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Abstract

Enantioselective Cu-catalyzed C–O cross coupling reactions yielding atropisomeric resorcinol-

bearing quinazolinones have been developed. Utilizing a new guanidinylated dimeric peptidic 

ligand, a set of products were generated in good yields with excellent stereocontrol. The 

transformation was readily scalable and a range of product derivatizations were performed.

Graphical Abstract

The selective functionalization of complex, multifunctional compounds is a frontier for 

both the fields of catalysis and medicinal chemistry, where there is a premium on (a) 

synthetic efficiency, (b) management of complex stereochemical issues, and (c) the creation 

of diversified scaffolds that interact selectively with complex biological targets.1 In this 

way, there is also a heuristic intersection between complex bioactive molecules like 

vancomycin, a potent antibiotic (Figure 1A) and enantiomerically pure scaffolds that exhibit 

isolable atropisomers (Figure 1B), wherein restricted rotation about a single bond defines 

functionally consequential stereogenicity.2 Research in our group began to address both 

of these challenges, with a particular emphasis on atroposelective halogenation.3 Metal-

catalyzed cross coupling also creates powerful opportunities for scaffold diversification,4 

and we have further examined these in the context of vancomycin and teicoplanin.5 In 

preliminary model studies of site-selective cross couplings, we also recently discovered a 

family of desymmetrization reactions based on peptidyl Cu-complexes (Figure 1C).6 These 
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reactions built on previous pioneering studies of other Cu-catalyzed cross couplings.7–10 

Our group reported highly enantioselective transformations for the privileged diarylmethane 

scaffold, but these studies do not provide a direct analogy to the challenges embedded within 

vancomycin, nor smaller molecules that bear atropisomeric axes. Moreover, these studies 

focused on site-selectivity within a bis(electrophilic) substrate. Accordingly, we wished to 

examine whether resorcinol-based functionality, which presents the site-selectivity challenge 

within a bis(nucleophilic) fragment, is amenable to enantioselective C–O bond-forming 

cross coupling with the peptidyl Cu-complexes we had developed.11 Herein, we describe 

unprecedented Cu-catalyzed atroposelective desymmetrizations of resorcinols within the 

biologically relevant quinazolinone scaffold (Figure 1D), grounding the viability of the 

approach for future examination within even more complicated structures.

At the outset of our investigation, we selected the resorcinol bearing quinazolinone 

1a for the optimization of the atroposelective Cu-catalyzed desymmetrization reaction. 

We first explored the use of tetrameric guanidinylated peptidic ligand L*, which was 

previously found to be successful in the C–O cross coupling of diarylmethanes.6b Using 

L*, quinazolinone 1a and arylbromide 2a were subjected to the reaction conditions shown in 

Figure 2 to give 3a in a promising 35% yield and 86:14 e.r. Arylbromide 2a was carefully 

selected to be the corresponding coupling partner as the trifluoroacetamide group serves as 

a directing group. After assessment of the reaction parameters, the optimal conditions were 

found to be CuI, truncated dimer L1, and Cs2CO3 in DMF at 40 °C for 48 h (59% yield, 

95:5 e.r., Table 1, entry 1). To summarize our optimization efforts, a series of variations from 

the standard reaction conditions were performed to indicate their effects on the efficiency of 

the transformation (Table 1).12

Utilizing other copper catalysts (CuBr and Cu(MeCN)4PF6) yielded 3a in comparable 

selectivity, but lower yields (53% and 51% respectively, Table 1, entries 2 and 3). 

Employing another sterically encumbered peptidic dimer ligand L2 gave the cross coupled 

product in significantly lower yield and selectivity (22% yield and 85:15 e.r., entry 4). 

Additionally, using another dimeric ligand L3 gave lower yield and slightly lower e.r. 

(entry 5). Interestingly, using K2CO3 or K3PO4 as the exogenous base did not generate 

any appreciable product, suggesting that the solubility and strength of the base plays a 

critical role in promoting the reaction (entries 6 and 7). A 1:1 mixture of DMF/PhMe, which 

was successful in our previous C–C cross coupling studies, led to 3a in lower yield but 

comparable e.r. (entry 8).6a Unlike the studies found by Ma and coworkers where H2O was 

found to be instrumental in providing high yield and enantioselectivity, the addition of water 

led to no observable product.8c Increasing the temperature to 60 °C led to lower yield due 

to nonproductive pathways such as protodemetalation of 2a (entry 10). Lastly, attempts to 

broaden our scope to include arylchlorides were ineffective as no product was observed 

(entry 11).

