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Abstract

We here report on the assessment of the model refinement predictions submitted to the 12th 

Experiment on the Critical Assessment of Protein Structure Prediction (CASP12). This is the fifth 

refinement experiment since CASP8 (2008) and, as with the previous experiments, the predictors 

were invited to refine selected server models received in the regular (nonrefinement) stage of the 

CASP experiment. We assessed the submitted models using a combination of standard CASP 

measures. The coefficients for the linear combination of Z-scores (the CASP12 score) have been 

obtained by a machine learning algorithm trained on the results of visual inspection. We identified 

eight groups that improve both the backbone conformation and the side chain positioning for the 

majority of targets. Albeit the top methods adopted distinctively different approaches, their overall 

performance was almost indistinguishable, with each of them excelling in different scores or target 

subsets. What is more, there were a few novel approaches that, while doing worse than average in 

most cases, provided the best refinements for a few targets, showing significant latitude for further 

innovation in the field.
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1 | INTRODUCTION

The refinement category of CASP (Critical Assessment of protein Structure Prediction) was 

introduced in the eighth round of the experiment to address the challenge of refining selected 

server models from the regular CASP experiment to better represent the native structure.1
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It is now recognized that a number of applications, ranging from rational drug discovery to 

crystallography (molecular replacement) require high accuracy models.2–6 Thus, a reliable 

computational approach for refinement is highly desirable. In this respect, the CASP 

refinement experiment can be very useful, by highlighting the best practices and progress in 

the field.

As discussed in previous CASP experiments,7 refinement is challenging, as predictors need 

to further improve the best server models both on a global and local scale. Indeed, since 

many of the starting models are already close to the native structures, the refinement 

methods need to be exquisitely sensitive to introduce subtle changes into the original 

structures, such as repacking of side chains. At the same time, these methods should be 

also capable of significant rearrangement of proteins, including rerouting of the backbone or 

changes to the secondary structure elements.

Many methods (i.e., CASP groups) participating in the mainstream CASP prediction 

already perform some degree of refinement, although the time constraint might prevent 

the use of computationally-intensive strategies. Analogously, a few groups participating 

in the refinement challenge might attempt a partial reconstruction of the fold from the 

sequence, blurring the distinction between the traditional modeling and refinement. Finding 

the balance between small changes that only locally perturb the starting structure, and more 

substantial rearrangements that refold whole sub-domains is the essence of the refinement 

task itself. As refinement assessors have already pointed out in the past,7 improving more 

fine-grained features of model quality such as side-chain positioning and physicality is 

seldom useful without a correct backbone positioning. This turned out to be the case also in 

CASP12.

Historically, a broad variety of methods have been used in protein structure refinement, 

ranging from knowledge-based and fragment-based approaches to molecular dynamics 

(MD) with physics-based force fields.8–15 Lately, due to increasingly accurate physics-based 

force fields10,16–21 and faster parallel computers and GPUs, MD in combination with 

physics-based force fields and smart constraints is increasingly used in successful refinement 

pipelines.11 Starting from a clear disadvantage, where such approaches would in most cases 

make the starting model worse, they have been so successful that they are now used in most 

top-performing CASP12 methods. Eight out of top ten CASP12 refinement methods use 

MD with recently developed physics-based potentials (alone or in combination with other 

approaches), while the remaining two use MD with a hybrid knowledge-based/physics-based 

potential. The increasing success of MD methods might seem unsurprising given that they 

have been shown to reversibly fold small proteins, recovering their native structure.22 

However, due to a combination of computationally prohibitive sampling times (especially 

in the context of CASP), missing information on structure-determining contacts (e.g., 

cofactors, ligands and protein-protein contacts) as well as residual force-field inaccuracies, 

refinement with MD simulations works best when light positional restraints are applied to 

the starting structure.10 The strength of these restraints appear to be a crucial parameter for 

a successful refinement and concurs to differentiate the performance of the best approaches 

in the CASP refinement challenge. The use of restraints might also explain the difficulties 
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encountered by MD-only pipelines in refining starting models that are far (in terms of 

GDT_HA and RMSD) from the target.

Enhanced sampling algorithms, which are increasingly used to address the time-scale 

problem of atomistic MD simulations,23–26 also allow the inclusion of heuristic information 

about protein folds without the need for explicit constraints. Approaches such as MELD 

(Modeling Employing Limited Data),26 which sample important conformational states 

by combining structural and heuristic information with atomistic MD simulations, show 

promise.

As an alternative to physics-based force-fields, knowledge-based potentials are highly 

attractive for structure refinement, due to their more direct relation with protein structures 

and lower computational cost.27–29 They are generally derived from knowledge of atom- 

or residue-specific interactions and have been shown to be able to refine near-native 

structures.30

As the CASP12 refinement targets span a wide range of sizes (from 54 to 396 

residues) and accuracies of starting models (GDT_HA scores ranging from 23 to 76), 

a battery of numerical evaluation measures sensitive both to subtle local changes and 

more global structural features needed to be used. For a well-rounded assessment, we 

combined conceptually different evaluation measures tested in previous CASP editions. The 

coefficients used to combine various accuracy metrics have been automatically determined 

with genetic algorithms (GA) and a Monte Carlo (MC) approach to best correlate with 

the ranking obtained by visual inspection. Reassuringly, the CASP12 score is robust upon 

restraining individual metrics to <20%. The ranking of the top 10 methods is very similar to 

that obtained by applying the CASP11 and CASP10 scores (Supporting Information Table 

