Skip to main content
. 2022 Mar 17;10:853757. doi: 10.3389/fpubh.2022.853757

Table 2.

Model parameters for best performing random forest models.

Best models-random forest
Parameter VRE CRE MRSA MDRO
cv=StratifiedKFold n_splits=10 n_splits=10 n_splits=10 n_splits=10
estimator=RandomForestClassifier Yes Yes Yes Yes
  bootstrap True True True True
  max_depth None None None None
  max_leaf_nodes None None None None
  min_impurity_decrease 0 0 0 0
  init_min_samples_leaf 1 1 1 1
  init_min_samples_split 2 2 2 2
  n_estimators 200 200 200 200
n_jobs 4 4 4 4
param_grid={'min_samples_leaf'} [5, 10,..., 250] [5, 10,..., 250] [5, 10,..., 250] [5, 10,..., 250]
param_grid={pre_dispatch} 2*n_jobs 2*n_jobs 2*n_jobs 2*n_jobs
param_grid={scoring} roc_auc roc_auc roc_auc roc_auc
optimal_min_samples_leaf 5 30 10 5
Threshold Bound 0.20 0.05 0.30 0.40