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Abstract
Accurate germplasm characterization is a vital step for accelerating crop genetic improvement, which remains largely infeasible
for crops such as bread wheat (Triticum aestivum L.), which has a complex genome that undergoes frequent introgression and
contains many structural variations. Here, we propose a genomic strategy called ggComp, which integrates resequencing data
with copy number variations and stratified single-nucleotide polymorphism densities to enable unsupervised identification of
pairwise germplasm resource-based Identity-By-Descent (gIBD) blocks. The reliability of ggComp was verified in wheat cultivar
Nongda5181 by dissecting parental-descent patterns represented by inherited genomic blocks. With gIBD blocks identified
among 212 wheat accessions, we constructed a multi-scale genomic-based germplasm network. At the whole-genome level, the
network helps to clarify pedigree relationship, demonstrate genetic flow, and identify key founder lines. At the chromosome
level, we were able to trace the utilization of 1RS introgression in modern wheat breeding by hitchhiked segments. At the single
block scale, the dissected germplasm-based haplotypes nicely matched with previously identified alleles of “Green Revolution”
genes and can guide allele mining and dissect the trajectory of beneficial alleles in wheat breeding. Our work presents a model-
based framework for precisely evaluating germplasm resources with genomic data. A database, WheatCompDB (http://wheat.
cau.edu.cn/WheatCompDB/), is available for researchers to exploit the identified gIBDs with a multi-scale network.
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Introduction
With the advances in plant genomics, assembling crop
genomes using genomic resources carrying favorable pheno-
types has been proposed and explored in crop breeding pro-
grams (Jia et al., 2017). Identifying the inherited pattern
within crop species and the genomic segments that have
been widely selected with preferred phenotypes from culti-
vars and landraces during historical breeding is an important
way to thoroughly evaluate the existing germplasm resour-
ces and lay the foundations of future breeding (Bevan et al.,
2017). By combining large-scale high-throughput genomic
data and phenotype information with various methods,
germplasm resource haplotypes carrying important variation
in many crops like rice (Oryza sativa L.; Xie et al., 2010;
Zhang et al., 2021), maize (Zea mays L.; Zhang et al., 2018;
Coffman et al., 2020; Haberer et al., 2020), soybean (Glycine
max [L.] Merr.) (Kim et al., 2014), and wheat (Pont et al.,
2019; Hao et al., 2020) has been identified. And genomic-
based germplasm networks are gradually attracting attention
as a useful tool to solve complex relationships among germ-
plasm resources (Haberer et al., 2020). However, there still
exists a confusion about which analytical tools and genotyp-
ing approaches to employ, which could limit the amount of
information effectively retrieved from complex genomic
datasets. Some previous studies based on single-nucleotide
polymorphism (SNP) array (Zhang et al., 2018), Genotyping-
by-Sequencing (GBS; Romay et al., 2013), or Whole-
Genome-Sequencing (Kim et al., 2014; Coffman et al., 2020)
data tended to use ad hoc thresholds for pairwise sequence
differences to identify haplotypes. Although they could iden-
tify haplotypes shared among samples, the performance and
accuracy robustness are unclear because of a lack of statisti-
cal support. Some studies (Balfourier et al., 2019; Hao et al.,
2020) applied Identity-By-Descent detection algorithms
which were initially developed in human study, like Beagle/
RefinedIBD (Browning et al. 2013) or Plink (Purcell et al.
2007). These algorithms are restricted to pair-wise sample
comparisons, which is hard to apply to large sample sets. A
recent method, hap-IBD (Zhou et al., 2020), was developed
for inferring haplotype-sharing IBD in large sample sets with
improved efficiency and accuracy. However, it requires the
genetic map as input, which hinders its application in vari-
ous species. Sequence identity generated by pairwise assem-
bled sequence-alignment has also been used to identify
shared haplotypes in crops like wheat (Brinton et al., 2020)
and maize (Haberer et al., 2020), but these strategies rely on
chromosome-scale genome assemblies and were not suitable
for studies at population level.

As a typical self-pollination crop, wheat has a homozygous
genome with a high level of linkage disequilibrium (LD; Hao
et al., 2020) and frequent genomic structure variations. A
multiple-wheat genome comparison study showed that
�12% genes were the result of presence/absence variations
(PAVs) and that 26% genes were the result of tandem dupli-
cation variations (Walkowiak et al., 2020). Moreover, the
wheat genome is plagued with nonrandomly distributed

high-density SNP blocks (Thind et al., 2018), which have
been revealed to be the result of frequent interspecies intro-
gression (Cheng et al., 2019; He et al., 2019). The most repre-
sentative example is the 1RS chromosome from the rye
(Secale cereale L.) genome, which has multiple translocation
types used in modern wheat breeding (Wang et al., 2017).
Taken together, genomic segments with nonrandomly dis-
tributed SNP and pervasive structural variations required a
more suitable method to unravel underlying haplotypes and
find their connections in wheat. Thus a proper statistical
model is needed to distinguish variations generated during
hundreds years of breeding or thousands years of
domestication.

Here, we propose a statistical model-based method, geno-
mic-based germplasm compare (ggComp), by combining
the frequent genomic loss and the stratified SNP density to
evaluate wheat germplasm resources in a pairwise manner.
We showed that ggComp can precisely track the inheritance
of genomic regions in accordance with recorded pedigrees
and demonstrated low recombination frequencies during
modern breeding. To unravel the germplasm utilization net-
work during modern wheat breeding, we constructed a
wheat germplasm network that can complement recorded
pedigree information, help discover hidden relationships,
and identify key founder lines or exotic lines. With inferred
shared germplasm genomic blocks on chromosome 1BL, we
discriminated the large introgression from rye and showed
that all the tested Chinese accessions with the 1RS�1BL
translocation can be traced back to Lovrin10 and
Aimengniu. We then proposed an Markov Clustering
(MCL)-based strategy to identify haplotypes at the germ-
plasm level in a binwise manner, and dissected the haplo-
types of the “Green Revolution” genes and investigated the
origin and utilization of semi-dwarf alleles. We also found
that Ppd-D1a was more preferred among Chinese cultivars
(CNCs) than Chinese landraces (CNLs). This work aims to
provide an effective framework for characterizing wheat
germplasm and directing future breeding design.