S1).7,31 Still, we believe that the visual inspection of a considerable fraction of submissions 

enabled us to better distinguish subtle differences in the submitted structures and reward the 

most successful ones. Overall, the analysis of the CASP12 refinement predictions shows a 

consolidation of the trend started in CASP10 and continued in CASP11. The top methods 

excel in a number of metrics, but the prediction accuracy is in many respects similar across 

different methods, and for most targets incremental. While some methods are relatively 

more conservative, providing a reliable but small refinement, other approaches are more 

adventurous providing significant improvement of the global and local structure for some 

targets while making a few others worse. Finally, a few new approaches that trail the top 

scoring methods for most targets occasionally provided striking refinements.

2 | MATERIALS AND METHODS

2.1 | Target selection

The overall setup of the refinement experiment in CASP12 is similar to previous 

CASPs.1,7,31,32 Refinement targets are selected from amongst the main challenge targets. 

One of the major concerns of the organizers and assessors is to provide as many interesting 

targets as possible, while discarding cases where the experimental structure is dictated 

by extensive multimeric interactions, or where submitted models are already good and 

not much room is left for the refinement, or, on the contrary, where the models are too 
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poor and the improvement would require substantial conformational rearrangements in 

the global structure. After careful analysis and visual inspection, we selected a total of 

42 targets for the CASP12 refinement challenge. Of these, 23 (55%) were easier tertiary 

structure prediction targets (or TBM, see the domain classification article elsewhere in this 

issue), 13 (31%) were intermediate (or TBM/FM) and 6 (14%) were difficult for tertiary 

structure prediction targets (FM). Differently from CASP11, a large portion of CASP12 

refinement targets were the FM and TBM/FM targets, which were included in the scope 

of the refinement experiment to follow the recent progress in the free modeling (FM) 

prediction and test the abilities of the refinement methods on this kind of targets. In addition, 

some targets in CASP12 were considerably larger than those in previous CASP refinement 

experiments, likely contributing to the difficulty of their refinement. As in previous CASP 

experiments, for each target, one of the best server-submitted models was suggested as 

the starting model for the refinement. The accuracy of the model’s backbone (GDT_HA 

score, the main criterion) and its compliance to the known protein stereochemical rules 

(MolProbity score, secondary criterion) were used in the selection process. The accuracy 

scores for the initial structures are reported in Table 1, together with their CASP IDs.

Many targets for the CASP12 main challenge are large multidomain complexes. This 

makes the refinement of the corresponding single domain structures very challenging, as 

many inter-domain contacts might stabilize the observed X-ray arrangement. To retain as 

many targets as possible while providing a rigorous assessment, we removed from the 

evaluation some regions of targets clearly affected by interdomain and protein-protein 

contacts (pertaining to TR866, TR868, TR870, TR876, TR885, TR887, and TR922). In 

TR866, for example, the C-terminal helix (V142-Y152) at the oligomerization interface 

is stabilized by contacts with the other proteins forming a hexamer and therefore was 

excluded from the evaluations. Analogously, in TR868, which is a dimer of heterodimers, 

residues Q65-F75 were removed since they form part of the dimerization interface. A visual 

summary of the regions removed from the seven targets is reported in Figure 1. Target 

TR887 is a special case of a swapped dimer in the X-ray structure. Refining the swap 

segment in the absence of the other monomer (Figure 1) and of correctly swapped templates, 

makes little sense. Instead, when defining the target structure of TR887, we replaced the 

region with the respective swapped segment from the second monomer (in green in Figure 

1), as predicted by the servers in the main category.

2.2 | Model accuracy measures

A number of accuracy scores are automatically calculated by the Protein Structure 

Prediction Center; we refer to the documentation therein for further details.34,36 Here, 

in line with previous CASP refinement experiments, we based our analysis on the 

following metrics: the Root Mean Square Deviation of the Cα atoms (RMSD), the Global 

Distance Test33,35 (GDT_TS and GDT_HA), SphereGrinder36 (SphGr), the Local Distance 

Difference Test (LDDT),37 and the MolProbity score (MolPrb)38 to assess the model 

stereochemistry. In addition to these, we also considered the Contact Area Difference score 

(CAD)39 and the Quality Control Score (QCS).40
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The Cα RMSD measure calculates the average distance between the corresponding Cα 
atoms in the model and target after their optimal least-square superposition. The GDT_TS 

score is a measure of model’s backbone accuracy. The model is superposed (using LGA33) 

to the target structure in multiple trials, maximizing the number of Cα atoms within a 

certain cut-off distance. The GDT_TS value is the average percentage of well-fit Cα atoms 

calculated at four different cut-off values (1.0, 2.0, 4.0, and 8.0 Å). The GDT_HA is the 

high-accuracy version of the latter metric, for which the cut-offs are halved. SphereGrinder 

is a local-based measure of similarity introduced in CASP10. For every residue, the RMSD 

score is calculated on sets of corresponding atoms inside the spheres of a selected radius (6 

Å in CASP) centered on the same Cα atoms in the model and target. The average percentage 

of spheres fitting under 2 and 4 Å RMSD cutoffs is reported as the SG-score. The LDDT is 

a superposition-free measure based on the comparison of all-atom distance maps of model 

and target structures. For each residue pair within a distance cutoff of 15 Å, the difference 

between the corresponding distances in the model and in the target is calculated. The LDDT 

score reports the average fraction of the differences below four different threshold values 

