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Study on the cross‑linking process 
of carboxylated polyaldehyde 
sucrose as an anti‑wrinkle finishing 
agent for cotton fabric
Jiangfei Lou, Dan Wang & Xuerong Fan  *

Sucrose was oxidized in a two-step oxidation reaction catalyzed by 2,2,6,6-tetramethyl-1-
piperidinyloxy (TEMPO)-laccase and sodium periodate (NaIO4). To generate carboxylated 
polyaldehyde sucrose (openSu) containing multiple aldehyde and carboxyl groups. The amount 
of TEMPO and laccase used, as well as the temperature and reaction time were optimized for the 
oxidation reaction. The successful combination of aldehyde and carboxyl groups of openSu with 
cellulose was achieved by changing the composition, ratio of the catalyst and the curing conditions. 
Thereafter, we analyzed the structural characteristics of openSu as well as the aldehyde and carboxyl 
group content using nuclear magnetic resonance carbon spectroscopy (13C NMR). We found that the 
optimal finishing conditions were a mixture of magnesium chloride and sodium hypophosphite at a 
mass concentration ratio of 16 g/L:4 g/L, and curing at 150 °C for 3 min followed by curing at 180 °C 
for 2 min. There was significant improvement in the anti-wrinkle performance of the openSu-finished 
fabric, with a wrinkle recovery angle of 258°, whiteness index of 72.1, and a tensile strength rate of 
more than 65%. We also studied the covalent crosslinking mechanism between openSu and the cotton 
fabrics.

High-quality development is the trend of modern textiles, and it is also an effective way and the urgent need to 
improve the product grade and added value of the textile industry and reform the supply-side structure. This is 
due to improved living standards and high-paced working environments that demand high quality fabrics and 
clothing that are easy to take care of and have superior shape retention capacity1,2. Cotton fabrics are examples 
of textile fibers that are popular for their excellent properties such as softness, comfort, breathability, and good 
moisture absorption3,4. However, cotton products have poor resilience, large shrinkage, and are prone to wrin-
kling thus requiring frequent ironing. These cause a lot of inconveniences in the modern high-paced environ-
ment. Therefore, shape retention is a key attribute of high-quality cotton fabrics. The shape retention capacity 
of cotton fabrics can be improved by subjecting the fabrics to non-iron finishing processes5–7, an area of active 
research in the finishing of fabrics.

At present, etherified dimethyl dihydroxy ethylene urea resin (DMDHEU) is commonly used as an anti-
wrinkle finishing agent. However, the use of DMDHEU during the finishing process releases formaldehyde, 
which is an environmental pollutant and harmful to human health8–10. As a result, other anti-wrinkle agents 
such as polycarboxylic acid, amino silicone oil and epoxy resin have been developed. Unfortunately, the finish-
ing effects of the new agents are not as good as DMDHEU, and they are associated with significant loss in fabric 
strength1,3,5. Among the formaldehyde-free anti-wrinkle finishing agents, polycarboxylic acids have the greatest 
potential to replace urea–formaldehyde resins. This is because there has been a lot of research on polycarboxylic 
acids and widespread applications leading to their fast development. BTCA is a polycarboxylic acid that has 
attracted the most attention. However, high production costs, the pressure on the environment caused by the 
use of phosphorus-containing catalysts, and the significant loss of fabric strength associated with BTCA has 
limited its industrial applications1,11.

Sucrose is a disaccharide that is formed through the dehydration of one molecule of glucose and one molecule 
of fructose. According to previous studies, the primary hydroxyl group of cellulose can be selectively oxidized 
by the TEMPO-laccase system to obtain carboxyl cellulose12,13, while the adjacent hydroxyl group of the glucose 
ring can be selectively oxidized by sodium periodate to form dialdehyde derivatives14–18. Therefore, we designed 
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cross-linking agents based on the molecular structure and cross-linking mechanisms of polyaldehydes and poly-
carboxylic acids. The aim was to generate a new formaldehyde-free finishing agent that can be used to develop 
new anti-wrinkle methods and reaction systems.