Results

Resequencing panel of representative wheat
accessions
With 26 instances of new sequencing data and 186 acces-
sions selected from published resequencing data (Cheng
et al., 2019; Guo et al., 2020; Walkowiak et al., 2020), we
composed a representative panel of 212 worldwide wheat
accessions (Supplemental Figure S1; Supplemental Table S1).
The average sequencing depth was 6.07� . Reads were
mapped to the reference genome (IWGSC RefSeq version
1.0; International Wheat Genome Sequencing Consortium,
2018) and biallelic SNPs were selected by filtering the minor
allele frequency (MAF) at 1%. We identified more than
76.96 million SNPs and average value of heterozygosity rate
was 2.5%, which is consistent with the self-pollination nature
of wheat. Saturation analysis showed a coverage depth of
6� was able to recover 90.8% of homozygous SNPs in the
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wheat genome (Supplemental Figure S2). Thus, these identi-
fied SNPs could satisfy a comprehensive genome-wide inves-
tigation of genetic polymorphisms.

Frequent and pervasive genomic deletion blocks in
wheat accessions
To fully evaluate the genetic diversity in wheat varieties, we
identified copy number variation (CNV) blocks and investi-
gated the polymorphisms between pairwise accessions. The
normalized average coverage depths in 1-Mbp bins were
used to identify CNV blocks (Supplemental Figure S3). A to-
tal of 5,566 Mbp of CNV blocks (39.5%), comprising 4,178
Mbp of deletion blocks (29.7%) and 2,167 Mbp of duplica-
tion blocks (15.4%), were detected in at least one accession
(Figure 1A), which is consistent with previous estimations
using a high-density SNP array (Balfourier et al., 2019). For
samples harboring the 1RS�1BL translocation, the entire
short arm of chromosome 1B could be detected as consti-
tuting CNV-deletion blocks due to poorly aligned sequences
oriented from rye genomes to the reference genome
(Rabanus-Wallace et al., 2021; Supplemental Figure S4). The
B subgenome had the highest frequency of CNV-deletion
blocks, even after excluding the 1BS chromosome consider-
ing the potential impact of the 1RS�1BL translocation, while
the D subgenome had the lowest frequency (Figure 1B). A
similar trend was observed for CNV-duplication blocks, al-
beit at much lower frequency (Supplemental Figure S5). The
CNV-deletion blocks tended to gather at chromosomal ex-
tremities and this broadly distributed pattern of CNV-
deletion blocks (Supplemental Figure S6) indicated that fre-
quent loss of genomic segments is an ongoing process for
neo-polyploid wheat with a redundant genome. A CNV
block-based phylogenetic tree showed that most CNCs were
more closely related to foreign accessions than to CNLs
(Supplemental Figure S7). A shared CNV-deletion block cor-
responding to the 1RS�1BL translocation was found in 18
CNCs and 1 foreign accession but not in any CNLs
(Supplemental Figure S7), which was consistent with the un-
derstanding that the 1RS translocation was introduced from
a few European elite accessions (Yang et al., 2004). The high
occurrence of CNV blocks across wheat accessions indicated
that structural variations should be considered when assess-
ing the genetic differences among wheat accessions.

Genome-wide characterization of genetic diversity
reveals stratified genetic distances in genomic
blocks
After excluding the identified CNV blocks, we randomly
chose 300 accessions pairs from all accession pair to profile
genetic diversity by calculating the different SNP ratios
(DSRs) in 1-Mbp bins across whole genome (Figure 1C;
Supplemental Figure S8A). The log-DSR distribution showed
stratified densities of polymorphisms. We further selected
accession pairs of 212 accessions with their top 2 nearest
accessions by calculating Identical-By-State (IBS) genetic dis-
tances to analyze the distribution of DSRs in 1-Mbp bins

across genome. Interestingly, compared with random se-
lected accessions pair, the log-DSR distribution of accession
pairs with close IBS-distances emerged a new peak
(Figure 1D; Supplemental Figure S8B). Accordingly, we ap-
plied the expectation–maximization (EM) algorithm for the
Gaussian mixture model to dissect the mixture distribution
into three components: high-, mid-, and low-density differ-
ential SNPs. For example, the majority of the 1A chromo-
some between the two sibling lines Bima1 and Bima4 was at
low-density levels (Figure 1F), while the distance between
Bima4 and Chinese Spring (CS) was at a mid- or high-
density level (Figure 1E). The distribution differed among
chromosomes, while these levels tended to remain
unchanged across chromosomes (Supplemental Figures S9
and S10). Considering that differential frequency at low-
density level is �1 per 100 kbp, which is likely to have accu-
mulated during the recent modern breeding process or to
have resulted from sequencing error, we reasoned that these
low-density regions shared the same germplasms for acces-
sion pairs. The mid- and high-density levels corresponded to
the different germplasms. Taken together, our results
showed that bin-wise DSR values could be used to discrimi-
nate chromosome segments as similar or different germ-
plasm resources for breeding.

Unsupervised method to identify shared genomic
resource blocks between wheat accessions
To identify the shared genomic blocks between wheat acces-
sions under a genetically stratified background, we proposed
ggComp as an unsupervised method that integrates the EM
algorithm and hidden markov model (HMM) algorithm.
ggComp combines the identified CNV blocks and binwise
DSRs to classify genomic bins into six main categories:
Shared Genomic resource Regions (SGRs), polymorphism
hotspot regions (PHRs), sample-specific CNV-deletion
regions, sample-specific CNV-duplication regions, shared
CNV-deletion regions, and shared CNV-duplication regions
(Figure 1G). The SGRs and shared CNV regions were consid-
ered as germplasm resource-based Identity-By-Descent
(gIBD) blocks in this research.

