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Abstract

Objective—To summarize the application of non-targeted metabolomics in epidemiological
studies that assessed metabolite and metabolic pathway alterations associated with per- and
polyfluoroalkyl substances (PFAS) exposure.

Recent Findings—Eleven human studies published before April 1st, 2021 were identified
through database searches (PubMed, Dimensions, Web of Science Core Collection, Embase,
Scopus), and citation chaining (Citationchaser). The sample sizes of these studies ranged from
40-965, involving children and adolescents (n=3), non-pregnant adults (n=5), or pregnant women
(n=3). High-resolution liquid chromatography—mass spectrometry was the primary analytical
platform to measure both PFAS and metabolome. PFAS were measured in either plasma (n=6)
or serum (n=5), while metabolomic profiles were assessed using plasma (n=6), serum (n=4), or
urine (n=1). Four types of PFAS (perfluorooctane sulfonate (n=11), perfluorooctanoic acid (n=10),
perfluorohexan sulfonate (n=9), perfluorononanoic acid (n=5)) and PFAS mixtures (n=7) were
the most studied. We found that alterations to tryptophan metabolism and the urea cycle were
most reported PFAS-associated metabolomic signatures. Numerous lipid metabolites were also
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suggested to be associated with PFAS exposure, especially key metabolites in glycerophospholipid
metabolism which is critical for biological membrane functions, and fatty acids and carnitines
which are relevant to the energy supply pathway of fatty acid oxidation. Other important
metabolome changes reported included the tricarboxylic acid (TCA) cycle regarding energy
generation and purine and pyrimidine metabolism in cellular energy systems.

Conclusions—There is growing interest in using non-targeted metabolomics to study the
human physiological changes associated with PFAS exposure. Multiple PFAS were reported to be
associated with alterations in amino acid and lipid metabolism, but these results are driven by one
predominant type of pathway analysis thus require further confirmation. Standardizing research
methods and reporting are recommended to facilitate result comparison. Future studies should
consider potential differences in study methodology, use of prospective design, and confounding
bias and measurement errors.

Keywords

Exposome; Metabolomics; Persistent Organic Pollutants; Perfluorinated Compounds;
Polyfluoroalkyl Substances

Introduction

Recent developments in mass spectrometry (MS) and nuclear magnetic resonance

(NMR) spectroscopy have allowed for a comprehensive and quantitative high-resolution
phenotyping of non-targeted metabolic alterations at the molecular level (Holmes et al.
2008; Hu et al. 2020; Jones et al. 2012). This advanced non-targeted workflow can
comprehensively and simultaneously assess hundreds or thousands of exogenous chemicals,
their metabolites, and associated endogenous metabolic perturbations in small volumes of
biological samples (Jin et al. 2021; Tzoulaki et al. 2014). Pathway-mapping and network
modeling can further place identified metabolite features into interconnected biological
pathways and into context with upstream genes and proteins (Johnson et al. 2016).
Furthermore, the characterization of metabolic fingerprints and the deciphering of pathways
can be linked to disease risk factors in the general population. This approach is known as the
metabolome-wide association study (MWAS), a conceptual and technological tool to reveal
the complex cellular mechanisms underlying environmentally mediated diseases. Briefly,
the metabolome markers could be important intermediates to investigate the intricate triple
relationship between exposure, molecular effect, and clinical outcomes (Bictash et al. 2010;
Cai et al. 2020; Chadeau-Hyam et al. 2011; Lu et al. 2019; Nicholson et al. 2008; Rattray et
al. 2018).

There has been increasing concern with respect to the potential health effects of per- and
polyfluoroalkyl substances (PFAS) (Giesy and Kannan 2001; Sunderland et al. 2019). PFAS
are a group of fluorinated chemicals widely used in industrial and commercial applications,
including kitchenware, food packaging, clothing, carpeting and coating (Houde et al. 2006;
Lau 2015; Wang et al. 2017b). PFAS are persistent and ubiquitous in the environment, and
frequently detected in populations globally (Bjerregaard-Olesen et al. 2016; Calafat et al.
2019; Lau et al. 2007; Seo et al. 2018). The half-life of the most commonly identified

PFAS in humans is about 4 to 8 years (Olsen et al. 2007). Contaminated water and food

Environ Int. Author manuscript; available in PMC 2023 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Guo et al.

2.

Page 3

intake, indoor air inhalation and skin contact with the household environment are likely
major exposure routes in human populations (De Silva et al. 2021; Lau 2015; Sunderland et
al. 2019). Epidemiological studies have reported that PFAS exposures were associated with
various human health risks, including child and adult adiposity and other cardiometabolic
functions (Kahn et al. 2020; Rappazzo et al. 2017), cancers (Bartell and Vieira 2021,
Steenland and Winquist 2021), fetal growth and childhood neurodevelopmental outcomes
(Liew et al. 2018), and immunological health conditions (Chang et al. 2016). However, the
underlying biological mechanisms how the exposures lead to these reported adverse health
outcomes remain inconclusive.

Toxicological studies in laboratory animals or human cell lines have examined potential
mechanisms of action for PFAS exposure, which include elevated oxidative stress (Chen et
al. 2017b; Liu et al. 2016), shift from carbohydrate metabolism to fatty acid oxidation (Bjork
et al. 2011), nuclear lipid hyperaccumulation (Li et al. 2017), suppression of glutamate-
related neurological pathway (Wang et al. 2019), and loss of gap junction intercellular
communication (Upham et al. 2009). Some metabolomics studies in /n vivo or in vitro
models have associated PFAS exposure with the metabolism of lipids, amino acids and
purines (Gong et al. 2019; Ortiz-Villanueva et al. 2018; Zhang et al. 2021), but the dosage
in experimental studies might not be comparable to exposure of the general population.
Human studies of biological responses associated with PFAS exposures have predominantly
focused on selected and targeted lipid or hormone markers or biomarkers of liver function
(Donat-Vargas et al. 2019; Geiger et al. 2014; Gleason et al. 2015). In addition, increasing
numbers of epidemiological studies have employed non-targeted metabolomics to identify
early effect predictors for health risks due to PFAS exposure, but no studies to date have
evaluated the methodology and robustness of findings in these environmental metabolomics
studies.