In this paper, we analyzed the selective oxidation of carboxylated polyaldehyde sucrose (openSu) using 
TEMPO-NaIO4. The primary hydroxyl group of sucrose was first oxidized using the TEMPO-laccase system 
to form 6,6′-carboxy sucrose (oxySu). NaIO4 was then used to oxidize oxySu to produce openSu. The carboxyl 
and aldehyde composition of openSu was determined through potentiometric titration with NaOH, while the 
structural characteristics of openSu were analyzed using 13C NMR. We also evaluated the effects of different 
ratios of the components of the catalytic system, and curing conditions (temperature and time) on the wrinkle 
recovery angle (WRA), whiteness index (WI) and tensile strength (TS) of the fabrics. The effects of DMDHEU, 
glutaraldehyde (GA) and BTCA on the WRA, WI, TS and hydrophilicity (wetting time) of treated fabrics were 
also compared under different curing conditions.

Results and discussion
Effect of reaction conditions on the carboxyl groups content.  The primary hydroxyl groups of 
sucrose were first oxidized to aldehyde groups using the TEMPO system, and then further converted to carboxyl 
groups13,14,17. To explore changes in carboxyl group content in the TEMPO oxidation process, a single-factor 
optimization experiment was carried out. The reaction conditions are shown in Table 1. The changes in the car-
boxyl content of oxidized sucrose under different conditions are presented in Fig. 1.

Figure 1a shows the relationship between the concentration of TEMPO and the carboxyl group content of 
openSu. There was a significant increase in the number of carboxyl groups in openSu with increase in the amount 
of TEMPO. The carboxyl group content of openSu reached 1.2 mmol/g when the amount of TEMPO was 8 mg. 
This was because in the TEMPO oxidation system, the reduced TEMPO reacted with NaClO to generate nitrogen 
carbonyl cations (TEMPO+), which then further reacted with the primary hydroxyl groups of the sucrose16,19. 
According to the “effective collision” theory, increasing the amount of TEMPO increased the number of activated 
molecules per unit volume which in turn increased the effective number of collisions between tempo and sucrose 
per unit time. Consequently, more nitrogen carbonyl cations were produced leading to accelerated carboxyl 
formation during the oxidation process.

The carboxyl content of openSu was also affected by the amount of laccase as shown in Fig. 1b. There was a 
rapid increase in the carboxyl group content of openSu as the amount of laccase increased from 0.04 to 0.10 mg. 
This was because laccase had an important role in the formation of TEMPO+13,14. An increase in the amount of 
laccase accelerated the oxidation reaction, since more aldehyde groups were generated in the same reaction time. 
The generated aldehyde groups were further oxidized to carboxyl groups, thereby increasing the carboxyl group 
content of openSu. From this experiment, we found that the maximum carboxyl group content of 1.3 mmol/g 
was attained when the amount of laccase ranged from 0.10 to 0.12 mg.

The effect of the reaction temperature on the carboxyl content of openSu was ill in Fig. 1c. As the reaction 
temperature increased, the carboxyl content was also increased rapidly. This was because biological enzymes have 
their optimum reaction temperature, and the optimum temperature of laccase was 30–35 °C. At this temperature 
range, the carboxyl group content can reach the maximum value of 1.7 mmol/g14.

Figure 1d shows the effect of reaction time on the carboxyl content of openSu. The figure shows that there 
was an initial increase in the carboxyl group content as the reaction time increased but after a certain time 
point the content leveled off. During the first 60 min of the oxidation process, the carboxyl content of openSu 
increased rapidly and reached the maximum value (1.18 mmol/g). However, there was no significant change in 
the carboxyl content when the reaction time was extended to 90 min. This was because the number of directly 
accessible groups decreased, and increased steric hindrance prevented the combination of TEMPO+ with the 
primary hydroxyl groups, resulting in decreased oxidation rate.

Aldehyde groups content of openSu.  NaIO4 is an inorganic salt containing multiple aldehyde groups. 
In our previous study20,21, we successfully used NaIO4 to selectively oxidize dialdehyde sucrose (OSu). However, 
the aldehyde groups that were formed self-polymerized during the reaction process, thus reducing the final alde-
hyde group content of OSu. Therefore, we changed the molecular structure of OSu, by introducing the carboxyl 
groups to decrease the reaction between the aldehyde and hydroxyl groups, in this study. Figure 2 shows the 
aldehyde contents of openSu and OSu.

Form the Fig. 2, we see that the aldehyde content of openSu was 50.11 mmol/g according to Eq. (2), while 
the aldehyde content of OSu was only 28.14 mmol/g (Fig. 2). These finding indicated that the introduction of 
carboxyl groups through the TEMPO-laccase system reduced the polymerization of the aldehyde groups during 
the oxidation of NaIO4, and greatly increased the aldehyde group content of openSu.