The CNV blocks were first identified for each accession
against the reference genome and further distinguished as
accession-specific CNV blocks or shared CNV blocks within
accession pairs. After excluding CNV blocks, DSR values
were calculated for all pairs of accessions in nonoverlapping
1-Mbp windows across chromosomes. The initial threshold
used to distinguish PHRs and SGRs were determined based
on the density distribution of DSR across all accession pairs
with top two closest genetic distance of each accession cal-
culated PLINK (Purcell et al., 2007) and decomposed by the
EM algorithm. The regions at low-density level of stratified
DSRs represented SGRs and the regions at mid- and high-
density levels represented PHRs. The stratified DSR profiles
for Bima4 versus CS (Figure 1E; and Supplemental Figure S9)
and Bima4 versus Bima1 (Figure 1F; Supplemental Figure
S10) indicated that the results were robust enough to
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unravel genomic relationships between wheat varieties. To
reduce potential mistakes introduced by hard thresholds
with noise signals, we applied a HMM-based smoothing step
and generated final gIBD profiles with soft-corrected PHRs
and SGRs (Supplemental Figure S11). Compared with the
raw ones, the polished PHRs and SGRs were more consecu-
tive and less likely to be affected by stochastic classification
error from independent windows (Supplemental Figure S12).
Finally, all 1-Mbp windows were annotated via nine different
categories for each accession pair. The ggComp pipeline was

developed as an open-source command-line tool that can
be accessed at https://zack-young.github.io/ggComp/.

Identification of parental descending genomic
regions of the wheat cultivar Nongda5181 utilizing
gIBD
Beyond the traditional pedigree information, there is a need
to track the inheritance patterns of haplotypes in breeding
pedigrees which could help to visualize the dynamics of
chromosomal recombination and identify optimal parents
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for crosses that contain desired combinations of features
(Zhou et al., 2016). The genomic distribution pattern of
Nongda5181, a CNC released nationwide in 2017, as derived
from its parental lines was inferred by utilizing ggComp. Five
lines were included in this study, while the seeds of
Nongda3197 and Shandongdasui were not preserved
(Figure 2A). We first identified gIBD on Nongda5181 inher-
ited from its parental lines Nongda3097 and Nongda987.
The results showed that 65% of genome blocks were gIBD
between Nongda5181 and Nongda3097 (Figure 2B;
Supplemental Figure S13), including 8,679 Mbp of SGRs and
408 Mbp of CNV regions. 57% of genome blocks were gIBD
between Nongda5181 and Lunxuan987, which included
7,453-Mbp SGRs and 619-Mbp CNV regions (Figure 2B;
Supplemental Figure S14). A total of 3,390 Mbp (24%) of
genomic blocks shared by all three varieties contributed to
the same genetic background (Supplemental Figure S15).
Excluding the shared background, Nongda3097 and
Lunxuan987 contributed 53% and 44% of genomic resour-
ces, respectively, to Nongda5181, which is consistent with
the expectation that half of genome was derived from each
parent. By summarizing the gIBD maps of Nongda5181 with
two parental lines, we revealed a clear genomic origin pat-
tern of Nongda5181 (Figure 2C; Supplemental Figure S15). A
total of 91 breakpoints were detected between parental lines

in Nongda5181 genome, with an estimated average of 4.3
breakpoints on each chromosome, indicating that the inher-
ited parental genomic regions are usually in large chromo-
some blocks (Supplemental Figure S15; Supplemental Table
S2). Moreover, 45% and 34% of Nongda5181 genome were
shared with genomes of its grandparental line Jingdong6
and great-grandparental line Nongda3338, respectively
(Figure 2B; Supplemental Figures S16 and S17). We used the
indirectly related lines Nongda3338, Jingdong6, and
Lunxuan987 to estimate that 25% of the background consti-
tuted shared genomic resources. Excluding the background,
26.7% and 12.0% of Nongda5181 could be traced to its
grandparental line and great-grandparental line, respectively,
which are close to the expected ratios of 1/4 and 1/8, re-
spectively. Several QTL-rich clusters within these shared ge-
nome blocks were found to be passed through generations
(Figure 2C; Supplemental Figure S18). Thus, the gIBD fit well
with Nongda5181 and its pedigree, and each generation
inherited approximately half of the parental lines.
Additionally, we evaluated the gIBD lengths and genome
similarity (whole-genome gIBD proportion) for all accession
pairs. Interestingly, a positive correlation (Spearman’s
rho = 0.69, P5 2.2 � 10–16) was found between genome
similarity and gIBD length (Figure 2D), indicating that the
inherited genomic blocks broke down exponentially along
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with increasing generation. Generally, gIBD generated by
ggComp gives a theoretical basis for understanding the dy-
namics of chromosomal recombination and selected geno-
mic regions through the breeding process.

A whole-genome scale gIBD-based network between
germplasms provides insights into the wheat breed-
ing process
To investigate the utilization of wheat germplasm resources,
gIBD were calculated in all accession pairs. Clustering of
gIBD-based distance matrix showed that most cultivars and
a few landraces could be assigned to the same clade sepa-
rated from clade with the majority of landraces (Figure 3A;
Supplemental Figure S19), reflecting the genetic diversity
bottleneck of modern wheat cultivars derived from limited
landraces with respect to the improvement process. Most
modern CNCs were mixed with a few European cultivars
(EUCs), supporting the previous notion that European germ-
plasm was the primary exotic resource used to broaden the
germplasm base for modern Chinese wheat breeding.

Based on gIBD similarity matrix that records the ratio of
gIBD among accessions, a genomic-based germplasm net-
work (GGNet) at whole-genome level was constructed by
an unsupervised manner to visualize the potential breeding
process around accessions (Figure 3B). Due to the exponen-
tial relationship between gIBD proportion and generation,
accessions with direct connections (similarity 450%) indi-
cate parental relationships or sibling relationships. For exam-
ple, the pedigree of Nongda5181 (Figure 2A) can be fully
retrieved from GGNet (Figure 3B). Mazhamai is a well-
known CNL used as a founder line and has been used to
produce many famous derived cultivars, such as Bima1 and
Bima4 (Sheng et al., 1983), of whose relationships could also
be implied in GGNet. Mazhamai has a direct relationship
with Bima1 and Bima4, with similarity ratios of 52% and
60%, and Bima1 and Bima4 are siblings, with 49% similarity
(Supplemental Figure S20).