The purpose of this scoping review is to provide an assessment of the current evidence
regarding non-targeted metabolomics and associations with PFAS exposure in humans. We
evaluated the study characteristics, research methods, metabolites identified, and metabolic
pathways reported to be associated with specific PFAS chemicals in these studies. We also
identified knowledge gaps and made recommendations for future research that examines
alterations of the human metabolome associated with PFAS and related environmental
chemical exposures.

Material and methods

We conducted a scoping review in compliance with the PRISMA methodology for

Scoping Reviews (Tricco et al. 2018). This review summarized the literature on
epidemiological studies through database searching (PubMed, Dimensions, Web of Science
Core Collection as licensed at Yale, Embase via Ovid, Scopus), and citation chaining

(via Citationchaser (Haddaway et al. 2021), which uses Lens as its data source). The
searched terms used in PubMed were: (PFAS[tw] OR PFASs[tw] OR perfluoro*[tw]

OR polyfluoro*[tw] OR PFOS[tw] OR PFOA[tw] OR PFNA[tw] OR PFHxS[tw] OR
PFSA[tw] OR PFCA[tw] OR PFOSA[tw] OR PFDA[tw] OR PFUNDA[tw] OR PFDeA[tw]
OR PFDoA[tw] OR PFHpA[tw] OR PFUdA[tw] OR EtFOSAA[tw] OR MeFOSAA[tw])
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AND (metabolomics[MeSH Terms] OR metabolome[MeSH Terms] OR metabolomics[tw]
OR metabolic[tw] OR metabolome[tw] OR metabonomics[tw]) AND (non-targeted[tw]

OR non-target[tw] OR untargeted[tw] OR untarget[tw] OR mwas[tw] OR metabolome-
wide[tw]) NOT (animal[mh] NOT human[mh]). Similar terms and logic were applied in
other databases (Appendix A). We reviewed the titles of all study items found by the search
and reviewed abstracts and full articles when necessary to identify studies meeting our
inclusion criteria. The inclusion criteria were: 1) published epidemiological original articles,
2) publication date range from the year 2000 to 1st April 2021, 3) no language limit, 4) with
at least one type of PFAS measured in participants’ biofluid samples, 5) with non-targeted
metabolomics applied in participants’ biofluid samples.

Information was abstracted based on the publication in print and any further appendices
provided by the authors using a tabular format. We extracted study characteristics, including
study design, country/location (with project names if applicable), study population, sample
size, measured PFAS types, sample collection, analytical platform of both PFAS exposure
and metabolome, statistical analysis, and main findings on metabolomic features and
pathways. In summarizing study findings related to exposure and metabolomic associations,
we focused on the four most studied PFAS compounds which were reported in at least three
studies (PFOS (n=11), PFOA (n=10), PFHxXS (n=9), and PFNA (n=5)) and well-defined
PFAS mixtures (n=7). The recent scientific evaluation from European Food Safety Authority
(EFSA) has also focused on these four PFAS because they are more comparable in terms of
observed levels in human blood, as well as several toxicokinetic effects and health effects

in animals (Chain et al. 2020). We first presented the significant metabolomic features

and pathways (along with defined statistical significance levels) reported in each study.
Whenever available, we recorded metabolomic features with identification confidence levels
in the Metabolomics Standards Initiative (MSI) reporting criteria (Schymanski et al. 2014;
Sumner et al. 2007). Briefly, the confidence of identification is often communicated with
the following five identification levels: fully identified compounds (level 1); putatively
annotated compounds (level 2); putatively characterized compound classes (level 3);
unassigned compounds (level 4-5) (Schymanski et al. 2014; Sumner et al. 2007). Level

1 identifications were confirmed via an accurate matching on a reference standard with MS,
MS/MS and retention time. Level 2 features were identified based on accurate mass and
fragmentation patterns using mass spectra in literature or external laboratory data without
retention time information. Level 3 features were assigned to a chemical class rather than
the exact structure, using a combination of accurate mass, mass spectra and fragmentation
pattern knowledge, and retention time window. Level 4 and 5 features were those unable to
be assigned with a possible structure, but only molecular formula or exact mass could be
affirmed. In our main table (Table 1), we listed confirmed level 1 features, or all assigned
features (level 1-3) when specific confidence levels were unavailable, while unassigned
compounds (level 4-5) were excluded in this study. Next, we counted the overlap of reported
significant associations between aforementioned four individual PFAS or PFAS mixtures
and metabolites/pathways across studies. We used stacked barplots in the ggp/ot2 R package
to present the findings (R Development Core Team 2021; Wickham H 2016). A significant
association included was defined as a reported false discovery rate (FDR) value <.05 if not
otherwise specified in Table 1 or its footnotes. All assigned metabolomic features (level 1
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to 3) were also included in the quantitative description, and the features/pathways associated
with PFAS were summed by the study numbers. We presented the results for individual
PFAS or PFAS mixtures separately. Definitions of PFAS mixtures in each applicable study
could be found in Supplementary Table 1. For visualization, metabolites and metabolic
pathways were grouped based on chemical taxonomy in human metabolome database
(HMDB) (https://hmdb.ca/) and metabolism category in Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (http://www.genome.jp/kegg/), and ranked by the total number
of studies regardless of associated PFAS types.

We utilized a scoring tool to evaluate the methodology and report quality of included
studies, based on existing guidelines (Barnes et al. 2016a; Barnes et al. 2016b; Jin et al.
2021; Spicer et al. 2017; Sud et al. 2016; van der Werf et al. 2007). Five metrics were used
including a total score of six (Supplementary Figure 1). The scores for each study were
assessed independently by two authors (PG and QY) and subsequently confirmed by a third
author (ZL).