(0.5, 1, 2, and 4 Å). The CAD-score39 is based on a similar concept, but uses the difference 

in residue-residue contact surfaces as derived by the Voronoi tessellation, instead of a set 

of cut-offs. The QCS score was developed by Grishin and coworkers40 as a result of their 

experience as evaluators of the CASP9 FM category and is the average of six individual 

scores that take into account the length, position and reciprocal orientation of secondary 

structure elements and Cα-Cα contacts. We observed that adding QCS to the final score led 

to a better agreement with the manually curated rankings. Finally, the MolProbity score is 

a target-independent measure of the model stereochemistry accuracy. It is derived from an 

extensive analysis of deposited PDB structures38 and reports the presence of clashes, the 

rotameric state of the side-chains, and the number of residues with backbone torsions φ and 

ψ outside the high-density Ramachandran regions.

The scatter plot and correlation of the different metrics for all the submissions is reported 

in Figure 2. Since most quality scores are highly correlated (except MolProbity), after 

extensive trials with our machine learning algorithm trained on the ranking obtained from 

our manually curated evaluations, we retained the RMSD, GDT_HA, SphGr, QCS, and 

MolPrb in our final score (see below).

For ranking purposes, all the metrics were converted to Z-scores in a two-step procedure. 

First, Z-scores were calculated from the distribution of raw scores for all models submitted 

on a target. Then, models with a Z-score lower than −2 were excluded and Z-scores were 

re-calculated based on the mean and standard deviation of the outlier-free model set. Finally, 

models with Z-scores lower than −2 (in both calculation stages) were assigned a value of −2 

not to over-penalize the groups attempting novel strategies. The cumulative ranking scores 

were obtained by summing the target-based Z-scores for each group, assigning a Z-score of 

−2 every time a target was not predicted by a particular group.

To estimate the overall added value of the refinement, we compared the results of CASP12 

groups to those of the artificial “naïve group,” which always resubmits unchanged starting 

model, as proposed by the past CASP assessors.7
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3 | ASSESSMENT OF THE CASP12 REFINEMENT CATEGORY RESULTS

3.1 | General overview of targets and predictions

A total of 39 groups took part in the CASP12 refinement challenge. Twenty groups 

submitted predictions for all the 42 targets and further seven for 41 targets. CASP12 

refinement results spanned a wide range of scores. Figure 3 shows general statistics of the 

accuracy of first submitted models with respect to the accuracy of the corresponding starting 

models (in terms of GDT_HA) for targets of different lengths and different accuracies of 

starting models. The best potential for improvement was observed for smaller targets (top 

left panel) and those in the medium range of starting GDT_HAs (bottom middle panel). 

Overall, 34% of the models improved over the initial structure. A similar conclusion can 

be drawn from the ΔRMSD-based analysis (see Supporting Information Figure S1). As 

expected, the median score change is close to zero, with ~ 70% of the predictions having 

a ΔGDT_HA between −5 and 5 (Figure 3). This suggests a prevalence of conservative 

predictions. While more potential for worsening the starting structure is observed, with 23% 

of models taking a loss of 5 or more GDT_HA units, 3% of the models showed remarkable 

examples of refinement improving starting structures by 5–20 GDT_HA units.

3.2 | Performance of methods according to various assessment measures

We used several conceptually different measures for the refinement assessment (see 

Methods). This allowed us to analyze models from different perspectives (e.g., overall 

accuracy of the backbone, all-atom accuracy of local substructures, or stereochemical 

accuracy).

Figure 4 shows the results according to one of the most widely used CASP measures, 

GDT_HA, which is used here to evaluate accuracy of the protein backbone refinement. 

Using this metric, it is clear that a number of groups are able on average to refine the 

targets, with the best groups significantly refining some targets, while still worsening a 

few. Eight groups—SVMQA, Seok, FEIG, GOAL_COMPLEX, BAKER, Kiharalab, Seok-

server, and GOAL—on average improve over the starting model (top panel). The largest 

average accuracy increase, however, is very modest and constitutes only 1.3 GDT_HA 

points (by the SVMQA group). In the bottom three panels, we report the results binned for 

different accuracies of starting models. In contrast to the general results (showing that the 

highest improvement potential is for targets with medium-range starting GDT_HAs), the 

top performing groups achieved better results on targets with low initial GDT_HA scores. 

For example, BAKER, the best group on targets with starting GDT_HA<40, improved the 

GDT_HA by 2 units on average. The average refinement of structures close to the target 

(high initial GDT_HA) is more modest, even though 10 out of 39 groups stayed in the 

positive average ΔGDT_HA territory.

We also performed the analyses similar to the one reported in Figure 4 according to all other 

evaluation measures. In Supporting Information Figure S2, we show the distributions of 

GDT_TS scores of refined models (model 1) for all CASP12 refinement targets. Supporting 

Information Figures S3 and S4 show examples of the analyses according to the RMSD_CA 

and GDT_TS metrics. It can be seen that the results are conceptually similar to the 
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GDT_HA-based data—a number of groups are able to improve on average, but in most 

cases only marginally.