Table 1.   Oxidizing conditions of the TEMPO system.

Factors Reaction conditions

TEMPO (mg/L) 10, 20, 30, 40, 50, 60

Laccase (mg/L) 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

Reaction temperature (°C) 20, 25, 30, 35, 40, 45

Reaction time (h) 1, 2, 3, 4, 5, 6
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Structural characteristics of openSu.  In the 13C NMR spectrum, carboxyl and aldehyde groups have 
characteristic chemical shift peak patterns. We compared the carboxyl and aldehyde group contents among 
sucrose, oxySu and openSu using 13C NMR spectrum analysis (Fig. 3), the oxidation mechanism was also shown 
in Fig. 3.

From Fig. 3a,b, the characteristic chemical shift at 177.60 ppm was attributed to the carboxyl group 
(–COONa), which was selectively oxidized by the TEMPO-laccase system13,14,22. At 57.60 ppm, the new peak 

Figure 1.   Effect of TEMPO factor (a), laccase factor (b), reaction temperature (c) and reaction time (d) on the 
carboxyl content of openSu.

Figure 2.   Aldehyde content of OSu (I) and openSu (II).
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was assigned to the CH2–O–C group, indicating that the C-6 aldehyde group had reacted with the primary 
hydroxyl group during the oxidation process. A comparison between Fig. 3b,c showed a characteristic chemical 
shift at 169.81 ppm which was attributed to the aldehyde group (–CHO) of openSu14,23. This proved that oxySu 
had been successfully oxidized using the NaIO4 selective oxidation system, and that the expected carboxylated 
polyaldehyde sucrose had been obtained.

Effect of the mass concentration ratio of MgCl2 and SHP.  Since openSu contains carboxyl and alde-
hyde groups, our aim was to combine all the groups with cellulose to improve the anti-wrinkle performance of 
the openSu-finished fabric. According to literature1,3,5,20, SHP catalyze the combination of carboxyl and hydroxyl 
groups, while MgCl2 catalyzes the combination of aldehyde and hydroxyl groups. Therefore, to catalyze the com-
bination of openSu and cellulose, a mixture of SHP and MgCl2 was selected. We then evaluated the anti-wrinkle 
property of the finished fabric when different mass concentration ratios of MgCl2 and SHP were used (the curing 
conditions was 3 min at 160 °C) (Fig. 4).

There was only a slight increase in the WRA (183° of openSu-finished fabric compared to 128 ± 5° of the 
control fabrics) of the finished fabric when the mass concentration ratio of MgCl2 to SHP was 0:20 g/L (Fig. 4a). 
This was because the aldehyde groups of openSu could not react with the hydroxyl groups of cellulose in the 
absence of MgCl2. A mass concentration ratio of 12 g/L:8 g/L significantly increased the WRA of the finished 
fabric to the maximum value of 253°. Under this condition, the aldehyde and carboxyl groups of openSu were 
able to fully combined with cellulose, and improve the wrinkle property of the finished fabric. On the other hand, 
a mass ratio of 16 g/L:4 g/L reduced the WRA of the fabric since there was a lack of sufficient SHP to catalyze 
the combination of the carboxyl groups of openSu with cellulose. There was also a significant reduction in WRA 
of the fabric when the mass concentration ratio was 20 g/L:0, since the carboxyl groups of openSu could not 
combined with cellulose.

Figure 4b shows the changes in WI and TS of the finished fabric as the ratio of MgCl2 to SHP changed. An 
increase in MgCl2 decreased the WI and TS of the fabric. This was because the presence of MgCl2 accelerated the 
combination of aldehyde groups and cellulose which increased the reaction rate of the hydroxyl groups in the cel-
lulose. In addition, the cellulose underwent dehydration and condensation to produce some colored substances, 
which reduced the WI of the openSu-treated fabric. During the finishing process of openSu and cellulose, the pH 
of the finishing solution was low (pH was 3–4), and the cloth surface pH of the finished fabric was also low. This 
resulted in non-uniform hydrolysis of cellulose during the curing process, which significantly reduced the TS.

Effect of the curing temperature and time.  Curing temperatures of 180 °C and 150 °C are required 
in the anti-wrinkle finishing of polycarboxylic acids and dialdehydes, respectively, while the curing time ranges 
from 1 to 3 min1,5,11. Since openSu fabrics have polycarboxylic acids and dialdehydes, curing at 150  °C and 
180  °C was required. Therefore, combination of the aldehyde and carboxyl groups of openSu with cellulose 
happened at 150 °C and 180 °C, respectively. This generated openSu that was fully combined with cellulose. The 
anti-wrinkle properties of openSu-finished fabrics under different curing conditions are shown in Table 2.

