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“Don’t await the perfection of Plato’s Republic,
but be content with the smallest step forward, and
regard that result as no mean achievement.” (Mar-
cus Aurelius, Meditations)

Artificial Intelligence and AKI: Vast
Opportunities for an Unresolved Problem

AKI is common in hospitalized adults and children,
with increased morbidity, mortality, hospital length of
stay, and healthcare costs (1,2). Although clinicians
have increasingly recognized the scale and effect of
AKI, significant challenges remain in reducing AKI
incidence and improving outcomes. AKI is a heteroge-
neous cluster of pathophysiologic processes that result
in the rise of serum creatinine and/or drop in urine
output. The diagnosis of AKI is often delayed by the
reliance upon these often late and inaccurate bio-
markers of kidney function (3). The various patho-
physiologies within the syndrome of AKI can stymie
both the clinician and the implementation of artificial
intelligence (AI) to improve recognition and out-
comes. AI uses the science of informatics to augment
human performance in the assessment and manage-
ment of disease. AI has multiple foreseeable uses in
the setting of AKI to improve patient care (Figure 1).
Future AI-based AKI endeavors should (1) focus on
the elimination of care and knowledge gaps identified
by both patients and clinicians, (2) design and validate
fair and equitable models for short- and long-term
AKI risk stratification, and (3) improve patient-
centered outcomes among AKI survivors. Beyond
direct patient care, AI has key roles in moving AKI

research forward and connecting the practicing clini-
cian with researchers and industry partners.

An Ounce of Prevention
The feasibility of employing AI in predicting AKI

has been shown in numerous care settings. Toma�sev
et al. (4) demonstrated the power of partnership
between researchers and industry (Google’s subsidi-
ary DeepMind) to leverage large datasets to create a
continuous prediction model of AKI in US veterans.
One major limitation of this study was the lack of
diversity in the study/validation patient population.
Koyner et al. (5) used electronic health record (EHR)
data to develop a prediction tool that can predict stage
2 AKI a median of 41 hours before a rise in serum cre-
atinine and the need for dialysis within 2 days. The
tool performed well across numerous adult care set-
tings and was also valuable in predicting AKI in
adults with pre-existing kidney disease, making its
use potentially applicable in multiple clinical scenarios
(5). Simonov et al. (6) implemented an AKI prediction
tool across several institutions that used the same
EHR in diverse settings. The model performed well at
predicting AKI within 24 hours and the need for dial-
ysis and mortality (6). Other groups have shown the
ability to reduce the time to AKI diagnosis in specific
clinical settings, including in adults with severe burn
(7) and acute pancreatitis (8), postoperative patients
(9–11), and patients with cardiac disorders (12,13).
Although such prediction tools have the potential to
enable care optimization and to mitigate ongoing
renal insults, investigators first need to demonstrate
that implementation of such tools is reproducible and
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improves meaningful patient-centered outcomes, and these
findings require external validation for broader application.
The dissimilarity in EHR systems makes this process chal-
lenging. Additional challenges to a wider implementation
strategy include substantial up-front costs across systems,
without demonstrable healthcare savings for the institution
and barriers to key stakeholder buy-in and utilization. As
models are increasingly validated in multiple systems,
some of these hurdles will be easier to clear. Further, sys-
tematic, actionable interventions supported by these risk-
prediction tools must also be rigorously tested before wide-
spread implementation.

An Inconvenient Truth: Not All AKI Is Preventable
Although prevention is enticing, many patients arrive to

the hospital with evolving AKI. However, AI can be lever-
aged to provide alerts within the EHR to notify providers as
soon as criteria are met and prompt the use of bundled care
measures to mitigate further kidney injury and promote
recovery. The feasibility of using AI to reduce the rate, dura-
tion, and intensity of AKI in progress and to reduce

morbidity, mortality, and hospital costs has been shown by
Al-Jaghbeer et al. (14). In this study, using automated clinical
decision support (CDS), patients with AKI had a slight but
significant reduction in mortality, hospital length of stay,
and dialysis requirements after implementation of the CDS
tool. However, not all studies using CDS/AI have demon-
strated improved outcomes. Recently, a 6030 adult patient,
double-blind, multicenter, parallel, randomized control trial
demonstrated that an EHR-based “pop-up” alert for AKI
with an associated order set did not improve a composite
end point of AKI progression, receipt of dialysis, or death
within 14 days (15). Future studies should attempt to use AI
and CDS to identify patients at high risk for AKI in a timely
fashion, but also pair this timely recognition with a series of
well-validated AKI interventions. Careful patient and out-
come selection, and balancing measures, including alert
fatigue, must be incorporated into the design of AI tools
meant to improve care. Best practices to use CDS in AKI
care have been recently reviewed elsewhere (16).
In children, the Assessment of Worldwide Acute Kidney

Injury, Renal Angina, and Epidemiology study demon-
strated the limitations of recognizing AKI without includ-
ing urine output criteria (17). Jin et al. (18) showed an