For many wheat accessions, the intermediate generation
may not be recorded or is incompletely preserved. GGNet
provides a solution to precisely characterize the genomic re-
lationship independently of pedigree records and reveal un-
documented or hidden relationships. A CNL in Sichuan
Province, Chengduguangtou, is an accession closest to CS
(68% similarity) (Supplemental Figure S21), which confirms
previous speculations that Chengduguangtou is a potential
genome donor for CS (Liu et al., 2018). In contrast, both the
Tibetan semi-wild wheat Zang1817 and CS were collected in
south-western China and share little similarity in terms of
SGRs. The connections for landrace pairs Dabaimai–
Baidatou and Huoliaomai–Yangmai also showed similarity
percentages higher than 50% but were not documented.
Yunnan098 was recorded as a CNL in Yunnan Province, but
in the network, Yunnan098 was strongly closely related to
exotic accession Nanda2419, with 67% similarity. This indi-
cates that sequenced Yunnan098 accession might not be a

pure native landrace but may actually be derived from
Nanda2419 (Supplemental Figure S22).

The germplasm network also revealed that many exotic
germplasms have contributed greatly to modern Chinese
wheat cultivars, including many well-known founder lines,
such as Funo and Lovrin10 (Sheng et al., 1983; Xu et al.,
2010). On average, only 10.7% of CNCs genome could be
found as the same haplotype block in CNLs, except for a
few landraces, such as Mazhamai, which is a direct genome
contributor of Bima1, Bima4, and Yuejin5 (Figure 3C).
However, compared with these CNLs, exotic germplasm
contributes a substantially higher proportion of germplasm
to modern Chinese wheat cultivars (Figure 3D).

The node size of network represents the summed weights
of connected lines. A relatively heavy weight of accession
indicates the potential of being a parental line in the popu-
lation. For example, Zhoumai16, Zhengyin4 (introduction
names: St2422/464), and Nanda2419 (introduced from Italy)
were identified as central hubs in the germplasm network,
implying their contributions to a number of derived culti-
vars consistent with records. The germplasm network pro-
vides an intuitive framework for exploring the role of
founder lines from a broad perspective.

Compared with the inference results of commonly used
IBS method, the gIBD-based germplasm network provides a
more quantitative way to characterize relationships among
wheat accessions. Unlike the kinship matrix generated by
the IBS or IBD-based method, GGNet was constructed on a
sparse matrix reflecting the breeding process, accounting for
stratified genetic distances and frequent CNV blocks. For ex-
ample, the accession groups with pedigree relations, such as
Lunxuan987–Nongda3097–Nongda5181 and Mazhamai–
Bima1–Bima4, were separated in the IBS-based clustering
results, while they were clustered together by the gIBD-
based strategy (Supplemental Figure S23).

Dissecting the origin and descent of 1RS utilization
in CNCs with the help of a chromosome scale gIBD-
based network
The translocation of 1RS chromosome from rye (S. cereale)
into bread wheat chromosome 1B played a vital role during
modem wheat breeding (Yang et al., 2004). 1RS�1BL wheat
lines were introduced into China in the 1980s and began to
be widely used (Sheng et al., 1983). According to pedigree
information, Lovrin10 and Aimengniu included in dataset
are two major 1RS�1BL contributors in Chinese breeding
(Yang et al., 2004). A primitive GGNet of 1B chromosome
that did not discriminate the origin of 1RS showed an ap-
parent large cluster contained 20 accessions that all shared
450% similarity with Lovrin10 and also exist sporadic acces-
sions closely related with Aimengniu (Supplemental Figure
S24). Based on the CNV heat map of chromosome 1B
(Supplemental Figure 4A), besides Lovrin10 and Aimengniu,
18 of preceding 20 accessions and one accession closely re-
lated with Aimengniu were found possessing CNV-deletion
blocks along the whole 1BS chromosome, nearly all of which
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are CNCs released after the 1980s and confirmed to carry
the 1RS�1BL translocation (Supplemental Table S3). We
assessed all these 1RS�1BL carriers by identifying the gIBD
with Lovrin10 or Aimengniu on 1BL chromosome. The result
showed that most carriers hitchhiked Lovrin10-derived gIBD
on 1BL (Figure 4B), supporting the notion that Lovrin10 was
the main contributor of 1RS�1BL introgression (Yang et al.,
2004). The lengths of Lovrin10 hitchhiking gIBD on 1BL
ranged from 106 to 380 Mbp, consistent with this hitchhik-
ing effect previously identified through quantitative trait lo-
cus (QTL) mapping (Xu et al., 2010). Lumai15 was the only
accession that shared Aimengniu-derived gIBD on 1BL as
Aimengniu and Lovrin10 harbored different types of geno-
mic resources on 1BL chromosome (Supplemental Figure
S25). This was consistent with a previous study that
Aimengniu and Lumai15 lines were identified as having an
alternative rearrangement type (1RS�7DL/7DS�1BL) via high-

resolution FISH (Huang et al., 2018). By reconstructing the
GGNet of 1B chromosome that differentiates the 1RS of
Lovrin10 lineage and Aimengniu lineage (Figure 4C), two lin-
eages showed two distinct patterns demonstrated 1BL also
inherited from different ancestral. There still exist several
non-1RS carriers shared 440% similarity with Lovrin10 or
Aimengniu indicated that potential important trait-
associated alleles located in 1BL.