To analyze the relative performance of CASP12 groups, we converted raw evaluation scores 

into the corresponding Z-scores (see Methods). Figures 5 and Supporting Information Figure 

S5 illustrate the performance of the participating groups as measured by the normalized 

RMSD, GDT_HA, SphGr, QCS, scores (Figure 5) and normalized GDT_TS, LDDT, CAD 

scores (Supporting Information Figure S5). While the ranking changes when different 

metrics are used, some CASP groups remain consistently in the top. These include the 

following four groups: GOAL (from J. Lee’s research group), Seok (from C. Seok’s research 

group), BAKER (from D. Baker’s research group), and FEIG (from M. Feig’s research 

group).

Figure 6 reports how many times the best CASP12 groups appear among the best 

10 according to eight evaluation metrics (RMSD, GDT_HA, GDT_TS, SphGr, LDDT, 

CAD, QCS, and MolPrb). Seok and GOAL have the best cumulative score according to 

three metrics each: GDT_TS, LDDT, and CAD for Seok; RMSD, QCS, and SphGr for 

GOAL. FEIG and BAKER appear as the best in one metric each (GDT_HA and MolPrb, 

respectively). Some methods such as SVMQA, LEE, LEEab GOAL_COMPLEX (all from 

J. Lee’s research group and similar to GOAL) and Seok-server (similar to Seok) as well 

as FLOUDAS REFINESERVER (herein referred to as FLOUDAS_REFI), Kiharalab and 

STAP also appear among the first 10 groups. Moreover, BAKER, Seok, Seok-server, and 

SVMQA on average perform better than the “naïve method,” regardless of the metric 

used. The “best 10” methods according to each single metric are reported in Supporting 

Information Figure S6.

3.3 | The CASP12 score

The assessor’s formula for ranking groups in CASP is generally defined as a combination 

of different metrics. As discussed in previous CASP experiments,7,31 this is due to two 

considerations: single standard scores, such as RMSD and GDT_HA, may miss promising 

models40,41 and different metrics may suggest different rankings (as shown in Supporting 

Information Figures S6–S8). Examples of discrepancies in rankings according to different 

metrics are shown in Figure 7 for targets TR882 and TR948. It can be seen that different 

models scored very high with respect to either SphGr (left) or GDT_HA (right) metrics and 

at the same time very low with respect to the other score.

In CASP12, we had a high percentage of FM and FM/TBM targets (45%). Manual 

inspection41 has been traditionally used to evaluate this kind of targets in CASP. The 

main reason behind this was the reduced reliability of standard scores in FM. It is for 

instance well known that GDT_HA score may give preference to models containing small 

but precisely modeled substructures over those with a good topology and general fold.40,41 

Manual assessment, on the contrary, is better suited to assess the general fold, the relative 

arrangement of secondary structure elements and local hydrogen bond networks. However, it 

requires significant time investment and might suffer from being subjective.
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To benefit from manual assessment while minimizing the pitfalls of subjectiveness and 

avoiding the definition of arbitrary weights for the different metrics, we used a machine 

learning approach to devise a linear combination of standard scores based on the visual 

inspection. Four assessors (LH, VO, HY, and GS) visually inspected all “model 1” 

predictions for 14 targets (33%) and each independently scored them. The visually inspected 

targets have the same fraction of FM, TBM/FM, and TBM targets as the complete set of 

targets.

The targets were divided in 2–4 regions (depending on the length of the target) and each 

evaluator carefully assessed their global and local structure, with specific focus on features 

(such as the length, position, and reciprocal orientation of secondary structure elements and 

hydrogen bond networks) that might increase the usefulness of the refined structure for 

docking, molecular replacement, and so forth. The final scores from different evaluators 

(ranging from −5 to +5) were in remarkable agreement (see an example of target TR876 in 

Figure S9 in Supporting Information). We then converted the raw manual scores to standard 

Z-scores, and derived optimal weights cm for Z-scores Zm of each metric m in our subset, 

defining the final score S as:

S = ∑
m = 0

n
cm ⋅ Zm

under the normalization condition: ∑m = 0
n cm = 1, where n is the number of metrics selected 

(8 in our case). For the purpose of optimizing the coefficients, we used both an MC 

simulation and a GA. Ultimately, the GA was able to push the optimization further 

in preliminary analysis and was used exclusively. The procedure involves the iterative 

generation of N = 1000 sets of trial coefficients ci = cm i (with i = 1…,N) and defining 

a fitness function f ci , which selects the best sets. In the first iteration, all 1000 sets are 

randomly generated. At every subsequent iteration, the best 5% (50) sets of coefficients 

are retained and a further 250 random sets are randomly generated. To have an ensemble 

of 1000 sets again, 700 {cm} sets are generated by averaging the coefficients between 

randomly chosen pairs of sets. As we are interested in reproducing the ranking obtained 

with our manual assignment, we defined f (c;) as the Spearman rank correlation coefficient 

calculated using the ranking resulting from our manual assignment and the one resulting 

using the current score:

Si = ∑
m = 0

n
cm, i ⋅ Zm

where the cm i are the coefficients at the current step. After some trials with various 

combinations, we considered only the rank of the six best models according to our manual 

assignment and the proposed score, for every manually evaluated target. After 100 iterations, 

the weights converged, resulting in formula:
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SCASP12 = 0.46 ⋅ ZRMSD + 0.17 ⋅ ZGDT HA + 0.2 ⋅ ZSphGr + 0.15 ⋅ ZQCS
+ 0.02 ⋅ ZMolPrb

where the weights for ZLDDT and ZCAD were manually excluded from the final score as they 

were approaching zero and GDT_TS was very strongly correlated with GDT_HA.