Figure 3.   13C NMR spectra of sucrose (a), oxySu (b) and openSu (c) and the oxidation process of sucrose.
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There was an increase in the WRA but a decrease in the WT and TS of the finished fabric when the cur-
ing time was increased at a constant temperature of 150 °C (Table 2). This was because the longer curing time 
allowed openSu to fully combined with cellulose, while the increased hydrolysis of the fabric at high tempera-
tures decreased TS. After curing at 150 °C for 3 min, the WRA of the fabric was higher. The finished fabric has 
a similar pattern when it is cured at 180 °C. When it was cured at 180 °C for 2 min, the WRA of the fabric was 
higher than the un-curied fabric. After openSu finishing, the fabric was cured separately at 150 °C for 3 min 
and 180 °C for 2 min, the WRA of the fabric was improved. These findings indicate that the MgCl2 and SHP-
catalyzed combination of the aldehyde and carboxyl groups of openSu with cellulose improved the anti-wrinkle 
properties of the openSu-finished fabric.

Calculated the P value of WRA statistical data of unfinished fabric, 150 °C finishing and 180 °C finishing fabric 
respectively, P1 was the P value of WRA of unfinished fabric and 150 °C finishing, P2 was the P value of WRA of 
unfinished fabric and 180 °C finishing, P3 was the P value of WRA of 150 °C finishing and 180 °C finishing, and 
P1 was 0.00003363, P2 was 0.000246, P3 was 0.006497. It was shown that the correlation between openSu finishing 
fabric and curing at 150 °C was higher than the correlation with curing at 180 °C, which was also related to the 
high content of aldehyde groups in openSu, which was the main crosslinking group. At the same time, P3 was 
more than 0.005, indicating that the correlation between 150 and 180 °C was not obvious. Therefore, the curing 
time at 150 °C should be longer than 180 °C.

Combining the WRA, WI and TS of openSu-finished fabrics with different curing temperatures and time in 
Table 2, we have concluded that the optimal curing method was two-steps curing methods, that was, curing at 
150 °C for 3 min and curing at 180 °C for 2 min.

Figure 4.   The effects of different mass concentration ratios for MgCl2 and SHP, on the WRA (a), WI and TS (b) 
of the finished fabrics.

Table 2.   Anti-wrinkle properties of treated cotton fabrics under different curing conditions.

Finishing agent 
(g/L) Catalysis (g/L) Curing condition Curing condition

WRA 
(warp + weft) (°) WI

TS (%)