3. Results

Figure 1 shows the process of study inclusion and exclusion using the PRISMA 2009

Flow Diagram. We identified a total of 11 eligible publications (2017-2021) written in
English. Nine of the included publications were identified through the database searches,
and two additional included publications were extracted through citation chaining. Most

of the studies reviewed were scored (>3) for having a moderate to high methodological
and reporting quality (Supplementary Table 2). Briefly, all studies have provided full
description or relevant references on the study populations, the sample collection, and the
analytical methods for PFAS exposure measurement. Three studies did not report complete
information for data processing workflow including imputation of missing values (Alderete
etal. 2019; Hu et al. 2019; Jin et al. 2020), but software used (e.g., xMSanalyzer) was
reported. Five studies (Alderete et al. 2019; Jin et al. 2020; Li et al. 2020; Lu et al. 2019;
Wang et al. 2017a) did not clearly state certainty of metabolite identification or did not
capture high confidence metabolites (level 1-2).

3.1 Study designs and populations

Table 1 presents the study characteristics of the included studies. Study samples were
collected from nested case-control studies (n=3), prospective cohorts (n=4), cross-sectional
studies among occupational workers (n=2) or in high-risk group (/.e., obesity history without
diabetes, n=1) or patients of a specific disease (/.e., non-alcoholic fatty liver disease, n=1).
The number of study participants in these studies ranged from 40 to 965. The age groups
covered were broad and included children and adolescents (Alderete et al. 2019; Jin et al.
2020; Kingsley et al. 2019), young adults (Chen et al. 2020), middle-aged adults (Lu et al.
2019; Schillemans et al. 2020; Wang et al. 2017a), and elderly (Salihovic et al. 2019). There
were three studies focused on pregnant women (Hu et al. 2019; Li et al. 2020; Maitre et al.
2018). The eleven studies were conducted in the United States (n=6), in Europe (n=3), and
in China (n=2).
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Nine studies assessed cross-sectional PFAS and metabolome associations using samples
collected at the same study date. One study evaluated baseline PFAS exposure and
metabolite changes over an average of 1.3 years of follow-up (Alderete et al. 2019). A
pregnancy study assessed PFAS at baseline and metabolomic profiles twice in the first
and the third trimesters (Maitre et al. 2018). Details of statistical models and covariate
information are presented in Supplementary Table 3.

Four studies were designed to investigate metabolites or metabolic markers associated with
PFAS exposures and also their relationship with metabolic health outcomes. Findings of
these four studies are presented in Table 2. The investigated health outcomes included non-
alcoholic fatty liver disease (NAFLD) (Jin et al. 2020), alterations in glucose homeostasis
(Alderete et al. 2019), type 2 diabetes (T2D) (Schillemans et al. 2020), and cardiometabolic
outcomes such as oral glucose tolerance test (OGTT) measures, body fat and lipid profiles
(Chen et al. 2020).

3.2 PFAS exposure assessment

Table 1 shows that 2 to 11 types of PFAS were investigated in these 11 studies. The most
studied PFAS compounds (in at least 3 studies) were PFOS (n=11), PFOA (n=10), PFHxS
(n=9), and PFNA (n=5). PFAS levels were measured in human plasma (n=6) or serum
(n=5) samples. Among three studies in pregnant women, one study measured PFAS in the
first-trimester serum samples (Maitre et al. 2018) while two studies used serum samples
throughout pregnancy and/or from early postpartum period (1-3 days after delivery) (Hu
etal. 2019; Li et al. 2020). In addition to studying individual PFAS compounds, seven
studies evaluated PFAS mixtures (Supplementary Table 1). Three of these studies computed
principal components as a composite variable representing PFAS burden (Alderete et al.
2019; Jin et al. 2020; Schillemans et al. 2020), two studies calculated “total PFAS” by a
molarity sum of all the detected PFAS (Lu et al. 2019; Wang et al. 2017a), and one study
constructed total PFAS using multivariable multiple linear regression (MMLR) (Salihovic et
al. 2019).

All studies employed MS coupled with liquid chromatography (LC) to measure PFAS
compounds (Table 1). Additional analytical details regarding PFAS exposure assessments
can be found in Supplementary Table 4. All studies reported the overall frequencies of
detection for each PFAS and only two studies did not report the limits of detection (Hu et al.
2019; Maitre et al. 2018). Eight studies have provided references for quality assurance and
quality control procedures. In general, PFOS was detected at the highest concentrations

in most studies, followed by PFOA. The highest concentrations of PFOS appeared in

the China-based occupational cohort in 2017 (median ~909 ng/mL) (Wang et al. 2017a),
followed by pregnant women in the U.S. CHDS cohort with samples collected in the

1960s (median ~42 ng/mL) (Hu et al. 2019; Li et al. 2020; Wang et al. 2011), and in the
middle-aged adults from North Sweden in 1990s (median ~20 ng/mL) (Schillemans et al.
2020). The lowest concentrations of PFOS (median ~4 ng/mL) were reported in a study of
U.S. children and adolescents between 2007 and 2015 (Jin et al. 2020). These findings are
consistent with the temporal changes in perfluorinated compounds reported previously (Kato
etal. 2011; Liu et al. 2021; Nyberg et al. 2018).
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3.3 Non-targeted metabolomics analysis

Among all eleven studies, ten studies conducted non-targeted metabolomics analysis in
plasma (n=6) or serum (n=4). Only one study (in pregnancy) examined urinary metabolomic
profiles (Maitre et al. 2018).

For analytical platforms, ten studies used LC-MS for metabolomics in plasma or sera and
one of them additionally used gas chromatography—mass spectrometry (GC-MS) (Lu et

al. 2019). One urinary metabolomics (Maitre et al. 2018) analysis was conducted using

1H NMR spectroscopy (Beckonert et al. 2007). LC-MS appears to be the most common
approach for metabolomic analyses related to PFAS exposures (Soltow et al. 2013), but
there were various characteristics regarding types of ionization (/.¢e., electrospray ionization,
electron ionization), modes of ionization (/.e., positive, negative), mass analyzer (i.e.,
orbitrap, quadrupole time-of-flight (QToF)), and types of columns. For mass analyzer,

an orbitrap was used in eight studies and two used the QToF. Following LC-MS, six
studies extracted raw data files and aligned them using apLCMS (Yu et al. 2009; Yu et al.
2013) with modifications by xMSanalyzer R package to improve feature detection, quality
assessment, and annotation (Uppal et al. 2013). Three studies (Lu et al. 2019; Salihovic

et al. 2019; Schillemans et al. 2020) took raw data into XCMS data processing workflow
implemented in R (Ganna et al. 2015; Shi et al. 2017). One (Wang et al. 2017a) used SIEVE
software to process the raw data (Zhang et al. 2014).