Figure 1. | The figure demonstrates the goals of the AKI!Now Artificial Intelligence Workgroup, which seeks to identify gaps in AKI care
that can be answered through artificial intelligence. The group will focus on issues/questions that will improve patient-centered outcomes
and improve clinical care. We will engage patients, clinicians, and researchers in the hope of improving the quality, accessibility, and
equity of care. AI, artificial intelligence.
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improvement in AKI recognition in patients who under-
went close monitoring and documentation of urine output
in the EHR. These findings highlight the potential for novel
device integration within the EHR to improve urine output
monitoring and allowing the inclusion of urine output cri-
teria within AKI alert tools, something that has been miss-
ing in other AKI predictive tools (4,5).
An even greater opportunity to influence care lies in AI’s

potential to prompt appropriate postdischarge follow-up for
patients at high risk of rehospitalizations, recurrent AKI, car-
diorenal complications, or other comorbidities after hospital
discharge. Growing evidence suggests that patients who
suffer an episode of AKI warrant not only kidney (19) but
also cardiac (20) monitoring. After adjusting for confound-
ers, patients with AKI have been shown to have an
increased risk of major adverse cardiac events, such as
stroke and heart failure, in the years after discharge (20–23).
Semler et al. (24) demonstrated the feasibility of AI to predict
major adverse kidney events by 30 days. Supervised
machine learning and data science could be deployed for
risk stratification of post-AKI complications, such as frac-
tures, heart failure, or progression to CKD, and could, there-
fore, guide evidence-based long-term follow-up without
overburdening patients or the healthcare system. Machine
learning is a type of AI in which the systems can adapt,
learn, and improve over time without following specific
instructions. A strength of supervised machine learning is
that data science can be leveraged to predict long-term out-
comes in a heterogeneous cluster of diseases, such as AKI,
rather than in a single disease process. This can be leveraged
further for research purposes to evaluate subphenotypes
within AKI, their respective long-term sequelae, and their
candidacy for personalized interventions (25,26). Wide-
spread implementation of AI tools is not without risk, how-
ever. The Epic Sepsis Model has been incorporated for use
in hundreds of US hospitals to identify patients with sepsis.
Peer review adjudication of the system has demonstrated
the overall suboptimal performance of the tool, thus
highlighting the need for rigorous design, testing, and itera-
tive process improvement of independent and external vali-
dation before implementation (27). Even after implementa-
tion, evolving clinical data are likely to warrant an iterative
approach to AI tools to keep apace with best practice.

The Kids Are Alright
Significant progress has been made in pediatric care along

the risk-stratification/prediction/alert/follow-up contin-
uum. In developing the Nephrotoxic Injury Negated by Just
in time Action (NINJA) alert program, Goldstein et al. (28)
demonstrated a sustained reduction in the development of
nephrotoxin-mediated AKI among hospitalized pediatric
patients. The program has since undergone multicenter vali-
dation, has been incorporated throughout numerous pediat-
ric centers, and has been expanded to the intensive care
(including neonatal and cardiac) settings (29). Owing to its
promising multicenter validation, NINJA has also been
adopted for nationwide implementation by the Children’s
Hospitals Solutions for Patient Safety program. One of the
strengths of the NINJA program is the ability for each center
to tailor its implementation to fit within its workflow and

structure, enabling flexibility for success in a variety of envi-
ronments, agnostic to software/hardware requirements.
Perhaps a more significant strength is the collaborative
nature of the program’s network, with centers routinely
sharing ideas and tools to improve clinical outcomes at pro-
grams throughout the country and updating the tool as
advancements in the understanding of nephrotoxin-
mediated AKI become available. The NINJA program has
also investigated balancing measures and demonstrated that
implementation of the stewardship program did not result
in an increase in mortality, sepsis-associated complications,
or increased length of stay. Importantly, we remain con-
vinced that the NINJA program will require further valida-
tion before implementation in adult populations.

Meanwhile, the renal angina index has been incorpo-
rated into the EHR of several pediatric intensive care units
to alert providers of patients at high risk of developing
AKI within 48 hours of admission (30). Matsuura et al. (31)
have demonstrated the potential utilization of the renal
angina index combined with urine biomarkers to predict
AKI in hospitalized adults who are noncritically ill, and
Ortiz-Soriano et al. (32) have recently demonstrated the util-
ity of a modified renal angina index to predict stage 2 or 3
AKI in adults who are critically ill. These efforts highlight
the potential collaboration between adult and pediatric pro-
viders in breaking down siloes to improve care in AKI
across the life span. Menon et al. (33) have also successfully
implemented an AKI alert tool to increase AKI recognition,
provide decision support, and improve bundle compliance
with Kidney Disease Improving Global Outcomes recom-
mendations in pediatric patients who are hospitalized. This
resource has also been implemented at other pediatric cen-
ters, with collaboration fostered through the NINJA net-
work. Quality improvement has been emphasized in many
of these efforts and has facilitated widespread implementa-
tion and buy-in throughout the pediatric community.
Along these lines, Mottes (34) has developed a dashboard
to incorporate machine data into quality improvement
work for acute RRT in children who are critically ill. The
development and implementation of quality assurance
systems for continuous RRT in the adult critically ill popu-
lation have also demonstrated sustainability in tracking
treatment deliverables and reducing filter resource utiliza-
tion (35). Incorporating dialysis machine data (blood flow
rates, machine pressures, etc.) into the EHR is feasible via
existing technology and can provide further data for super-
vised machine learning systems to improve care. Apart
from dialysis therapy, AI tools have the potential to recog-
nize patients who may benefit from dialysis initiation and/
or cessation, assist with anticoagulation therapy delivery
and monitoring, and prompt early recognition of dialysis
access issues, which could collectively trigger associated
best practice alerts to providers and effective dialysis deliv-
ery to patients.