Tracing gene utilization among accessions by
networks of gHaps
As gIBD between accession pairs across whole genome was
identified, we further classified all gIBD of each block into
higher-order haplotypes: germplasm resource type-based
haplotypes (gHaps) trying to detect resource utilization
among our dataset. To validate the reliability of gHap, we
compared gHap with the haplotypes detected by genome
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Figure 3 The whole-genome GGNet reveals relationships among wheat varieties. A, Hierarchical clustering performed with gIBD-based distances.
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(C), landrace (L), semi-wild (W). B, The whole-genome scale GGNet. A node represents an accession. The edge colors indicate the ranges of the
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Blue edges, 50%5 gIBD ratio4 40%. Red edges, gIBD ratio4 50%. The node size corresponds to the node weight, which is the summed weight
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assembly-based method (Brinton et al., 2020). Haplotypes
obtained through two methods are largely concordant that
gHap can overlap nearly 90% of haplotypes identified by
Brinton et al. (Supplemental Figure S26A). In some specific
region, ggComp performed even better, as shown by a de-
tailed analysis in a region of chromosome 6A (Supplemental
Figure S26B), where ggComp detected a different haplotype

with SY Mattis, which can be confirmed with dot-plot of
two assemblies (Supplemental Figure S26C) and distribution
of sequence identity in bins shown by pairwise alignment of
assemblies (Supplemental Figure S26D). Dwarfing genes Rht-
B1b and Rht-D1b were analyzed first as they were predomi-
nantly selected to reduce height and improve yields
during Green Revolution (Reitz and Salmon, 1968; Gale
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and Youssefian, 1985; Rebetzke and Richards, 2000; Zhang
et al., 2006). The gHap networks of Rht-B1 and Rht-D1 based
on gIBD among different accessions were constructed that
each cluster corresponds to a specific gHap (Figure 5, A
and B). For the bin located at Rht-B1, accessions in the larg-
est cluster harbored Rht-B1b allele (Figure 5A), which per-
fectly fits the genotype distribution of Rht-B1b (Figure 5C).
The gHap also revealed previously identified Rht-B1h, Rht-
B1i, and Rht-B1m alleles (Li et al., 2013). For Rht-D1, the larg-
est cluster also corresponded to Rht-D1b (Figure 5D). Two
new alleles, Rht-D1n1 and Rht-D1n2, corresponding to the
second and third largest clusters, were identified with muta-
tions in upstream regions located 383 bp and 2,640 bp, re-
spectively, from the start codon (Figure 5D). Both of the
semi-dwarfing alleles Rht-B1b and Rht-D1b contained stop-
gain mutations (Figure 5, E and F), which produced N-termi-
nal truncations through translational reinitiation (Van De
Velde et al., 2021). Several accessions identified as harboring
Rht-B1h alleles were confirmed by resequencing data to be
consistent with known variation forms (Figure 5E). Although
the function of new alleles was still unclear, these categories
provided useful guidance to determine wild-type alleles and
explore potential haplotypes to be further exploited in
breeding (Figure 5F). And these distinct gHaps that classified
as “Rht-B1a & Others” (Figure 5A) or “Rht-D1a & Others”
(Figure 5B) could not be distinguished by the sequence of
Rht-B1 and Rht-D1, they could be distinguished by other
genes or loci within the blocks.

The distribution of gHap within populations also provides
a useful prospective to dissecting the natural and artificial
selection process. The annotation of Rht-B1b and Rht-D1b in
the wheat germplasm network revealed asymmetric selec-
tion pressure on two homoeologous genes through breeding
practices in China (Supplemental Figure S27). The results
showed that 2 (out of 57) CNLs and 39 (out of 59) CNCs
shared at least one of the Rht-B1b and Rht-D1b alleles
(Supplemental Table S4), which is consistent with the fact
that Rht-B1b and Rht-D1b alleles are rare in CNLs, but their
frequencies are higher in the CNCs. The breeding line
Nongda3338 is the only accession that gained both Rht-B1b
and Rht-D1b. It should be noted that there were still 20
CNCs in this collection that contained none of the two
alleles, indicating the potential of unexplored semi-dwarfing
genes used in China (Supplemental Figure S27). We also dis-
sected the gHap of Ppd-D1 and a x-gliadin gene located
blocks chr2D:33.5–34.5 Mb and chr1A:15.5–16.5 Mb, respec-
tively (Figure 5, G and H). Unlike other blocks, an extremely
large group of accessions contained 97% CNCs shared one
gHap of Ppd-D1 and the allele type of Ppd-D1 is Ppd-D1a.
Considering that the landraces are self-contained popula-
tions adapted to their geographic origin, the highly enriched
photoperiod insensitivity-related Ppd-D1a allele (Figure 5G)
in CNCs improved the adaptation to a broader range of
environments, which is consistent with previous findings
(Yang et al., 2009). This is the critical genomic signature at
the initial stage of modern wheat breeding in China, aiming

at improving adaptation traits (Hu et al., 2018). Diverse
gHap clusters were detected in the x-gliadin gene-located
block even in cultivars (Figure 5H), which is different from
the single main cluster detected for Ppd-D1 located block.
With regards to the fact that the x-gliadin gene related to
end-use characteristic, it could be selected by breeders in
different directions. There were also several gHaps detected
only among landraces and had not been used by breeders.

Generally, the gHap consistently fit with known alleles,
helping accurately mine beneficial alleles which were under
selection. It is worth noting that different accession clusters
indicated different germplasm resource types, and this strat-
egy provides an efficient way to trace the utilized gene
resources in wheat varieties, independent of pedigree
information.

Discussion
In genomics era, utilizing sequencing data to make evalua-
tion of crop germplasms is extraordinarily important to sup-
port germplasm management and breeding strategies
making. Kinship analysis with limited markers of array- or
GBS-based genotyping methods has been widely used for
evaluating genetic diversity but is not suited for fully and
precisely characterizing relationships at genomic blocks level.
Evaluating genomic resources in crops that carry a complex
genome (e.g. wheat) is difficult and requires a more appro-
priate approach. Hexaploid wheat is domesticated from
neo-polyploid plants with a high frequency of genomic
structural variation and frequent intra- and interspecific
introgressions. We systematically characterized the high fre-
quency of CNV blocks across wheat varieties (Figure 1A)
and revealed stratified SNP densities via a statistical model
(Figure 1D). We developed the ggComp method that can be
applied to constructing multi-scale networks by precisely
characterizing germplasm relationships from local genomic
regions to whole genome among accession pairs (Figure 1G);
ggComp integrates statistical models, discovering hard
thresholds with the EM algorithm and utilizing the HMM
model for soft corrections to reduce noise (Supplemental
Figure S11). The comparison process is independent of pedi-
gree information and extra samples. As a reference-based
approach, the missing or duplicated regions in the reference
assembly could result in large deletion blocks or duplicated
blocks in alignment of accessions. Thus, the CNV-block iden-
tification was introduced as an intermediate step to elimi-
nate their impact on the downstream of gHap
identification. On the other hand, there are some sequences
or structure variations that could not be mapped on CS
genomes. For such cases, the boundary regions with aligned
sequences can be used as indicators for gHap inference by
leveraging on the LD. For example, the 1B/1R translocation
carriers could be identified by low mapping ability on 1BS
chromosome, and the utilization of 1B/1R introgressions in-
ferred by gHap inferred with adjacent regions on 1BL
(Figure 4A). Theoretically, ggComp could be applied to other
selfing species with long LD decay distances and is suited for
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dealing with complex genomic landscapes, especially those
of polyploid plants with interspecific introgressions.

