Table 2.
Comparison of features in the SCTK-QC pipeline with other single-cell analysis toolkits.
SCTK | PIVOT | Seurat | ascend | scRNABatchQC | Adobo | SCONE | SCHNAPPs | iS-CellR | Ganatum | ASAP browser | |
---|---|---|---|---|---|---|---|---|---|---|---|
Input format | |||||||||||
10x CellRanger | ✓ | ✓ | ✓ | ✓ | |||||||
SCE Object | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||
Seurat Object | ✓ | ✓ | |||||||||
AnnData | ✓ | ✓ | |||||||||
LOOM | |||||||||||
BUStools | ✓ | ||||||||||
SEQC | ✓ | ||||||||||
STARSolo | ✓ | ||||||||||
Optimus | ✓ | ||||||||||
DropEst | ✓ | ||||||||||
CSV, TXT, and MTX | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
RSEM | ✓ | ||||||||||
Ambient droplets detection | ✓ | ||||||||||
General QC Metrics | |||||||||||
Total counts | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Number of features detected | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Gene set count (e.g mitochondrial) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Doublet detection | |||||||||||
scDblFinder | ✓ | ||||||||||
Scrublet | ✓ | ||||||||||
doubletFinder | ✓ | ||||||||||
cxds | ✓ | ||||||||||
bcds | ✓ | ||||||||||
cxds/bcds hybrid | ✓ | ||||||||||
Shiny App/interactive | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
docker | ✓ | ✓ | ✓ | ✓ | |||||||
HTML Report | ✓ | ✓ | ✓ | ✓ | |||||||
Output format | |||||||||||
RDS | ✓ | ✓ | ✓ | ✓ | |||||||
AnnData | ✓ | ||||||||||
hdf5 | ✓ | ✓ | |||||||||
.txt Flatfile | ✓ | ✓ | |||||||||
pickle | ✓ | ||||||||||
joblib | ✓ |
SCTK-QC pipeline supports various types of input, full scRNA-seq quality control pipeline and supports common data structures for data storage.