With the optimized conditions affording 3a in 59% yield and 95:5 e.r., we investigated 

the substrate scope of this reaction (Figure 3). Unsubstituted arylbromide 2b provided 3b 
in similar yield and excellent enantioselectivity (54% yield, 94:6 e.r.). The structure of 3b 
was unambiguously determined by single crystal X-ray crystallography.13 Electron deficient 

quinazolinone 1c was found to be effective in the reaction as it provided higher yields 
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with comparable enantioselectivity (3c, 62% yield, 93:7 e.r.). Additionally, nitro-substituted 

arylbromide 2d which could be used as a future synthetic handle was tolerated in good yield 

and selectivity (3d, 51% yield, 91:9 e.r.). In the absence of an ortho-directing group, other 

halogen substituents are preserved in the transformation (3e). Notably, aza-quinazolinone 

(1f) was proficient in the reaction giving the respective cross coupled product 3f in 53% 

yield and 91:9 e.r. Electron rich arylbromides yielded the desired products in good yield and 

excellent enantioselectivity (3g and 3h). A limitation in this transformation is the tolerability 

of the arylbromides, wherein electron withdrawing substituents stunted the reactivity.14 

Changing the −R2 group to a slightly larger group such as ethyl gave the product in 

comparable yield (3i). Unfortunately, other large groups including isopropyl, or benzyl were 

not tolerated in the reaction. Demonstrating the scalability of this transformation, model 

quinazolinone 1a (2mmol) underwent the title cross coupling to yield 3a in comparable 

yield and selectivity (54% yield and 94:6 e.r.). Interestingly, other nitrogen directing groups 

including acetyl or tosyl were incompatible with the transformation. We postulate that 

the trifluoromethyl acetamide group provides the appropriate pKa range necessary for the 

reaction.

Finally, product derivatization studies were undertaken to assess the synthetic utility of 

the enantioenriched quinazolinones using product 3a (Figure 4). Utilizing the remaining 

hydroxyl group, a SNAr reaction with ethyl 2-chloropyrimidine-5-carboxylate furnished 4 
in excellent yield and retention of stereochemistry. Additionally, exploiting the electron rich 

nature of the resorcinol, we were able to access dibrominated 5 in 90% yield and 95:5 e.r. 

Deprotection of the trifluoromethyl acetamide, which served as a directing group in our 

asymmetric reaction, was achieved in excellent yield (6, 92% yield, 92:8 e.r.). The pendant 

hydroxyl group on 3a could also be removed via reductive coupling in moderate yield while 

retaining the enantioselectivity (7).

Analogous to the reports by the Ma group using ionic ligands,15 the Cu-catalyzed cross 

coupling reaction likely proceeds through the generation of bidentate Cu-based catalyst A 
(Figure 5). Then, deprotonation of 2 by Cs2CO3 gives the trifluoroacetimidate 2’, which 

directs the oxidative addition leading to the formation of B. Afterwards, atroposelective 

coordination would give C and deprotonation of one hydroxyl group would give D. Then 

product-forming reductive elimination releases 3 and regenerates the active catalyst A. An 

alternative order of events, demonstrated by Hartwig and coworkers for related reactions 

with neutral ligands on the Cu-center,16 might also be considered and has not been 

experimentally excluded.

In conclusion, we have developed an atroposelective Cu-catalyzed C–O cross coupling 

reaction utilizing a guanidinylated peptidic ligand to form functionalized quinazolinones. 

The reaction was found to tolerate a range of functional groups including other halogens 

and heterocycles in good yield and excellent enantioselectivity. To demonstrate the synthetic 

utility of the products, we performed a diverse set of derivatizations. These findings set the 

stage for late stage functionalizations in highly complex molecular environments, which we 

are now actively investigating.
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Figure 1. 
Overview of Bioactive Molecules and Enantioselective Cu-Catalyzed Ullman Coupling
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Figure 2. 
Cu-Catalyzed C–O Cross Coupling of Quinazolinone: Initial Hit
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Figure 3. Cu-Catalyzed C–O Cross Coupling: Substrate Scopea

a Reactions run on 0.2 mmol scale. Isolated yields.
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Figure 4. Derivatization of Quinazolinone 3aa

a Reactions run on 0.1 mmol scale. Isolated yields.
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Figure 5. 
Postulated Mechanism for the Cu-Catalyzed C–O Cross Coupling
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Table 1.

Atroposelective Cu-Catalyzed C–O Cross Coupling: Variation from the Standard Reaction Conditions
a

Entry Variation from “standard conditions” Yield 2a (%)
b,c e.r. 3a

1 None (59) 95:5

2 CuBr instead of CuI 53 95:5

3 Cu(MeCN)4PF6 instead of CuI 51 93:7

4 L2 instead of L1 22 85:15

5 L3 instead of L1 26 92:8

6 K2CO3 instead of Cs2CO3 Not observed -

7 K3PO4 instead of Cs2CO3 Not observed -

8 DMF/PhMe (1:1) instead of DMF 38 95:5

9
d DMF/H2O instead of DMF Not observed -

10 60 °C instead of 40 °C 50 93:7

11 ArCl instead of ArBr Not observed -

a
Reactions run on 0.2 mmol scale.

b
Determined by 1H NMR analysis of the crude reaction mixtures using trimethyl benzene-1,3,5-tricarboxylate as internal standard.

c
Isolated yields in parenthesis.

d
5μL of H2O was added.
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