warp weft

openSu = 80 SHP: MgCl2 = 4:16

1 min at 150 °C 1 min at 180 °C 226 ± 3 74.5 ± 0.3 72.3 ± 0.1 68.1 ± 0.4

1 min at 150 °C 2 min at 180 °C 235 ± 4 72.1 ± 0.2 67.5 ± 0.3 65.3 ± 0.5

1 min at 150 °C 3 min at 180 °C 241 ± 5 70.1 ± 0.4 64.6 ± 0.4 62.5 ± 0.3

2 min at 150 °C 1 min at 180 °C 249 ± 3 74.5 ± 0.3 70.1 ± 0.2 66.4 ± 0.2

2 min at 150 °C 2 min at 180 °C 253 ± 2 72.3 ± 0.5 68.2 ± 0.4 64.1 ± 0.3

2 min at 150 °C 3 min at 180 °C 258 ± 6 70.8 ± 0.6 63.4 ± 0.3 61.3 ± 0.5

3 min at 150 °C 1 min at 180 °C 242 ± 3 69.5 ± 0.4 67.2 ± 0.2 63.6 ± 0.3

3 min at 150 °C 2 min at 180 °C 258 ± 2 67.4 ± 0.5 65.3 ± 0.5 58.9 ± 0.6

3 min at 150 °C 3 min at 180 °C 260 ± 4 55.4 ± 0.3 55.1 ± 0.3 51.3 ± 0.4

3 min at 150 °C – 234 ± 5 72.6 ± 0.2 68.4 ± 0.5 63.2 ± 0.3

– 2 min at 180 °C 183 ± 3 82.6 ± 0.3 81.5 ± 0.4 75.7 ± 0.5

– – 128 ± 4 87.5 ± 0.5 100.0 100.0
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The effect of different finishing agents on the anti‑wrinkle performance of openSu.  We further 
analyzed the effects of BTCA, DMDHEU and GA on the anti-wrinkle properties of openSu-treated fabrics by 
comparing the WRA, WI, TS and wetting time of the finished fabrics. The anti-wrinkle finishing solution con-
tained BTCA, GA or DMDHEU and the corresponding catalyst (MgCl2 or SHP) in addition to 80 g/L openSu. 
The reference fabric was finished with water. The WRA, WI and TS of the finished samples were measured, and 
are shown in Fig. 5.

The WRA of openSu-treated fabric cured at 150 °C and 180 °C was 258°, which was almost similar to the 
WRA of DMDHEU and GA finished fabrics, but lower than that of BTCA-finished fabrics (Fig. 5a). This was an 
indication that the carboxyl and aldehyde groups of openSu cross-linked with the cotton fabric and imparted the 
anti-wrinkle properties through the two-step curing process4,5,11. From The WI of openSu treated fabric was 72.1, 
which was higher than those of GA (65.5) and BTCA (61.4) (Fig. 5b). This could be attributed to the dehydration 
and condensation of the finishing agent or the hydroxyl group of cellulose during the curing process to form 
unsaturated and colored compounds, which affected the whiteness of the fabric3,8,19.

The openSu-finished fabric had the shortest wetting time (less than 3 s), which was similar to the reference 
but much shorter than the wetting time of DMDHEU-, BTCA- and GA-treated fabrics (more than 42 s). This 
suggests that the higher the anti-wrinkle performance of the finished fabrics, the poorer the hydrophilicity per-
formance as seen with the BTCA, DMDHEU and GA finished fabrics. The short wetting time of openSu could 
be attributed to its molecular structure which contains reactive groups-aldehyde groups, carboxyl groups and 
hydrophilic groups-hydroxyl groups. The aldehyde and carboxyl groups were used as cross-linking groups to 
react with the hydroxyl groups of cellulose. During the reaction process, the hydroxyl groups of the cellulose 
were consumed, and at the same time, the hydroxyl groups of openSu were introduced into the cellulose. As a 
result, there was little change in the hydroxyl group content of the finished fabric, and the wetting time of the 
fabric was shorter than the other finishing agents. Therefore, openSu has obvious advantages in improving the 
WRA, WI, TS and hydrophilicity properties of finished fabric.

Fabric stiffness was one of the fabric hand feeling values, which represented the ability of textile materials 
to resist bending deformation. We compared the stiffness of the fabrics finished with different finishing agents 
(Fig. 6). In Fig. 6, the stiffness of openSu finished fabric was 5.65 cm, it is 1 cm longer than the reference, which 
was similar to that of the DMDHEU finished fabric. The stiffness of BTCA and GA finished fabric was 5.81 cm 
and 5.76 cm, similarly, the WRA of their finished fabrics was also higher. Combined with the WRA of their 
finished fabric, it can be inferred that the stiffness of the fabric was related to WRA, and the fabric with higher 
WRA had greater stiffness.

Crosslinking mechanism between openSu and cellulose.  Based on the results of 13C NMR and anti-
wrinkle finishing analysis, we proposed a possible crosslinking mechanism between openSu and cotton cellulose 
(Fig. 7). The SEM images of fabrics finished with oxySu and openSu are also shown in Fig. 7.

Figure 7I shows a scheme representing the combination of openSu and cotton fabric under different curing 
temperatures. From the scheme we see that there was some cross-linking between openSu and cellulose after 
curing at 150 °C for 3 min, and full cross-linking was achieved after curing at 180 °C for 2 min.

Figure 7II shows a scheme representing the combination between the aldehyde groups and carboxyl groups 
of openSu and hydroxyl groups of the fiber after the two curing processes. The aldehyde groups reacted with the 
primary hydroxyl groups in the fiber during the curing process at 150 °C, to confer some anti-wrinkle properties 
to the fabric4,8,9,22. At 180 °C, the carboxyl groups of openSu combined with cellulose5,11, to further improve the 
WRA of the finished fabric.