As expected, the ranking obtained by the final SCASP12  score correlates better with the 

ranking obtained by visual inspection than those obtained by CASP10 and CASP11 scores 

(Supporting Information Figure S10).

We were initially surprised by the high coefficient of the RMSD. However, the ranking is 

robust upon constraining RMSD to 20% or less. Fixing the coefficient for ZRMSD at 0.2 and 

that for ZMolPrb at 0.02, the ranking with this “restricted” CASP12 score is very similar to 

the original CASP12 ranking (see Supporting Information Table S2).

It should also be noted that the inclusion of MolProbity worsens the correlation with the 

manual assessment. By excluding ZMolPrb and reoptimizing the coefficients, the Spearman 

rank correlation coefficient increases to 0.491 from the 0.467 of SCASP12 . This shows that 

the local stereochemistry of the models is not a priority for most groups. Thus, we decided 

to retain the MolProbity score, albeit with a small coefficient, to continue encouraging 

predictors to fix the local stereochemistry of their models.

The performance of different groups according to the SCASP12  score is reported in Figure 

8 and Table 2. GOAL ranks narrowly first, followed by Seok and BAKER with almost 

indistinguishable scores, Seok_server (similar to Seok, see description below), SVMQA 

(similar to GOAL) and FEIG. For comparison, the rankings on CASP10 and CASP11 

assessor-defined scores are reported in Supporting Information Figure S11 and Table S1.

The final rankings by CASP12 and CASP11 scores are similar. For instance, only in 10 of 

the 42 targets does the highest scoring model 1 according to the CASP12 score differ from 

the highest scoring model according to the CASP11 score (Supporting Information Table 

S3). In 4 of these 10 cases, the highest scoring models according to the CASP12 score 

are clearly more accurate than the highest scoring models according to the CASP11 score 

(Supporting Information Figures S12–15), in one case the highest scoring model according 

to CASP11 is marginally better than the one of CASP12 and in the remaining six cases the 

difference is negligible. We also tested if applying the SCASP12  score to CASP11 targets 

would yield different top models. For most targets, the top-ranking predictions are the same, 

with the exception of six targets (TR217, TR288, TR280, TR760, TR774, and TR795). 

In three cases (TR217, TR288, and TR280) the highest scoring model according to the 

CASP12 score are more accurate, while in the remaining three cases the differences are too 

small to be significant (see Supporting Information Table S4 for detailed analysis).

All top 10 refinement methods outperformed the naïve submission in CASP12 improving 

both the backbone conformation and the side-chain positioning. The difference between the 
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top six methods is very small. This is confirmed by both a pair-wise Wilcoxon signed-rank 

test and a global Friedman test that concur that their performances are marginally different.

Based on the results, we can roughly classify the methods in two categories: “conservative” 

and “adventurous.” The conservative methods typically yield structures that are close to the 

initial ones and which score in a narrow range around the starting model’s score. Seok and 

FEIG’s approaches belong to this category. Adventurous methods seem to have the ability 

to substantially improve the structures in some cases, counterbalanced by a significant 

worsening in other cases (e.g., BAKER).

3.4 | Details of the best methods

The GOAL method uses the similarity between the given refinement model and a list 

of templates generated by their fold recognition methods to select the best template and 

generate a new starting model, on which a refinement protocol similar to Princeton_Tigress 

MD-only is used.42 A number of minimization steps with gradually reduced positional 

restraints and short restrained MD simulations are performed. At difference with 

Princeton_Tigress, GOAL uses the AMBER ff14SB18 force field and explicit TIP3P 

water.43 GOAL’s variant, LEE, uses modeling server models for initial clustering and the 

same refinement protocol. SVMQA and GOAL_COMPLEX use the same initial structures 

as GOAL, but perform a series of shorter MD simulations (5 ns in total) using positional 

restraints. SVMQA complements the force-field with the DFIRE statistical energy term.29

The Seok method first predicts the inaccurate regions of the starting model and then, it 

performs an extended structural sampling on those regions by normal mode analysis and 

secondary structure perturbations/hybridization, followed by short MD relaxation with a 

hybrid potential.44 The difference between the Seok and Seok-server methods is that the 

latter submitted server predictions with no human intervention, while in the Seok predictions 

some of the final conformations are manually selected and the error estimation results are 

modified after human inspection.44

The BAKER group performs a large scale conformational sampling using the Rosetta 

hybridization protocol followed by restrained MD simulations with the AMBER ff12SB 

force field and explicit TIP3P water on selected candidates. Depending on the distance of 

the starting structure from the target, either a high-resolution or a low-resolution protocol is 

used. In the former, Rosetta hybridization is only applied to rebuild local regions estimated 

to be less accurate, while in the low-resolution protocol, the iterative version is applied to 

rebuild the whole structure. For each of five selected Rosetta-refined models, 5 independent 

10 ns-long MD simulations are performed and MD-refined models are ranked by the 

ensemble-average Rosetta energy.