The gIBD identified by ggComp are purported to be geno-
mic blocks representing the same breeding germplasm

resource. As modern breeding requires less time than do-
mestication, a subtler threshold is needed to discriminate
different germplasm resources diverged during modern
breeding. Therefore, our gIBD based on a model-driven
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strategy with statistic support is more suitable for breeding
purpose compared with traditional IBD-detected under sub-
jective criteria regions. With gIBD, the genomic regions of
national cultivar Nongda5181 can be appropriately assigned
to parents, demonstrating the reliability of gIBD identified
by ggComp (Figure 2). The limited crossover numbers indi-
cated low recombination frequency and selection for large
genomic blocks in wheat breeding practices (Supplemental
Figure S15), which is consistent with previous study (Hao
et al., 2020; Walkowiak et al., 2020).

The whole-genome scale GGNet (Figure 3B) was con-
structed by pairwise comparisons and the main advantage
of this network over pedigree- or marker-based kinship-de-
rived networks is that it successfully connects wheat germ-
plasm accessions with genomic resource blocks. GGNet
serves as a framework for presenting the trends of genetic
flow during breeding, demonstrating closely related acces-
sions, assisting the inference of pedigree relationships, and
evaluating the contributions of founder lines in the context
of networks. Additionally, it would be helpful to discover
unintentionally duplicated collections. GGNet thus provides
a valuable framework for studying wheat genetic diversity
and can serve as an evolving platform to manage wheat
germplasm and guide the design of breeding processes.
Taken together, the results indicate that ggComp is effective
at evaluating wheat germplasms at the genomic level.

For the slow LD decay property of the wheat genome, the
gIBD-based method has been shown to be an effective way
to dissect gene haplotypes or allelic groups. Haplotype infer-
ence based on genetic diversity in the genomic region is
more resilient to sequencing error and random mutation
noise than traditional methods relying on limited SNPs. The
investigation of four genes Rht-B1, Rht-D1, Ppd-D1, and x-gli-
adin showed that the allelic identification results perfectly fit
the understanding of the data in a previous study (Figure 5)
and expanded the knowledge of allele type diversity. Our
results indicate that breeders are actually selecting conserved
linkage blocks with target gene alleles in wheat breeding, and
gHaps can help trace the origin of utilized alleles. Especially
for poorly assembled genes or repeat-enriched genomic loci,
the gHap-based strategy utilizes the boundary context for
haplotype inference, providing an effective solution for mining
beneficial alleles without knowing exact sequences. This
method also constitutes an intuitive way to discover benefi-
cial alleles and assist gene mining in QTL studies. Germplasm
resource types serve as an effective measure to estimate trait-
associated effects for alleles and provide guidance for marker
selection when designing breeding strategies.

All pairwise accession comparison results and GGNet in
multi-scale (whole-genome scale, chromosome scale, and
single-block scale) can be accessed in WheatCompDB
(http://wheat.cau.edu.cn/WheatCompDB/; Figure 6).

Conclusion
We developed a uniform method to perform unsupervised
characterization of the stratified genomic diversity among

wheat varieties and provided a preliminary framework to
construct a comprehensive modern wheat germplasm net-
work. This work provides a valuable resource for facilitating
efficient germplasm utilization and directing wheat breeding
programs in the future.

Materials and methods

Sample collection and whole-genome resequencing
Whole-genome sequencing data of 212 accessions were col-
lected with worldwide distribution (Supplemental Table S1).
Raw data of 186 previous published accessions were reana-
lyzed from raw data (Cheng et al., 2019; Hao et al., 2020;
Walkowiak et al., 2020) or BAM files (Guo et al., 2020). The
raw reads of previously published re-sequenced accessions
are available under NCBI Sequence Read Archive accession
PRJNA476679, PRJNA596843, PRJNA597250, and
PRJNA544491. For the 26 new sequenced accessions, the ge-
nomic DNA from young roots was extracted by the stan-
dard cetyltrimethylammonium bromide-based protocol
(Murray and Thompson, 1980). Pair-end sequencing was
performed using the Illumina Novaseq 6000 platform, with
read length of 150 bp and insertion size around 500-bp.

Genomic alignment, variation calling, and
annotation
Trimmomatic (Bolger et al., 2014) were used to trim raw
reads and BWA-MEM (Li and Durbin, 2009) was used to
map retained high-quality clean reads to the CS reference
genome (IWGSC RefSeq version 1.0) (International Wheat
Genome Sequencing Consortium, 2018). Read pairs with ab-
normal insert sizes (more than 10,000 or less than –10,000
or =0) or low mapping qualities (51) were filtered by bam-
tools (version 2.4.168) (Barnett et al., 2011). Potential PCR
duplicates reads were removed by samtools (version 1.3.169)
(Li et al., 2009). SNPs and INDELs were identified by the
HaplotypeCaller module of GATK (version 3.870) (McKenna
et al., 2010) in GVCF model. All GVCF files were performed
joint call by GATK GenotypeGVCFs module. SNPs in VCF
was filtered using GATK VariantFiltration function with the
settings “–filterExpressionQD5 2.0 || FS4 60.0 ||
MQRankSum5–12.5 || Read-PosRankSum5–8.0 ||
SOR4 3.0 || MQ5 40.0 || DP4 30 || DP5 3.” The filter-
ing parameters for INDELs were “QD5 2.0, FS4 200.0,”
and “ReadPosRankSum5–20.0 || DP4 30 || DP5 3.” SNPs
were further filtered by following criteria: (1) MAF5 1%
and (2) bi-allelic sites. SnpEff (version 4.371) (Cingolani et al.,
2012) was used to annoated SNPs and INDELs.