Figure 5.   The WRA (a), WI, TS and wetting time (b) of the finished fabrics.
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Figure 7III shows the SEM images of the cotton fabric treated using openSu in the two-step curing process. 
From the images, we see that the surface of the openSu treated fabric has obvious attachments, and that the 
surface of cellulose was rough. In addition, the number of attachments was higher in the openSu treated fabrics 
cured at 150 °C and 180 °C than in the openSu fabrics cured at only 150 °C. These findings indicated that there 
were two-step cross-linking reactions between the aldehyde and carboxyl groups with cellulose when openSu was 
cured at 150 °C and 180 °C. These reaction are the etherification addition reaction and esterification reaction6,15,21.

Conclusions
In this paper, openSu was successfully prepared through selective oxidation by the TEMPO-laccase and NaIO4 
system. Results of 13C NMR analysis showed that openSu had multiple aldehyde and carboxyl groups, which 
was a reflection of its high reactivity. This article focused on the effects of the catalytic system, and curing condi-
tions on the openSu-finished fabric. The optimal catalytic system was a mixed catalyst of MgCl2 and SHP, at a 
ratio of 16 g/L:4 g/L. The optimal curing conditions were 150 °C for 3 min followed by 180 °C for 2 min. Under 

Figure 6.   The stiffness of the finished fabrics with different finishing agents.

Figure 7.   Possible reaction mechanism (I, II), SEM images (III) of reference (A1, A2, A3), openSu (150 °C) (B1, 
B2, B3) and openSu (150 °C and 180 °C) (C1, C2, C3).
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these conditions, the aldehyde and carboxyl groups of openSu were fully cross-linked with cellulose, and greatly 
improved the anti-wrinkle performance of the finished fabric. The performance of the openSu-finished fabric 
was similar to that of DMDHEU and GA treated fabrics, but much lower than that of BTCA treated fabric. The 
hydrophilicity of the openSu-finished fabrics was higher than the other treated fabrics, but similar to that of the 
reference sample. Therefore, openSu has significant advantages in the anti-wrinkle finishing of cotton fabrics.

Experimental section
Material and methods.  Scoured and bleached cotton woven fabric (133 warp yarns and 100 wefts per 
10  cm, weighs 133  g/m2) was purchased from Shandong Lutai Group Co., Ltd. Zibo, China. Sucrose (Su), 
hydroxyl amine hydrochloride, magnesium chloride (MgCl2), sodium hypophosphite (SHP), NaIO4, and GA 
were purchased from Sinopharm Chemical Reagent Co., Ltd. Shanghai, China. TEMPO, Laccase (0.5U/mg), 
DMDHEU and BTCA were purchased from J&K Scientific Ltd. Beijing, China. All chemical reagents were of 
reagent grade.

Two‑steps selectively oxidation of openSu. 

(1)	 TEMPO-mediated oxidation of sucrose was carried out as previously described with slight 
modifications13,17,24. Briefly sucrose (1.026 g) was mixed with acetate buffer solution (200 mL, pH was 
adjusted to 5.0) in a thermostatic magnetic water bath using a stirrer for 2–3 h. Afterwards, 95% ethanol was 
used to stop the reaction and then the pH was adjusted to 7.0 using 0.5 mol/L HCl. A membrane separation 
system was used to remove TEMPO and laccase to obtain the 6, 6′-carboxy sucrose (oxySu) solution. The 
oxySu solution was freeze-dried to obtain oxySu powder.

(2)	 Selective oxidation of oxySu using NaIO4 was carried out as previously described with slight 
modifications7,15,16,21. OxySu (6.84 g) was mixed with deionized water (200 mL), stirred and bowled in 
nitrogen (N2) for 0.5 h to remove O2. The temperature of the solution was then adjusted to 10–15 °C, NaIO4 
added (12.80 g) and the mixture stirred for 20–24 h. After the reaction, BaCl2 (14.67 g) was added and the 
mixture stirred for an additional 30 min. The precipitate was filtered to obtain the openSu solution, which 
was freeze-dried to obtain the openSu powder.

Effect of TEMPO‑laccase reaction conditions.  The “single factor selection method” was used to deter-
mine the effect of oxidation reaction conditions on the TEMPO-laccase oxidation process. Four parameters 
including the amount of TEMPO and Laccase as well as the temperature and reaction time were studied. The 
optimal values for each parameter were determined and used in subsequent experiments.