The FEIG group uses by far the most extensive weakly restrained MD simulations (2–

8 μs per target) with explicit solvent and the recently reparameterized CHARMM36m 

force field.21 From the MD structural ensembles a subset of structures is selected and 

averaged before finishing with detailed refinement of the local stereochemistry using 

“locPREFMD.”45
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Kiharalab uses a combination of energy minimization, short and long MD simulations with 

the CHARMM22/CMAP force field and an implicit solvent.

As it can be seen from Figure 9, the GOAL method works best on targets with intermediate 

starting GDT_HA (40 < GDT_HA < 60) and those longer than 300 residues (see Figure 

10 for an example). It also provides some well-refined targets in the GDT_HA < 40 range 

where the initial structure is far from the experimental structure. Seok’s approach ranks 

second in three categories (Starting GDT_HA>60; 40<Starting GDT_HA<60 and 150< 

Residues<300) and on average has the best GDT_TS (Supporting Information Figure S5). 

BAKER remarkably comes on top in targets with extreme starting GDT_HA (either >60 or 

<40), submitting a number of strikingly refined structures (see Figure 11 for an example). 

FEIG’s approach has on average the best GDT_HA scores (Figure 5) and ranks clearly first 

for smaller targets (<150 residues). This might reflect the fact that a strategy based purely 

on long MD simulations with accurate physics-based force fields and weak restrains (FEIG) 

is effective in exploring the conformational landscape of small proteins. However, large 

targets or those with low initial GDT_HA clearly benefit from combined methods where 

backbone-rebuilding methods are used before MD. Alternatively, enhanced sampling MD 

has clear potential, as shown by the remarkable refinement of some more complex targets by 

the group Laufer_seed (Figure 10).

3.5 | Accuracy of model 1 compared with the other models

CASP12 participants were allowed to submit five models per target. The additional 

submissions allow predictors to test different models, different versions of their methods 

or even completely different strategies. As in previous CASP experiments, we assessed the 

ability of different groups to identify their best models and protocols (tentatively model 1) 

out of the submitted ones. This is often an important task, as many approaches provide a 

number of structures and some methods include a final MD simulation, which generates 

a large ensemble of structures. A few methods based on structure selection and averaging 

have been developed to this end.11,46 GOAL, the top scoring approach according to the 

CASP12 score, uses a combination of trajectory averaging of atomistic explicit solvent MD 

simulations and energy minimization with an implicit solvent to address this issue. BAKER 

combines large scale conformational search using Rosetta with multiple 10 ns-long MD 

simulations, run with the AMBER ff12SB force field and explicit TIP3P water. Structural 

averaging was used to obtain the representative conformation from the MD simulations.

In Figure 12, we report the ability of each group to correctly identify their best model (or 

protocol). On average, the groups were not able to correctly identify the best model (they 

did little better than random by identifying the best model in 30% of the cases). The best 

groups in this component of the analysis, MESHI and Kiharalab, succeeded in >60% of the 

targets. GOAL and Seok identified their best models/protocols in about 30% of cases, while 

BAKER identified the best model only in 24% of cases. The BAKER group would have 

ranked second according to the CASP12 score if the best models (instead of Model 1) were 

considered, showing further potential for improvement of their protocol.

FEIG submitted as model 1 the predictions from the most comprehensive and expensive 

MD-based protocol. This reassuringly resulted in 36% of models 1 being the best model, 
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showing that longer MD sampling indeed helps the refinement (and perhaps combining it 

with enhanced sampling algorithms might help even more).

3.6 | Progress since CASP11

An important question addressed at every CASP meeting is the progress since last CASP. 

Comparison of the CASP12 results with those from two previous experiments is reported in 

Figure 13. The comparison shows the considerable improvement observed in CASP11 over 

CASP10, which, in turn, had already shown the most remarkable results since the inception 

of the refinement category in CASP8. CASP12 appears to consolidate the results of 

CASP11, showing similar global refinement when all submissions are considered. However, 

it is important to bear in mind that the targets are different in each CASP experiment, and we 

believe that the targets we released in this edition were more challenging, being both larger 

(including targets longer than 300 amino acids), more diverse and requiring more local 

refinement. In particular, six CASP12 targets were especially challenging: TR869, TR870, 

and TR898 had starting GDT-HA <30 and protein size larger than 100 amino acids, while 

targets TR890, TR901, and TR905 had a starting GDT_HA <35 and protein size larger than 

180 amino acids. It is thus reassuring to observe that the CASP12 predictions were as good 

as or better than CASP11 predictions.

4 | DISCUSSION AND CONCLUSIONS

In the CASP12 refinement experiment, we have assessed the performance of 39 groups in 

refining 42 targets.

For ranking purposes, we used a combination of standard Z-scores provided by the Structure 

Prediction Center. We used a machine learning algorithm to select the weights for combining 

Z-scores so that they correlate in the best way with the manually curated rankings performed 

by 4 independent evaluators on 33% of the targets. Although the final ranking is similar 

to that obtained with the CASP11 score, we believe that the new score is better able to 

distinguish useful refinements (see Supporting Information Figures S11–S14).

CASP12 witnessed yet another step forward in the development of effective refinement 

algorithms. The methods were tested on the most diverse set of targets ever used in the 

refinement-CASP. Despite the challenging refinement target set, the CASP12 results proved 

to be on par with those from the previous CASP.