All studies have described the quality control and quality assurance approaches for the
metabolomics analysis undertaken. Four studies reported that all individual samples were
analyzed in triplicate (Chen et al. 2020; Hu et al. 2019; Jin et al. 2020; Kingsley et al.

2019), while this information was unclear in the other studies included. Only one study

(Hu et al. 2019) included internal standards for non-targeted metabolomics analysis. Among
the studies reviewed, three studies (Alderete et al. 2019; Hu et al. 2019; Jin et al. 2020)

did not report the methods used for missing value data imputation, data normalization, or
transformation. Different tools were used to address batch effects, including a cluster-based
approach that calculated measurement drift per batch with batchCorrR package (Brunius et
al. 2016), or using the ComBat method in xMSanalyzer software to correct the m/z features
by batches (Johnson et al. 2007; Uppal et al. 2013). One study (Schillemans et al. 2020)
used the former tool, three studies (Alderete et al. 2019; Jin et al. 2020; Kingsley et al. 2019)
applied the latter method. It is unclear whether the three other studies that used xAMSanalyzer
software (Chen et al. 2020; Hu et al. 2019; Li et al. 2020) also conducted the ComBat
method as this was not reported. Details regarding batch correction were not summarized in
the remaining studies (Lu et al. 2019; Salihovic et al. 2019; Schillemans et al. 2020; Wang
et al. 2017a). The heterogeneity in reporting for metabolomics studies has been previously
noted, and suggestions have been made for improving reporting practices (Peter et al. 2021;
Rattray et al. 2018).

3.4 Metabolite alterations associated with PFAS exposure

Eight studies reported significant associations between four dominant types of PFAS or
PFAS mixtures and metabolites (identified to MSI levels 1-3), while the other three studies
did not show feature-level associations (Alderete et al. 2019; Kingsley et al. 2019; Li et
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al. 2020). The full list of metabolites associated with PFAS is presented in Supplementary
Table 5. For metabolite compound classes reported to be associated with PFAS exposures
are in at least three studies, the numbers of associations organized by the compound class,
the category of metabolite within the class, and the types of PFAS are shown in Figure 2.

A total of 6 studies reported associations between PFAS and amino acid-related metabolites
(Figure 2). Two specific amino acid-related metabolites were suggested in multiple studies
which included pyroglutamic acid (Lu et al. 2019; Wang et al. 2017a) and either glutamate/
glutamine (Chen et al. 2020; Hu et al. 2019), but the reported associations varied in

both positive or negative directions (Supplementary Table 5). In addition, PFAS were also
associated with lipids and lipid-like metabolites in the fatty acid esters or fatty acids and
related conjugate classes. The specific lipid-related metabolites most commonly reported
are carnitines/acylcarnitines (Chen et al. 2020; Hu et al. 2019; Lu et al. 2019) and
glycerophosphocholines (Chen et al. 2020; Lu et al. 2019; Salihovic et al. 2019) . Most

of these associations reported were related to PFOS and PFOA exposures while a few
metabolites were detected for PFHXS or the mixture of PFAS compounds.

3.5 Metabolic pathway alterations associated with PFAS exposure

Nine studies conducted pathway analysis to identify key altered metabolic pathways
associated with PFAS exposure. Six of them used Mummichog pathway enrichment
analysis (Li et al. 2013), which can directly map metabolites predicted in high-throughput
metabolomics data to known metabolic networks and predicts functional activity (Li et

al. 2013). One study (Salihovic et al. 2019) performed pathway enrichment and topology
analysis using MetaboAnalyst 3.0 (Xia and Wishart 2016). One study (Lu et al. 2019)
conducted pathway analysis using the KEGG database (http://www.genome.jp/kegg/). While
one study (Wang et al. 2017a) did not provide information on the tools used for pathway
analysis.

The full list of altered metabolic pathways significantly associated with four dominant PFAS
subtypes or mixtures are shown in Supplementary Table 6. For metabolic pathways reported
to be associated with PFAS in at least three studies, the numbers of associations organized
by the category of metabolism, specific metabolism pathways, and the types of PFAS are
shown in Figure 3.

Similarly, amino acid metabolism and lipid metabolism were the most commonly suggested
metabolic pathways associated with PFAS exposure (Figure 3). For amino acid metabolism,
urea cycle/amino group metabolism (Alderete et al. 2019; Hu et al. 2019; Jin et al. 2020;

Li et al. 2020; Lu et al. 2019), tryptophan metabolism (Chen et al. 2020; Kingsley et al.
2019; Li et al. 2020; Lu et al. 2019), valine, leucine and isoleucine degradation (Hu et al.
2019; Jin et al. 2020; Kingsley et al. 2019; Li et al. 2020), glycine, serine, alanine and
threonine metabolism (Alderete et al. 2019; Hu et al. 2019; Jin et al. 2020; Kingsley et al.
2019), and beta-alanine metabolism (Alderete et al. 2019; Hu et al. 2019; Kingsley et al.
2019; Li et al. 2020) were associated with multiple PFAS exposure types and for PFOS
was reported in at least two studies. For lipid metabolism, glycerophospholipid metabolism
(Chen et al. 2020; Jin et al. 2020; Kingsley et al. 2019; Li et al. 2020; Salihovic et al.
2019), glycosphingolipid metabolism (Alderete et al. 2019; Chen et al. 2020; Kingsley et
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al. 2019; Li et al. 2020) , de novo fatty acid biosynthesis (Alderete et al. 2019; Chen et

al. 2020; Kingsley et al. 2019), fatty acid activation (Chen et al. 2020; Kingsley et al.

2019; Li et al. 2020), they were associated with various PFAS exposure types and for

both PFOS and PFOA were reported in at least two studies. Additional pathways were

also suggested, such as carbohydrate metabolism (e.g., TCA cycle), nucleotide metabolism
(7.e.,, purine and pyrimidine metabolism), and other pathways relevant to vitamins and
xenobiotics metabolism. These metabolic pathways were linked with each of the individual
PFAS compounds and their mixtures. These metabolic pathways were not specific to either
plasma or serum samples (Supplementary Figure 2). Although there were only three studies
in children and adolescents, this group covered metabolic pathways that were also reported
for adults and pregnant women. The Mummichog algorithm contributed the most to the
metabolic pathway summary, which also overlaps with pathways reported from using other
statistical algorithms.