Conclusions: The Pursuit of Perfection Is the Enemy
of Progress

Even small changes in clinical practice may have incredi-
ble effects on patient outcomes and healthcare costs. In
adults, AKI is estimated to cost the US healthcare system
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between $5.4 and $20 billion per year (36). This estimate
implies that, despite the relatively small effects on mortality
and length of stay reported in Al-Jahgbeer et al.’s (14) CDS
tools, widespread implementation throughout the United
States could save millions of dollars per year, not account-
ing for the cost of post-AKI care, which was not included
in these studies, or the effect of AKI on quality of life.
Health economists have described the possible significant
improvement in cost savings in the US healthcare system
with slight 1% incremental improvements (37). Implement-
ing such strategies along the continuum of AKI-related AI
resources, such as risk stratification and prediction, alerts,
decision support, and long-term follow-up, could substan-
tially improve patient outcomes and reduce the burden of
AKI on the healthcare system (38). Collaborative opportu-
nities exist throughout the clinical healthcare systems—
both within and between adult and pediatric centers—and
through partnerships with industry to make steady pro-
gress along these lines. The likelihood of finding a “one-
size-fits-all” approach is low, and we think we should
attempt one best tool for each one of these tasks: whether
AI based or not, each tool must be designed for its own
purpose and rigorously tested for sensitivity, specificity,
and accuracy.
In light of the growing recognition that AI-based algo-

rithms can, unfortunately, absorb and perpetuate racial
biases, care and intention needs to be present throughout
the design and validation phases to test and customize
these tools to serve multifaceted and diverse patient popu-
lations. Otherwise, AI tools are at risk of absorbing implicit
biases and perpetuating healthcare inequity, such as when
supervised machine learning risks obfuscating race with
specific social determinants of health. Conversely, super-
vised machine learning poses a potential strength in serv-
ing diverse populations because AI interventions have the
potential to be tailored to the populations they serve. Thus,

rather than implementing a general risk prediction or alert
tool, AI can foster individualized care. Our workgroup rec-
ommends that experts in healthcare equity and patients/
caregivers be involved early in the design and implementa-
tion phases of AI initiatives to capitalize on the potential
strengths of AI and avoid inequities in care.
The AKI!Now initiative of the American Society of

Nephrology (ASN) envisions a collaborative future within
pediatric and adult healthcare systems working together to
leverage basic science, data science, and quality initiatives
to improve early recognition and treatment of AKI and to
reduce the disease burden of individual patients and the
healthcare system as a whole (3). The AI Workgroup of the
AKI!Now initiative welcomes your ideas and collaboration
to improve the care we all provide as part of the medical
community. Our immediate and long-term goals are laid
out in Table 1. For more information or to get involved,
please reach out to EPC@asn-online.org or via https://
www.asn-online.org/aki!now/.
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Table 1. Short- and long-term goals for the AKI-NOW! Artificial Intelligence Workgroup

Short- and Long-Term Goals

Short-term goals (next 2 years)
Complete one to two AKI!Now webinars, which help define the current state of AI in AKI and set the stage for future

projects through:
Establishing and consolidating nomenclature including common data elements.
Identifying use cases for AI (risk assessment, drug dosing, RRT).
Proposing a framework for the development and validation of predictive models.

Establish a web-based platform for ASN members to ask questions, communicate with “AI experts,” and use resources
around AI tools (risk calculators, clinical decision support tools, etc.).

Use patient advocates to better understand which issues around the intersection of AI and AKI are important to patients and
caregivers.

Provide content for ASN’s Kidney Week and other nephrology meetings in 2021 and 2022.
Establish a clear position and plan to educate providers and patients on the role of implicit bias and algorithmic fairness in AI

and ensure future efforts work to eliminate biases and promote fairness/equity.
Long-term goals (2–5 years)
Establish a platform/collaborative network to test and validate novel AKI models and other AI tools. The first step in this

process must include working on benchmarking existing AKI predictive models across our institutions.
Partner with industry sponsors to support:

AKI!NOW platform, which can help distribute/implement validated tools.
Clinical trials to test tools.

Develop AI tools to establish baseline quality and cost-of-care metrics around AKI and acute dialysis patient care.

AI, artificial intelligence; ASN, American Society of Nephrology.
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