The best CASP12 methods can be roughly categorized as “conservative” (Seok and FEIG) 

and “adventurous” (BAKER and, to some extent, GOAL and similar methods from Lee’s 

research group), with the first group of methods consistently refining the initial structures 

by a small amount and worsening few structures and the second group submitting some 

spectacular refinement but worsening a larger number of targets.

All best performing groups use restrained MD simulations, alone (FEIG and Kiharalab) or in 

combination with other approaches (GOAL, Seok, and BAKER). Seven out of ten run MD 

simulations with physics-based force fields (AMBER ff12SB, ff14SB, and CHARMM36m) 
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and explicit solvent, while three (Seok, Seok-server, and Kiharalab) use a hybrid potential or 

an implicit solvent.

The GOAL method was the top performer according to the CASP12 score. This excellent 

result was obtained by combining an effective strategy to select the best templates to 

remodel the initial structures provided, followed by short MD runs with a good protein force 

field (AMBER ff14SB) and explicit solvent. As almost 30% of the starting structures for 

refinement came from the GOAL server, there was a risk of diminishing returns for the 

starting model rebuilding strategy. Indeed, Figure 14 shows the difference in performance 

depending on the origin of the starting structure as measured by increase in GDT_HA. 

As expected, the median is clearly affected (and goes below zero) when the starting 

structure comes from the group itself. Still, even in these cases, GOAL was capable of 

some significant refinements, up to 13 GDT_HA units, showing the effectiveness of the MD 

refinement approach.

The BAKER method proved to be capable of generating striking refinements for difficult 

targets. The method ranked easier first on the targets in the difficult GDT_HA <40 category 

and in the easier GDT_HA >60 category. According to the authors, the method was in part 

limited by insufficient sampling and by failure of correcting sequence alignment errors,47 

showing a clear potential to emerge as a very robust and reliable refinement method across 

all categories. Seok’s approach showed the ability to reliably refine almost all targets, 

albeit by a smaller amount. It is currently the best choice in terms of reliability. FEIG’s 

approach does extremely well for small targets (<150 residues) and provides the best 

GDT_HA improvement on average. However, being based on weakly restrained MD with 

a physics-based potential, it is penalized to a greater extent for missing structure-defining 

contacts (ligands, multimeric protein-protein contacts) and needs more extensive sampling 

and perhaps a different restraint strategy on larger and more difficult targets. Indeed, the use 

of positional restraints and plain (nonenhanced) MD keeps the refined structure close to the 

initial one and makes it particularly difficult to refine targets with low starting GDT-HA. 

Interestingly, the authors convincingly show that increasing the MD sampling yields better 

refined models.45 An additional group that did better than the naïve method is Kiharalab, 

again with an MD-based protocol and an implicit solvent model.

It is worth bearing in mind that missing contacts are almost unavoidable in larger 

CASP targets, thus penalizing the strategies based on pure-MD. However, a special “high 

resolution” category might be introduced in future CASPs to address this problem.

Even among the second-tier groups, a few approaches delivered remarkably refined models 

for a subset of the targets, while performing modestly overall (see Figures 4 and 5). These 

include groups PKUSZ, Seminoles, Schroderlab, and Laufer_seed. The latter uses MD 

with an enhanced sampling approach (MELD).26 Indeed, when considering the number of 

times their models ranked first for a target (Supporting Information Figure S7), or had a 

Z-score >1.5 units (Supporting Information Figure S8), these groups perform as well as the 

top ones and provide a number of remarkably refined structures, see for instance Figure 

10. With further development, any of these approaches has the potential of ranking very 
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highly in future CASP refinement experiments, especially if a “high-resolution” category is 

introduced.

Although the combination of restrained MD simulations with accurate force-fields is clearly 

useful in protein structure refinement and has been adopted by most top-ranking groups, 

the larger and more difficult targets introduced in the CASP12 refinement challenge made 

clear the limits of this approach. When the starting structure is large or far from the target, 

restrained-MD works best when combined with methods that perform a more extensive 

sampling of the backbone conformational space. Indeed, limited sampling has been cited 

by the top performing research groups as a common cause of concern. According to their 

authors, both Feig’s “pure-MD” and Baker’s hybrid method might have benefited from more 

extensive conformational sampling. In this respect, the use of enhanced sampling methods 

might be very beneficial, as shown by some remarkable refinements already obtained by 

some groups (such as Laufer_Seed). Methods combining coevolutionary data and MD 

simulations with hybrid force fields and enhanced sampling algorithms48 might also lead to 

further progress.

4.1 | Ideas for future CASP refinement experiments

The experience in assessing the CASP12 refinement category has led us to propose a 

subdivision in two categories along the lines of high and low resolution refinement. The 

former category should include smaller targets providing all structure defining contacts 

(including ligands and co-factors). In this category, the use of starting structures different 

from the ones provided by the organizers should be strongly discouraged. This should 

provide a level ground and allow a fair comparison of MD-based and similar “pure 

refinement” approaches, including those avoiding explicit restraints and using enhanced-

sampling algorithms, with hybrid methods. The low-resolution category (low starting 

GDT_HA) should cater to more adventurous methods and reward pipelines that include 

a systematic effort to locally rebuild the backbone of FM predictions with knowledge-based 

approaches that might do well even in the absence of important structure-defining contacts. 