4. Discussion

The 11 studies we reviewed demonstrated the increasing utilization of the non-targeted
metabolomics approach to screen for alterations of the human metabolome associated with
specific and mixtures of PFAS exposure in wide demographic groups. We identified some
overlapping PFAS exposure and metabolomic associations reported across studies, but these
results were synthesized from a relatively low number of eligible studies thus require further
scrutiny. Future studies are needed to investigate potential differences across demographic
subgroups and research methodology and explore whether the biological pathways altered
by PFAS exposures could lead to specific clinical outcomes using longitudinal designs.
Standardization of research approach and reporting of metabolomic results (e.g., data
processing workflow, confidence levels of metabolite identification, and pathway analyses
procedures) are important to support cross-study comparisons. Potential influences from
systematic errors, such as confounding bias and measurement errors, also need attention in
future research.

Previous epidemiological research have suggested the effects of multiple types of PFAS

on altering amino acid and lipid metabolism and cardiometabolic health risks (Chen et al.
2017a; Cheng et al. 2012; Chou et al. 2018; Farthing et al. 2015; Kovalik et al. 2021,
Martinez et al. 2020; Qi et al. 2017; Senyavina et al. 2013). In non-targeted metabolomic
associations we evaluated, a top-hit pathway related to PFAS exposure in the reviewed
studies was urea cycle/amino group metabolism, which is an indispensable pathway to
dispose of the excess nitrogen in the body (Alemany 2012; Ramos-Tovar and Muriel 2017).
The disruption of urea cycle metabolism has implications on insulin resistance (Cao et

al. 2019; Li et al. 2010) and diabetes-related heart failure in older adults (Kovalik et al.
2021; Razavi et al. 2020; Urpi-Sarda et al. 2019). Among metabolites involved in lipid
metabolism associated with PFAS, carnitines/acylcarnitines are major molecules in the
energy supply pathway of long chain fatty acid p-oxidation. Impaired fatty acid oxidation
along with tissue lipid accumulation has been recognized as critical in the pathophysiology
of obesity and insulin resistance (Bene et al. 2018; Mihalik et al. 2010), and cardiomyopathy
(Kompare and Rizzo 2008; Wang et al. 2018). Another top-hit lipid pathway associated with
PFAS exposure was glycerophospholipid metabolism, which has been previously linked to
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CVD progression (Chen et al. 2021), T2D and tuberculosis comorbidity (Lopez-Hernandez
et al. 2019). Overall, these findings which associate PFAS exposure with changes to

the endogenous metabolome corroborate results from epidemiological studies, suggesting
that PFAS exposures might affect cardiometabolic health outcomes across life-span from
childhood (Li et al. 2021a; Manzano-Salgado et al. 2017) to adulthood (Valvi et al. 2021;
Zeeshan et al. 2021).

The metabolomic findings also implied that PFAS could have biological effects on

several other human organs and physiological processes. For the kidney, one of the most
significantly changed pathways for amino acid metabolism in the reviewed studies -
tryptophan metabolism, is a sensitive and reliable indicator of renal injury, as the amount
of L-tryptophan decreases with the development of chronic kidney disease (Chou et al.
2018; Gong et al. 2019). Abnormalities of purine and pyrimidine metabolism could also
lead to hyperuricemia (Gong et al. 2019; Lv et al. 2013; Rathmann et al. 1998), a risk
factor of chronic kidney disease (Gong et al. 2019). A growing body of toxicological and
epidemiological evidence has indicated that PFAS compounds are emerging environmental
threats to kidney health (Stanifer et al. 2018). In terms of the liver, some aberrant amino
acids (e.g., glutamate/glutamine) and amino acid derivatives (e.g., pyroglutamic acid) have
been recognized as prominent factors for the development of nonalcoholic steatohepatitis
(Qietal. 2017). Impaired fatty acid metabolic pathways included muscle damage (Lehmann
et al. 2010) and hepatic dysfunction (Kompare and Rizzo 2008). The liver toxicity of
PFAS has been widely documented in animal literature and recently also in clinical studies
(Cave 2020; Gleason et al. 2015; Wu et al. 2018). Concerning the central nervous system,
glutamate is a major excitatory neurotransmitter in the central nervous system which is
critical for neuronal growth and maturation (Wang et al. 2019). The glycerophospholipid
metabolism could affect fetal growth (Morillon et al. 2021), the brain neural membrane
functions (Farooqui et al. 2000), and neuropsychiatric diseases (Healy-Stoffel and Levant
2018; Kalkman et al. 2021; Lin et al. 2010; Young and Conquer 2005). Finally, the

TCA cycle and nucleotide metabolism (/.e., purine and pyrimidine metabolism) are critical
for cellular homeostasis and energy generation related mechanisms (Martinez-Reyes and
Chandel 2020; Nyhan 2005). A defective TCA cycle has been linked with a variety of
clinical diseases in mechanistic studies, ranging from encephalopathies, neurodegenerative
diseases, to cancers (Briere et al. 2006).

4.1 Quality of evidence and risk of bias

Approximately 40% of the metabolic pathways associated with PFAS exposure identified

in this review were reported in at least three studies, and other sporadic and inconsistent
reports could be affected by methodological issues, chance errors, or population differences.
Although most studies reviewed received moderate to high methodological and reporting
quality, an unstandardized data processing workflow for non-targeted metabolomics data,
and the uncertainty of metabolite identifications bring challenges for findings synthesis
across studies. First, the low quality of sample collected may introduce measurement errors,
and information provided from each study generally did not allow the direct assessments of
the influence of sample collection and storage. We may not rule out measurement errors of
exposures for each individual study, which is a common issue for any meta-analyses. Quality
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control procedures should be described in all studies. Strengths and limitations of the two
predominantly utilized analytical platforms for data acquisition and processing (i.e., MS and
NMR spectroscopy) have been summarized elsewhere (Aderemi et al. 2021). Briefly, NMR
spectroscopy has advantages in the reproducibility of result, which is also more quantitative,
in addition the technique is non-destructive to the sample and is easier to prepare,

whereas the MS approach provides much wider metabolite coverage and that comprehensive
metabolite databases have been developed for metabolite identification. The raw data output
from both MS and NMR spectroscopy requires pre-processing, including peak selection

and alignment, baseline correction, and data preparations such as normalizing, centering,
removing outliers and transforming data (Hivert et al. 2015). In addition, missing value
imputation and correction for batch effects are also crucial to consider. Standardizing these
data steps, and reporting, is important for cross-study comparison and synthesis.

