greatly
increased the proportion of live cells obtained. Here, cells
were readily detectable in the urine of infected patients
without kidney injury. This is significant because most
scRNAseq studies have focused on damaged kidneys, lead-
ing to few datasets available to study uninjured kidney
cells. AKI has many different causes, and only a subset
may be caused by direct kidney infection by SARS-CoV-2,
making it difficult to draw broad conclusions about AKI in
COVID-19. Additionally, it is possible that direct viral
infection of kidney cells occurs later in the infection process
than was captured in this study. Subsequent studies will
investigate urinary cell changes over the course of illness
with sequential samples taken before, during, and after
AKI.
We successfully performed scRNAseq on urinary sedi-

ment from hospitalized patients with COVID-19. This
allowed for noninvasive studies of cellular changes occur-
ring during AKI, a frequent manifestation of COVID-19.
The urinary cell composition and upregulated pathways in
hospitalized patients with COVID-19 drastically differ in
those with AKI versus those without AKI. We also provide
preliminary evidence of a potential case of viral cystitis
through direct infection of urinary bladder cells. Analysis
of urinary cells may provide a useful avenue to under-
standing the pathophysiology and cellular alterations that
occur in kidney diseases.
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