An additional consideration arises by the lack of correlation of the MolProbity score with all 

the other quality scores. It is desirable that the role of this score in the future assessments is 

discussed before the start of the next experiment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Target structures with interdomain or interchain contacts. The domains to be refined are in 

cyan, additional domains are in gray. The interacting regions that were removed from the 

assessment are shown in red. These are Q65-F75 in TR868, I8-S21 in TR870, F107-A124 in 

TR876, V142-Y152 in TR866. In the case of TR887, the green region represents the swap 

segment added to the target structure from the second monomer
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FIGURE 2. 
Correlation between eight evaluation metrics for all targets and all submissions. Pair-wise 

scatter plots are in the left lower triangular part of the table; the correlation coefficients are 

in the upper one
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FIGURE 3. 
Normalized probability distributions of ΔGDT_HA differences between the refined and 

starting models for different target lengths (top row of graphs) and different starting 

GDT_HA (bottom row). Data for first submitted models are presented; y axis shows values 

of the probability density function (PDF) of the distribution
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FIGURE 4. 
Performance of CASP12 groups as evaluated by the differences in GDT_HA scores between 

the refined and starting models. The data are shown for all targets (top panel) and for 

three target subclasses with different GDT_HA scores of starting models (that is, different 

difficulties of original targets for tertiary structure prediction). Only models ranked as #1 

by the predictors are considered. The quartiles are shown as dotted lines in the violin plots. 

Groups are sorted according to decreasing ΔGDT_HA mean on all targets (top panel)
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FIGURE 5. 
Overall performance by group as measured by RMSD, GDT_HA, SphGr and QCS Z-scores. 

Each panel shows boxplots of per-target Z-scores for a specific measure. Groups are ordered 

left to right by the sum of RMSD Z-scores (top panel, higher is better). Missing predictions 

are assigned a value of −2 for each target. The number of submitted targets for each group 

are reported in gray on top of the box plots for MolPrb
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FIGURE 6. 
Cumulative group ranking for the eight selected metrics. The plot shows the number of times 

a group appears with a particular ranking in the best 10 models according to the various 

metrics considered separately. When a group is not in the best 10, we report whether the 

score is better or worse than that of the “naïve” submission. Thus, the sum of all bar heights 

for each group is always equal to eight (total number of metrics). Only groups appearing 

among the best 10 according to at least 2 metrics are shown
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FIGURE 7. 
Discrepancies between the GDT_HA and SphereGrinder scores for two different models 

on two refinement targets—TR882 and TR948. The target structure is colored blue, the 

starting model—gray and the prediction—based on per-residue distances (A) between the 

corresponding Ca atoms in the superposition, ranging from green (improved over starting 

model) to yellow (no improvement) and red (worse). For clarity, part of the structure has 

been removed from target TR948
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FIGURE 8. 
Overall performance by group as measured by the SCASP12  assessors score. Groups are 

ordered left-to-right by their rank (i.e., decreasing sum of S over all targets)
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FIGURE 9. 
Overall performance by group as measured by the SCASP12  assessors score on the targets 

grouped into three bins based on the starting model’s GDT_HA (top row) and target size 

(lower row). Groups in each panel are ordered left-to-right by their rank (decreasing sum of 

SCASP12 over all targets). Only the first submitted models are considered
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FIGURE 10. 
Some examples of notable refinement. The target structure is shown in blue, the starting 

model in gray and the prediction with a color scale based on per-residue distances (A) 

between the corresponding Ca atoms in the superposition, ranging from green (improved 

over starting model) to yellow (no improvement), and red (worse)
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FIGURE 11. 
Four predictions that improved over the starting model for target TR594 by >10 GDT_HA 

points The target structure is shown in blue, the starting model in gray and the prediction 

with a color scale based on ΔRMSD ranging from green (improved over starting model) to 

yellow (no improvement) and red (worse)
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FIGURE 12. 
Best model or method selection. The plot reports the percentage of submitted models #1 that 

correspond to the best of the five submitted models. The numbers on top of the bars report 

the number of model 1 s corresponding to the best models (not all groups submitted models 

for all targets). The asterisks mark the CASP12 top performers
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FIGURE 13. 
Normalized probability distributions of ΔGDT HA and ΔRMSD scores in the latest three 

CASPs; y axis shows values of the probability density function of the distribution
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FIGURE 14. 
Comparison of the refinement achieved by group 220 (GOAL) on targets for which the 

starting structure was provided by GOAL itself (“start”) or by other groups (“not-start”)
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TABLE 2

Group ranking

Rank Model 1 Best model

1 GOAL GOAL

2 Seok BAKER

3 BAKER Seok

4 Seok-server SEOK-server

5 SVMQA LEEAB

6 FEIG LEE

7 LEEab FEIG

8 Kiharalab SVMQA

9 GOAL_COMPLEX KIHARALAB

10 LEE GOAL_COMPLEX

Proteins. Author manuscript; available in PMC 2022 March 31.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Target selection
	Model accuracy measures

	ASSESSMENT OF THE CASP12 REFINEMENT CATEGORY RESULTS
	General overview of targets and predictions
	Performance of methods according to various assessment measures
	The CASP12 score
	Details of the best methods
	Accuracy of model 1 compared with the other models
	Progress since CASP11

	DISCUSSION AND CONCLUSIONS
	Ideas for future CASP refinement experiments

	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8
	FIGURE 9
	FIGURE 10
	FIGURE 11
	FIGURE 12
	FIGURE 13
	FIGURE 14
	TABLE 1
	TABLE 2