Another important consideration is metabolite identification. Recent advances for metabolite
identification have been summarized elsewhere (Nguyen et al. 2019a). To date, the most
common method utilized for non-targeted studies is the traditional ion-centric approach,
where the signals are compared to a standard reference library, such as the HMDB or
METLIN (Montenegro-Burke et al. 2020) to identify metabolites (Hivert et al. 2015).
However, given the large number of metabolites and the broad range of chemistries

in reality, no reference library is complete to date (Nguyen et al. 2019a). Without

stable isotope-labeled internal standards added to each sample for specific chemicals of
interest, the non-targeted metabolomics analysis could have larger measurement errors in
quantification but non-targeted approach has the advantage of being more feasible and
cost-efficient compared to the targeted metabolomics approach (Chen et al. 2020). This
is a general concern for current metabolomics studies in all fields which requires further
development of metabolite identification techniques and the standardization of reporting.

In comparison, the exposure assessment methods and reporting of the common PFAS
compounds in the reviewed studies were more consistent. All studies measured PFAS in
blood plasma or serum, which has a 1:1 plasma to serum ratio in humans (Carpenter David
et al. 2002; Ehresman et al. 2007). The studies did not utilize other methods to measure
PFAS levels that might generate more measurement errors, such as geospatial modeling
(Guelfo et al. 2018). The four main compounds of interest in this review generally had
very high detection rates, but data steps to handle the levels below the limit of detection
varied. A major issue in PFAS exposure assessment is the heterogeneity in the definition
of PFAS mixture. Strategies to study environmental mixtures have evolved over time and
the statistical modeling techniques are expected to advance (Carpenter David et al. 2002;
Weisskopf et al. 2018). Only two of the eleven studies (Alderete et al. 2019; Maitre et

al. 2018) collected repeated biological samples with a short time gap between the PFAS
assessment and the measures of the metabolome.

Since metabolomics studies can identify thousands of features, multiple testing in statistical
analyses needs to be considered. Findings for single/sporadic metabolites are subject to false
positive results (type | errors) without multiple testing correction, but false negative results
(type Il errors) could occur when a strict statistical significance adjustment threshold was
used. Pathway enrichment approaches that focus on multiple hits on the same metabolic
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pathways were suggested to be more robust against false positive findings and yield

more consistent and replicable findings (Khatri et al. 2012; Nguyen et al. 2019b). This

also underscores a key point to establishing the validity of pathway results —accurate
identification of the upstream metabolites, as discussed above. Different methods for
pathway enrichment analysis used could create discrepancies for cross-study comparisons.
In our review, seven studies conducted pathway enrichment analysis based on an established
algorithm within the software (e.g., the Mummichog algorithm), thereby the common
findings are mostly driven by a single pathway analysis algorithm. The Mummichog
program uses databases which encompass thousands of human metabolites such as

KEGG, Reconl, and the Edinburgh human metabolic network, therefore the assignment

of metabolites to pathways is based on canonical knowledge of metabolite pathways.

Some pathways reported to be associated with PFAS exposure could also be affected by
other environmental contaminants (Heindel et al. 2016; Li et al. 2021b), as many of the
detoxification pathways are shared, and many of the contaminants are sex-steroid hormone
receptor disruptors that share similar effects. Some might argue that this algorithm may
systematically lead to ubiquitous endogenous pathways closely linked to oxidative stress and
systematic inflammation (Li et al. 2021b; Samet and Wages 2018). However, three studies
that did not use Mummichog algorithm also reported amino acid and lipid metabolism
associated with PFAS exposure (Lu et al. 2019; Salihovic et al. 2019; Wang et al. 2017a),
and these metabolic pathways were also detected in the studies using Mummichog algorithm
(Supplementary Figure 2). Our exploratory approach is a timely initial assessment to look
for overlaps in metabolomics signatures associated with PFAS exposure based on available
evidence. Future mechanistic studies are needed to confirm these findings.

Systematic errors, particularly confounding bias, could influence the findings we reviewed.
There is a general confusion in the epidemiological literature on whether the research
performed is designed to conduct prediction modeling or to estimate the (causal) effect
from defined exposures. If the study objected is to estimate exposure effect, confounding
adjustment could follow rules and methods outlined in causal modeling, guided by
knowledge in the literature (i.e., use of the directed acyclic graphs to select covariates
which was only performed in one of the studies reviewed (Alderete et al. 2019). Generally,
diet, lifestyle factors, and the underlying health status of the participants are key potential
confounders when estimating PFAS exposure effects on health (Eick et al. 2021; Seshasayee
et al. 2021). Demographic-specific variables, such as occupational factors or reproductive
history in pregnancy cohorts, should be considered depending on the study setting.
Confounding by other environmental pollutants can potentially influence the reported
findings (Samet and Wages 2018), but a blind adjustment for multiple highly correlated
exposure variables is not encouraged because that would lead to other problems such as a
decrease in statistical efficiency and even the risk for bias amplification (Weisskopf et al.
2018). Other sources of bias should also be considered, including survival bias if PFAS
exposures can influence mortality in the study setting (Liew et al. 2015; Mastrantonio et al.
2018), and measurements errors that influence both the exposure and the outcome variables.
The literature in this field thus needs to pay more attention to these potential problems when
correlating PFAS exposure data with markers generated from the human metabolome in
order to derive valid inference.
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4.2 Limitations of this review

This present review should be considered with several limitations. First, our review was
limited by the number of eligible studies, heterogeneity in definitions of PFAS mixtures,
and a wide confidence in the robustness of metabolite identification (using MSI levels 1

to 3) detected from the individual studies. In the description of study characteristics, there
were some limits on the level of details provided by the individual reports. Moreover, our
findings for the PFAS-associated metabolite and metabolic pathway changes across studies
would be useful to point towards future investigation, but they should not be used to draw

a definite conclusion with the current evidence available. As discussed above, there was
considerable heterogeneity in the research methods in the current literature, including the
definition for PFAS mixture, the data processing steps and identification of metabolites, and
the approaches used for pathway enrichment analyses. Our approach prioritizes on summing
and ranking the common and overlapping metabolite features or pathways associated with
specific PFAS compounds from the articles we reviewed. This approach, however, would not
capture true exposure-metabolomic associations that are demographic and health outcomes
specific, e.g., true specific exposure-outcome associations that are not expected to show up
across demographic groups from a wide range of studies.