Carboxyl group content.  The carboxylate content of openSu was determined through titration. OpenSu 
powder (0.25  g) was dissolved in 50  mL deionized water, and the pH of the solution adjusted to 2.5 using 
0.1066 mol/L hydrochloric acid standard solution. The solution was then titrated by adding 0.50 mL of 0.05 mol/L 
sodium hydroxide standard solution dropwise until an equilibrium was achieved. The pH value at this point was 
recorded. The volume of sodium hydroxide solution consumed during titration was taken as the abscissa, while 
the pH value was taken as the ordinate to draw a graph to obtain a curve with two break points. The first break 
point corresponded to the volume of the sodium hydroxide solution V1 (mL), and the second break point was V2 
(mL). The total carboxyl group content A (mmol/g) was calculated using the following formula:

where nNaOH was the concentration of NaOH (mol/L), and W was the weight of openSu.

Aldehyde group content.  Hydroxylamine hydrochloride-point titration was used to measure the alde-
hyde group content of openSu. OpenSu (0.100 g) powder was mixed with 25 mL of 0.25 mol/L hydroxylamine 
hydrochloride solution, followed by the addition of 2 drops of 0.05% methyl orange solution. The mixture was 
left to stand for 2 h to allow all the components to fully dissolve. The mixture was then titrated using 0.1 mol/L 
NaOH solution. The titration was stopped when the solution turned from red to yellow (pH about 4), and the 
volume ΔV of NaOH consumed recorded. The aldehyde content of openSu (mmol C = OH/g openSu) was cal-
culated using Eq. (2):

where ΔV was the volume of NaOH (mL) consumed, nNaOH was the concentration of NaOH (mol/L), w was the 
weight of openSu.

13C NMR analysis.  Sucrose (20 mg), oxySu and openSu were dissolved in 550 μL deuterium water (D2O), 
and then nuclear magnetic resonance (13C-NMR) detection carried out using a Bruker AduanceIII 400 MHz 
nuclear magnetic resonance spectrometer. The internal standard was tetramethylsilane (TMS).

Anti‑wrinkle finishing of cotton fabric.  The finishing solution was prepared by mixing a certain con-
centration of openSu anti-wrinkle finishing solution with penetrant JFC-2 10  g/L and polyethylene softener 
10 g/L. Different mass concentration ratios of the catalyst MgCl2 and NaH2PO2 were used to give a total mass 
concentration of 20 g/L.

(1)A = (V2 − V1)× nNaOH/W

(2)B = ∆V × 0.001× nNaOH/w
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The finishing process as follow: padding finishing solution (two dipping and two rolling, dipping temperature 
25 °C, wet pick-up was 85–90%) using a two-bowl horizontal laboratory padder (Yalinuo, Guangzhou, China), 
and drying at 80 °C for 3 min), then curing at different curing conditions.

WRA analysis.  The WRA of the treated fabric was determined according to the AATCC Test Method 
66-2003 “Textile fabric crease recovery measurement method of recovery angle”. Using 5 warps and 5 wefts, and 
the data was presented as the average of three sets of data.

WI analysis.  The WI of the finished fabric was determined according to AATCC Test Method 110-2005 
“Textile Color Fastness Test Relative WI Instrument Evaluation Method” using a Datacolor 650® Bench top spec-
trophotometer. The average value was taken after 5 measurements.

TS analysis.  The strength of the fabric was determined according to ASTM Testing Method D-1424-1996 
“Testing Method for the Breaking Strength and Breaking Elongation of Woven Fabrics”, using the HD026NS elec-
tronic fabric strength tester. The fabric was cut into a length of 250 mm ± 0.5 mm and a width of 50 mm ± 0.5 mm. 
TS was calculated according to the following formula (%):

where Tt was the tensile strength (cN) of finished fabric and Tu was the tensile strength (cN) of unfinished fabric.

Hydrophilicity analysis.  The hydrophilicity of the finished product was determined according to AATCC 
79-1995. A drop of water was dropped on 5 randomly selected points of the fabric, and the time taken for the 
droplet to disappear recorded. The average value for the 5 points was calculated and was considered to be the 
wetting time of the fabric.

SEM analysis.  The finished fabric was dried and then sprayed with gold. SEM analysis was carried out using 
the SU1510 scanning electron microscope (Hitachi, Suzhou, China). The acceleration voltage was set at 5 kV, and 
the fiber surface morphology was observed at a magnification of 1000 times.

Stiffness analysis.  According to standards of test methods “ISO 9073-7-1995 Textiles—Test methods for 
nonwovens—Part 7: Determination of bending length”, the stiffness of the finished fabrics with different finish-
ing agents were measured.
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