Identification of the threshold between PHRs and
SGRs
Genetic distance between each pair of accessions was calcu-
lated first by PLINK (version 1.9) (Purcell et al., 2007) with
parameter “–distance square 1-ibs.” Each accession and its
top two closest samples were chosen to perform DSR calcu-
lations in every nonoverlapping 1-Mbp window across the
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whole genome after excluding all CNV blocks. The DSR is
calculated as follows,

DSR ¼ Ndiff x L

L� Nmiss
;

where Ndiff denotes the count of differential homozygous
SNPs, Nmiss denotes the count of missing sites in either ac-
cession, and L denotes the window size. The heterozygous
sites were ignored in DSR calculation by default, considering
that wheat is a self-pollinated crop and heterozygous SNPs
detected in wheat likely to be resulted from sequencing or
mapping error. Nmiss in denominator was used to eliminate
potential effect of missing sites. The density distribution of
log10ðDSRþ 10Þ could be considered following a
composited gaussian distribution. EM algorithm was used to
fit the means and variances of three sub-distributions by R
package mixtools (Benaglia et al., 2009). A hard threshold

between PHRs and SGRs was selected according to
Minimum-Error-Rate classification of Bayesian decision the-
ory that

P wSGRjxð Þ ¼ PðwPHRjxÞ;

where P wSGRjxð Þ is the posterior probability of the state of
nature being SGR given the threshold x and P wPHRjxð Þ is
the posterior probability of the state of nature being PHR
given the threshold x.

The pipeline of ggComp
All of the analysis steps described below were developed
and wrapped as an open-source command-line tool that
can be accessed at https://zack-young.github.io/ggComp/.

(1) Detection of the CNV blocks. CNV blocks were identi-
fied via the sliding window method with 1-Mbp windows.
The average read depths (ARDs) were calculated by the

Figure 6 WheatComp database with pairwise comparison and multi-scale GGNet functions assists germplasm evaluation and breeding. A, The
pairwise compare function supports genomic comparison and visualization between any two accessions in the database. B, The multi-scale
GGNet function supports the construction of germplasm network at whole-genome, chromosome and local blocks scales.
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ARD in each window via “coverage” function of bedtools
(Quinlan and Hall, 2010). The ARDs were then normalized
by dividing the median value of total ARDs in each acces-
sion. Then windows with normalized ARD4 0.5 or normal-
ized ARD5 1.5 were defined as CNV-deletion block or
CNV-duplication block. The threshold selection was based
on the distribution of whole genome binwise normalized
ARDs (Supplemental Figure S3).

(2) Identification and HMM smoothing between PHRs
and SGRs. After excluding CNV blocks, SGRs and PHRs were
distinguished by a hard threshold, which is determined by
performing EM strategy on the DSR density distribution
(DSR = 10 by default). We then applied an HMM-based
strategy to correct noise signal (Supplemental Figure S11).
The raw types (that are SGR, PHR, and CNV) of accession
genomes were used as the observations, and the underlying
states (sgr, phr, and cnv) inferred by HMM are assumed to
be the real types. To build the initial model, a set of
“transition frequency” calculated from 20% of all pairwise
comparison results (Supplemental Table S5) was used as
both of the initial state transition probability matrix and the
emission probability matrix. Then the model was trained us-
ing the Baum–Welch iterative re-estimation procedure pro-
vided by python library hmmlearn (https://pypi.org/project/
hmmlearn/) on raw sequences with parameters
“n_iter = 100” and “tol = 0.001.” The emission probabilities
from state sgr and phr to observation CNV were set to 0 as
to avoid the emission from cnv to SGR and PHR or other-
wise in the model. Then emission probabilities were normal-
ized accordingly (Supplemental Table S6). After training,
hidden state sequences (i.e. the denoized sequences) could
be estimated from observation sequences using function
“MultinomialHMM.decode()” from hmmlearn, with parame-
ter “algorithm=viterbi.”

(3) Visualizing the distribution of CNV blocks, SGRs, and
PHRs between pairwise accessions. To get a better sense of
genomic relationship between accessions, we developed a vi-
sualization function to present the distribution of SGRs,
PHRs, sample-specific CNV-deletion regions, sample-specific
CNV-duplication regions, shared CNV-deletion regions, and
shared CNV-duplication regions along 21 chromosomes of
wheat. The length of chromosomes and position of centro-
meres were acquired from International Wheat Genome
Sequencing Consortium (2018).

Saturation analysis of SNP calling
We performed the saturation analysis based on resequenc-
ing data of Aimengniu, which had a total genome coverage
of around 14� , to dissect the relationship between wheat
re-sequencing coverage and number of identified SNP, and
result indicated our current dataset was qualified to perform
a genomic resource dissection through pairwise comparison
strategy. Samtools (version 1.3.169) (Li et al., 2009) with the
parameter “view -s” was used to randomly extract align-
ments from BAM files of Aimengniu to produce multiple
datasets at different coverage levels. SNP calling was

conducted by using GATK (version 3.870) (McKenna et al.,
2010) pipeline.

Haplotype calls based on genome assemblies
For the comparison between the genome assemblies of SY
Mattis and Jagger, we applied samtools-1.9 faidx to extract
individual chromosomes from the assemblies and then gen-
erated the dot-plot. Pairwise alignments were performed for
each chromosome, following the method in Brinton et al.
(2020). The NUCmer program of MUMmer-3.2332 (Kurtz
et al. 2004) was used for pairwise alignment with –mum op-
tion. The raw delta files were filtered using the delta-filter
command with the options –l 20,000, –r, and –q. The com-
parison results were processed through the Rscript provided
by Brinton et al. (2020) in https://github.com/Uauy-Lab/pan
genome-haplotypes.