4.3 Recommendations for future research

The findings of our review have identified a few research gaps and highlighted several
important areas for future studies. First, longitudinal or repeated measurement of metabolic
profiling are needed to distinguish timing-specific or cumulative exposure effects of PFAS
on alterations of metabolome. Also, several steps could be taken to further strengthen

the confidence and validity of findings derived using metabolomic data. Second, methods
that improve the identifications of detected metabolites and the additional use of pathway
analysis and replications of findings could rule out false positive results (Cai et al. 2020;
Nguyen et al. 2019b). For example, to further investigate PFAS-related exposure-disease
mechanisms, a “meet-in-the-middle” approach could be explored, e.g., studying PFAS,
metabolome, and disease phenotypes relationships in the same study population (Chadeau-
Hyam et al. 2011; Jin et al. 2020; Schillemans et al. 2020). Also, an incorporation of
causal mediation analyses using metabolomic data might help to statistically quantify the
biological mediating pathways between the association of an environmental exposure and
the health outcome (Inoue et al. 2020). Third, biases that can threaten the validity of
findings should also be addressed or acknowledged. For instance, all studies reviewed
were in observational nature, but few considered potential biases due to confounding,
selection bias and measurement errors. An incorporation of statistical methods that could
be used to evaluate or adjust for these biases when analyzing high-dimensional biologic
data in human cohorts are needed (Misra et al. 2019). More potential confounding factors
should be evaluated in future studies, such as factors that can determine the level of PFAS
exposures (e.g., diet, occupation, socio-economic profile, co-exposures to other chemicals,
and chronic health conditions of participants) and influence the metabolomic signals.
Studies of co-pollutant exposures are needed, but blindly co-adjusting multiple correlated
exposure variables in one regression model should be avoided (Weisskopf et al. 2018). Forth,
it is difficult to standardize the non-targeted metabolomic workflow between research labs
due to the various analytical platforms and bioinformatics approaches used, and the inherent
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complexity of the metabolome for which there is not a one-size-fits-all approach to identify
all metabolites within a sample. However, some standardization within the workflow

would add robustness, improve the study quality of metabolomics research, and facilitate
comparisons of findings across studies (Hernandez-Mesa et al. 2021). Fifth, research of the
newer or less studied PFAS compounds with clear reports on quantification procedures (e.g.,
analytical platforms, LOD, frequencies of detection, missing data imputation) are needed.
The studies we reviewed focused on the most common types of PFAS and their mixtures,
while recent reports have suggested there are thousands of fluorinated chemicals have been
manufactured and used (OECD 2018). The real PFAS body burden is underestimated when
not counting for the emerging replacement of other major types of PFAS. Currently, no
human studies could accurately quantify all possible PFAS chemicals, and this is awaiting
advancement. Finally, literature review of metabolomics studies may benefit from using
citation chaining tools and searching synonyms of “non-targeted metabolomics” thoroughly.
For instance, the application of non-targeted metabolomics was described as “hypothesis-
generating” or indicated by the analytical platform “orbitrap” in some studies (Lu et al.
2019; Wang et al. 2017a), which could be missed by using narrowly defined search terms.

5. Conclusions

In summary, high-resolution non-targeted metabolomics are increasingly being used to
evaluate the biological impacts of PFAS exposures in epidemiological studies. Our review
found that lipid- and amino acid-related pathways were most reported to be associated

with four types of PFAS exposures, and that these PFAS-related metabolome alterations
could have implications for cardiometabolic health and other chronic disease health risk.
However, the overall body of literature is small, and heterogeneity of research methodology
related to metabolomics feature identifications, data processing, and statistical output could
influence the findings. The use of longitudinal measures, improvement in certainty of
metabolite identification, adjustments for confounding and other sources of biases, and a
more standardized procedure in reporting metabolomic findings are some key components
identified for improvement.
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a-CEHC
alpha-carboxyethyl hydroxychromanol

v-CEHC
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gamma-carboxyethyl hydroxychroman

BH4
Tetrahydrobiopterin

C18:2-CN
acylcarnitine 18:2

C18:1-CN
acylcarnitine 18:1

DAHA
deoxyarabinohexonic acid

FDR
false discovery rate

GPC
glycerophosphocholine

HILIC
hydrophilic interaction liquid chromatography

HMDB
Human Metabolome Database

HPLC
high performance liquid chromatography

HRMS
high-resolution mass spectrometry

LysoPC
lysoophosphatidylcholine

NFALD
non-alcoholic fatty liver

NMR
nuclear magnetic resonance

NO
nitric oxide

NR
not reported

OGTT
oral glucose tolerance test
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OH/DC
hydroxyl-/dicarboxyl- acylcarnitine

POPs
persistent organic pollutants

6:2 CI-PFESA
6:2 chlorinated polyfluorinated ether sulfonate

EtFOSAA
2-(N-Ethyl-perfluorooctane sulfonamido) acetic acid

MeFOSAA
2-(N-Methyl-perfluorooctane sulfonamido) acetic acid

PFAS
per- and polyfluoroalkyl substances

PFBA
perfluorobutanoic acid

PFBS
perfluorobutanesulfonic acid

PFHxS
perfluorohexane sulfonic acid

PFOS
perfluorooctane sulfonate

PFOA
perfluorooctanoic acid

PFDA
perfluorodecanoic acid

PFNA
perfluorononanoic acid

PFDoA
perfluorododecanoic acid

PFHpA
perfluoroheptanoic acid

PFOSA
perfluorooctanesulfonamide

PFUdA
perfluoroundecanoic acid
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QToF

quadrupole time-of-flight

RPLC
reversed phase liquid chromatography

Short-chain non-OH/DC
Short-chain non-hydroxyl-/dicarboxyl acylcarnitine

SPE

solid-phase extraction

TCA cycle
Tricarboxylic acid cycle

T2D

type 2 diabetes

UPLC
ultra-pressure liquid chromatography
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Y

