Table 2.
Model parameters for best performing random forest models.
Best models-random forest | ||||
---|---|---|---|---|
Parameter | VRE | CRE | MRSA | MDRO |
cv=StratifiedKFold | n_splits=10 | n_splits=10 | n_splits=10 | n_splits=10 |
estimator=RandomForestClassifier | Yes | Yes | Yes | Yes |
bootstrap | True | True | True | True |
max_depth | None | None | None | None |
max_leaf_nodes | None | None | None | None |
min_impurity_decrease | 0 | 0 | 0 | 0 |
init_min_samples_leaf | 1 | 1 | 1 | 1 |
init_min_samples_split | 2 | 2 | 2 | 2 |
n_estimators | 200 | 200 | 200 | 200 |
n_jobs | 4 | 4 | 4 | 4 |
param_grid={'min_samples_leaf'} | [5, 10,..., 250] | [5, 10,..., 250] | [5, 10,..., 250] | [5, 10,..., 250] |
param_grid={pre_dispatch} | 2*n_jobs | 2*n_jobs | 2*n_jobs | 2*n_jobs |
param_grid={scoring} | roc_auc | roc_auc | roc_auc | roc_auc |
optimal_min_samples_leaf | 5 | 30 | 10 | 5 |
Threshold Bound | 0.20 | 0.05 | 0.30 | 0.40 |