Nongda5181 parental-descend genome region
identification
To obtain more consecutive gIBD between Nongda5181 and
its parents, we further determined the source of genomic
block shared between Nongda3097 and Lunxuan987 in
Nongda5181 by the donor of regions in the vicinity of them.
We assumed that parental shared block could be redirected
to one parent if the vicinities of this block belong to the
same parent.

Phylogenetic analysis
SNP sites with 510% missing rate were used to for phyloge-
netic analysis. And the IBS-based hierarchical phylogenetic
tree was obtained by calculating the pairwise genetic distan-
ces using PLINK (version 1.971) (Purcell et al., 2007) with pa-
rameter “–distance square 1-ibs.” The IBS-based and gIBD-
based tree were constructed using the hclust method and
ggtree (Yu et al., 2017) in the R package.

Genomic-based germplasm network construction
The proportion of gIBD between accessions on the whole
genome was used to build GGNet. gIBD percentage was
sorted into three levels (1) 20–40%; (2) 40–50%, and (3)
450%. gIBD percentage 520% was not shown in the net-
work. After converting gIBD percentage information into a
distance matrix, the matrix was imported into Cytoscape
(Shannon et al., 2003) to generate a germplasm utilization
network. The clustered network was plotted by artificial ad-
justment in Cytoscape and the node size was adjusted by
the degree of each node produced by the network analysis
function in Cytoscape.

Germplasm resource gHap identification
The gHaps were calculated based on gIBDs in each block.
We firstly separated gIBD into SGR, “both deletion” and
“both duplication.” The SGR information was transformed
into adjacency list and processed by MCL software (Enright
et al., 2002) with parameter (-abc -I 2.0). The accessions that
sorted into a single cluster were considered as sharing the
same gHap.
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Statistical analyses
Spearman’s rank correlation coefficient test statistic was per-
formed using the “cor.test” function in R (parameters,
method = “spearman”; exact = TRUE). Two-tailed Student’s
t tests were executed using “t.test” in R (parameters, alterna-
tive = “two.sided”; paired = FALSE).

Data access
The ggComp pipeline and corresponding manual are avail-
able as open-source code under the MIT License at https://
zack-young.github.io/ggComp/. And the database
WheatCompDB is available at http://wheat.cau.edu.cn/
WheatCompDB/.

Accession numbers
The raw sequence data reported in this paper have been
have been submitted to the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/) under accession
number PRJNA722149 and to the Genome Sequence
Archive in National Genomics Data Center, China National
Center for Bioinformation/Beijing Institute of Genomics,
Chinese Academy of Sciences, under accession number
CRA004026. Please refer to the attached table
(Supplemental Table S1) for details.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Geographic distribution of
wheat accessions by country or region of origin.

Supplemental Figure S2. The effect of mapping depth on
SNP recall rate.

Supplemental Figure S3. Distribution of normalized read
depth per bin along the whole genome of all accessions.

Supplemental Figure S4. CNV block distribution of
Aikang58 and Lovrin10.

Supplemental Figure S5. Distribution of CNV-duplication
blocks ratios in A, B, and D subgenomes.

Supplemental Figure S6. Frequency of CNV-deletion
blocks (blue) and CNV-duplication blocks (red) in each win-
dow of all accessions along the whole genome compared
with the CS reference genome.

Supplemental Figure S7. Profile of CNV segment distri-
bution in wheat accessions.

Supplemental Figure S8. Distribution of log10(DSRþ10)
in each window (1-Mbp length).

Supplemental Figure S9. Distribution of binwise SNP
density between Bima4 and Bima1 along the whole genome.

Supplemental Figure S10. Distribution of binwise SNP
density between Bima4 and CS along the whole genome.

Supplemental Figure S11. Layout of the HMM.
Supplemental Figure S12. Comparison of the distribu-

tions of PHR, SGR, and CNV blocks between Lancer and
Norin61 before and after applying HMM strategy.

Supplemental Figure S13. Distribution of PHR, SGR, and
CNV blocks between Nongda5181 and Nongda3097.

Supplemental Figure S14. Distribution of PHR, SGR, and
CNV blocks between Nongda5181 and Lunxuan987.

Supplemental Figure S15. Dissecting the inherited geno-
mic blocks of Nongda5181 from parents.

Supplemental Figure S16. Distribution of PHR, SGR, and
CNV blocks between Nongda3097 and Jingdong6.

Supplemental Figure S17. Distribution of PHR, SGR, and
CNV blocks between Nongda3097 and Nongda3338.

Supplemental Figure S18. Dissecting the inherited geno-
mic blocks of Nongda5181 from parents and grandparents.

Supplemental Figure S19. Genome similarity hierarchical
clustering based on ward’s hierarchical clustering method on
a scale of log2(gIBD proportion).

Supplemental Figure S20. Distribution of PHR, SGR, and
CNV blocks between Bima1 and Bima4.

Supplemental Figure S21. Distribution of PHR, SGR, and
CNV blocks between Chengduguangtou and CS.

Supplemental Figure S22. Distribution of PHR, SGR, and
CNV blocks between Yunnan098 and Nanda2419.

Supplemental Figure S23. Comparison between gIBD-
based (left) and IBS-based (right) hierarchical clustering
results.

Supplemental Figure S24. The chromosome scale GGNet
of 1B chromosome.

Supplemental Figure S25. Distribution of PHR, SGR, and
CNV blocks between Aimengniu and Lovrin10.

Supplemental Figure S26. The comparison between
gHap and haplotypes identified by Brinton et al.

Supplemental Figure S27. The trajectories of semi-dwarf
alleles Rht-B1b and Rht-D1b utilization in CNCs were pre-
sented in the context of GGNet.

Supplemental Table S1. Detailed information of the
whole-genome resequencing data of wheat used in this
study.

Supplemental Table S2. Chromosomal crossover counts
in Nongda5181 between its parents.

Supplemental Table S3. List of accessions that carried
the 1RS chromosome and their released time.

Supplemental Table S4. The identified gHap types of
Rht-B1 and Rht-D1 in wheat accessions.

Supplemental Table S5. Initial transition frequency ma-
trix between observations for the HMM model.

Supplemental Table S6. Trained state transition probability
matrix and emission probability matrix for the HMM model.
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