Full-text articles excluded, with
reasons (N = 6)
Animal model (n=1)
No metabolomics data (n=1)
Targeted metabolomics (n=2)
No PFAS exposure data (n=2)

Full-text articles assessed for
eligibility »
(n=17)

Y

Studies included in synthesis
(n=11)

Figure 1. PRISMA Flow diagram depicting process of article selection.
& WOS: Web of Science Core Collection as licensed at Yale Institution. Abbreviation: PFAS,

per- and polyfluoroalkyl substances.
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1Other amino acid-related metabolites -

Amino acids, peptides, Non-essential amino acids A

and analogues

(n=6) Essential amino acids A

Non-proteinogenic amino acids -
Carnitines or acylcarnitines A

Falty acid esters
(n=5) Other fatty acid esters -
Fatty acids 1

Conjugate bases of fatty acids -
Lysophosphatidylcholines 1
Glycerophosphocholines 1

Phosphatidylcholines 1

Fatty acids and conjugates
(n=3)

Glycerophosphocholines
(n=3)

Metabolite compound class Metabolite compound category M PFHxS W PFNA B PFOA | PFOS W PFAS mixtures

5 10 15
Total number of studies by PFAS types

o -
O -

L, E

Figure 2. A summary of the commonly detected metabolite compound classes (in at least three
studies) and categories associated with four individual PFAS compounds and PFAS mixtures.

Individual PFAS compounds and the mixtures were differentiated in color, and the total
number of significant associations summing across PFAS types reported in the eleven
studies were organized according to the metabolite compound class and categories in

human metabolome database (HMDB). Abbreviations: PFAS, per- and polyfluoroalkyl
substances; PFHXS, perfluorohexane sulfonic acid; PFOS, perfluorooctane sulfonate; PFOA,
perfluorooctanoic acid; PFNA, perfluorononanoic acid.
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Metabolism category

Amino acid metabolism
(n=8)

Lipid metabolism

(n=8)

Carbohydrate metabolism
(n=7)

Nucleotide metabolism (n=6}

Xenobiotics biodegradation and metabolism (n=4) |

Metabolism of cofactors and vitamins (n=6) | Vitamin B3 (nicotinate and nicotinamide) metabolism
1

Metabolic pathway

Urea cycle/amino group metabolism 4
Tryplophan metabolism o

Valine, leucine and isoleucine degradation 4
Glycine, serine, alanine and threonine metabolism 4
Beta~alanine metabolism 1

Alanine and aspartate metabolism -

Lysine metabolism

Tyrosine metabolism

Glutamate metabolism

Aspartate and asparagine metabolism 1
Glutathione metabolism 1

Arginine and proline metabolism 1
Glycerophospholipid metabolism 1
Glycosphingolipid metabolism A

Linoleate metabolism A

De novo fatty acid biosynthesis 1

Fatty acid activation 4

Butanoate metabolism 1
Phosphatidylinositol phosphate metabolism 1
Fatty acid metabolism 1

TCA cycle 1

Glyoxylate and dicarboxylate metabolism 4
Ascorbate and aldarate metabolism 4

Sialic acid metabolism 4

Purine metabolism A

Pyrimidine metabolism 1

Xenobiotics metabolism 4

m
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&
n
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Drug metabolism - cytochrome P450 4
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e
o
)
nN
F=

]

Total number of studies by PFAS types

Figure 3. A summary of the commonly detected metabolic pathways (in at least three studies)
associated with four individual PFAS compounds and PFAS mixtures.

Individual PFAS compounds and the mixtures were differentiated in color and the total
number of significant associations summing across PFAS types reported in the eleven
studies were organized according to the metabolism category in Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. Abbreviations: PFAS, per- and polyfluoroalkyl
substances; PFHXS, perfluorohexane sulfonic acid; PFOS, perfluorooctane sulfonate; PFOA,
perfluorooctanoic acid; PFNA, perfluorononanoic acid.
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Table 2.

A summary of studies reporting the metabolomic associations related to both PFAS exposures and health

outcomes.

Publication Health outcomes

Main findings

(Schillemans et al. Type 2 diabetes (T2D)
2020)

(Chen et al. 2020) Cardiometabolic outcomes
(OGTT measures, body fat and
lipid profiles)

(Jin et al. 2020) Non-alcoholic fatty liver disease
(NAFLD)

(Alderete et al. Changes in glucose homeostasis

2019) from a baseline visit to a 1-to-3-
yr visit among adolescents at risk
of T2D

PFAS were associated with two groups of lipid species with opposite relations to
T2D risk: glycerophospholipids were correlated positively with PFAS and were
inversely associated with risk for T2D, while diacylglycerols were correlated
positively with both PFAS and risk for T2D.

Increased lipolysis and fatty acid oxidation were contributing to the biological
mechanisms linking PFAS exposure and impaired glucose metabolism among
young adults.

Each interquartile range increase of PFHXS was associated with increased odds

for liver fibrosis, lobular inflammation, and higher NAFLD activity score. A
cluster of children with nonalcoholic steatohepatitis was characterized by increased
PFAS levels and altered metabolite patterns including higher plasma levels

of phosphoethanolamine, tyrosine, phenylalanine, aspartate and creatine, and
decreased plasma levels of betaine.

Higher PFAS exposure was associated with dysregulation of several lipid and
amino acid pathways and longitudinal alterations in glucose homeostasis in
Hispanic youth.

Abbreviations: OGTT, oral glucose tolerance test; PFAS, per- and polyfluoroalkyl substances; PFHxS, perfluorohexane sulfonic acid; PFOA,

perfluorooctanoic acid; PFOS, perfluorooctane sulfonate.
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