Skip to main content
. 2022 Mar 16;24(3):e26634. doi: 10.2196/26634

Table 2.

The comparison of performance of machine learning models in gestational diabetes mellitus (GDM) prediction applied to different subgroups.

Subgroup Models (N=30), n (%) AUROCa Sensitivity (95% CI) Specificity (95% CI) PLRb (95% CI) NLRc (95% CI) DORd (95% CI)
Overall 30 (100) 0.8492 0.69 (0.68-0.69) 0.75 (0.75-0.75) 4.02 (3.13-5.17) 0.31 (0.26-0.38) 13.78 (9.53-19.94)
0-13 weeks before diagnosis 16 (53) 0.8667 0.74 (0.73-0.75) 0.64 (0.64-0.64) 3.89 (2.92-5.19) 0.28 (0.22-0.36) 16.55 (9.52-28.77)
14-28 weeks before diagnosis 14 (47) 0.8365 0.64 (0.63-0.65) 0.85 (0.84-0.85) 3.90 (2.76-5.53) 0.35 (0.25-0.48) 11.67 (7.59-18.02)
With GDM history 11 (37) 0.8759 0.67 (0.66-0.68) 0.85 (0.85-0.86) 5.29 (3.39-8.25) 0.28 (0.18-0.44) 19.82 (11.49-34.13)
Without GDM history 19 (63) 0.8330 0.70 (0.66-0.68) 0.65 (0.64-0.65) 3.12 (2.52-3.86) 0.35 (0.30-0.41) 8.27 (5.14-13.29)
Logistic regression 19 (63) 0.8151 0.71 (0.70-0.72) 0.67 (0.67-0.67) 3.04 (2.37-3.89) 0.37 (0.32-0.43) 8.73 (5.99-12.73)
Non–logistic regression 11 (37) 0.8891 0.66 (0.65-0.67) 0.85 (0.85-0.86) 6.80 (4.45-10.37) 0.24 (0.15-0.38) 31.85 (15.93-63.69)

aAUROC: area under receiver operating characteristic curve.

bPLR: positive likelihood ratio.

cNLR: negative likelihood ratio.

dDOR: diagnostic odds ratio.