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Abstract

Cold inducible RNA binding protein (CIRP), also named A18 hnRNP or CIRBP, is a cold-shock 

RNA-binding protein which can be induced upon various cellular stresses. Its expression level 

is induced in various cancer tissues relative to adjacent normal tissues; this is believed to play 

a critical role in cancer development and progression. In this study, we investigated the role 

of CIRP in cells exposed to ionizing radiation. Our data show that CIRP reduction causes cell 

colony formation and cell viability reduction after irradiation. In addition, CIRP knockdown cells 

demonstrated a higher DNA damage rate but less cell cycle arrest after irradiation. As a result, 

the induced DNA damage with less DNA repair processes led to an increased cell apoptosis rate 

in CIRP knockdown cells postirradiation. These findings suggest that CIRP is a critical protein 

in irradiated cells and can be used as a potential target for sensitizing cancer cells to radiation 

therapy.

INTRODUCTION

Cold-inducible RNA binding protein (CIRP), also known as A18 hnRNP or CIRBP, is 

a member of the cold-shock protein family (1). This stress-induced protein responds to 

various cellular stresses, including hypoxia (2), hypothermal stress (3) and ultraviolet (UV) 

radiation (4, 5). Our previously reported study revealed that CIRP can only be induced using 

low-dose UVB radiation, but not high-dose UVB radiation, in human keratinocytes. After 

repeated low-dose UVB irradiation, CIRP is involved in transforming normal keratinocytes 

to cancerous cells, which implicates the activation of both NF-κB and Stat3 pro-survival 

pathways (6). In addition, CIRP helps the primary cells to avoid replicative senescence and 

thus become cancerous cells (7). The expression level of CIRP has been proved to be higher 
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in cancer cells compared to adjacent normal tissues in cancer patients; this is believed to be 

related to its pro-survival signaling (8).

Radiation therapy is a widely accepted treatment for human cancers; with approximately 

one half of all newly diagnosed patients receiving radiotherapy during the course of 

cancer treatment (9, 10). However, high-dose therapeutic radiation can cause severe health 

problems due to the radiation-induced damage to adjacent normal tissues, and may cause 

early onset of cytokine cascades (11, 12). Cancer cells that survive irradiation may become 

senescent and recur later in the patient’s lifespan (13). Thus, understanding the cellular 

mechanisms which respond and promote cell survival is critical to improving the efficacy of 

radiation therapy. CIRP is involved in cell survival pathways and closely linked to cancer 

development and progression, there is reason to believe that CIRP facilitates cancer cell 

survival in radiation therapy. Therefore, CIRP could be used as a target to increase cancer 

cell sensitivity to radiation therapy.

In this study, we investigated the role of CIRP in cancer cells treated with radiation. Our 

data indicate that CIRP regulates cellular responses to radiation and may serve as a target for 

radiosensitizer development.

MATERIALS AND METHODS

Cell Culture

Human melanoma cells A375 and M624 were grown in DMEM (Gibco®, Grand 

Island, NY) supplemented with 10% fetal bovine serum (FBS; Gibco) and 1% Penicillin-

Streptomycin (HyClone™ Laboratories, Logan, UT). All cells were incubated at 378C with 

5% CO2.

CIRP Knockdown Stable Cell Line Establishment

The gRNA sequence of CIRP was inserted into a PX330 vector (Addgene, Cambridge, MA). 

The PX330-CIRP vector was co-transfected with a pLenti-CMV-GFP-puro vector at a 5:1 

ratio into A375 and M624 cells. After 72 h of transfection, puromycin (1μg/ml) was added 

for selection. After one week, cells were seeded into 96-well cell culture plates, one cell per 

well. CIRP expression level was detected using Western blot and cell colonies with reduced 

CIRP expression were selected and used for further experiments.

Cell Proliferation Assay

Cell proliferation was determined using an MTT based toxicology assay kit (Sigma-

Aldricht® LLC, St. Louis, MO). A375, A375CIRP−/−, M624 and M624CIRP−/− cells were 

seeded onto 6-well plates at a density of 1 × 105 cells/well and incubated overnight 

for proper attachment. Cells were then either sham irradiated or exposed to 2 Gy. At a 

designated time, 24, 48 or 72 h postirradiation, MTT solution (10× dilution) was added into 

the wells for a 3-h incubation. Absorbance at 570 nm was measured using a Cytatione™ 3 

Cell Imaging Reader (BioTekt® Instruments Inc., Winooski, VT).
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Clonogenic Assay

A375, A375CIRP−/−, M624 and M624CIRP−/− cells were seeded into plates at the density of 

800 cells/60-mm dish, and incubated for attachment overnight. Cells were then either sham 

irradiated or exposed to 2 Gy. After 5–7 days of incubation, the cells were fixed with cold 

methanol for 10 min at –20°C and stained with 1% crystal violet in 25% methanol for 10 

min at room temperature. Fixed cells were then rinsed with water, and colonies with a size 

greater than 0.4 mm were counted using Kodak Molecular Imaging Station In Vivo F system 

(Eastman Kodak, Rochester, NY).

Cell Cycle Analysis

A375 and A375CIRP−/− cells were seeded in 60-mm tissue culture dish and starved in FBS-

free media for 24 h to synchronize the cell cycle. The FBS-free media was then replaced 

with full media and cells were irradiated at 0, 2, 5 or 10 Gy. At 24 h postirradiation, the 

cells were harvested in pellet form by Trypsin and washed twice with ice-cold phosphate 

buffered saline (PBS). Cells were then fixed in 70% ice-cold ethanol for at least 30 min at 

48°C, followed by two washes in PBS. RNase, 50 μl (100 μg/ml), and 200 μl PI (50 μg/ml) 

were added to the fixed cells to degrade RNA and to stain DNA. Stained cells were analyzed 

using an Accuri™ C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ).

Western Blot Analysis

Cells were lysed with Nonidet™ P-40 (NP-40) lysis buffer (2% NP-40, 80 mM NaCl, 

100 mM Tris-HCl pH 8.0, 0.1% SDS) with proteinase inhibitor mixture (cOmplete™, 

Roche Diagnostics, Indianapolis, IN). Cell lysates were incubated on ice for 15 min and 

then centrifuged at 16,000g at 4°C for 15 min. Protein concentration was measured using 

the Protein DC Assay Kit (Bio-Rad® Laboratories Inc., Hercules, CA). Equal amounts 

of protein were subjected to SDS-PAGE and transferred to nitrocellulose membrane. The 

membranes were then blocked in 5% milk in Tris-buffered saline plus Tween® 20 (TBST) 

for 45 min and probed with anti-CIRP, anti-γ-H2AX and anti-PARP (all acquired from Cell 

Signaling Technology® Inc., Danvers, MA) or anti-β-actin (Santa Cruz Biotechnology® 

Inc., Dallas, TX) at 4°C overnight. After rinsing with TBST, the membrane was incubated 

with corresponding HRP-conjugated anti-rabbit or anti-mouse anti-body for 45 min at room 

temperature. Membranes were then washed three times in TBST followed by 2× wash in 

Tris-buffered saline (TBS), and developed in SuperSignal™ West Pico chemiluminescent 

substrate (Pierce™ Biotechnology, Rockford, IL). The images were captured and analyzed 

using the Odyssey® Imager equipped with Odyssey Image Studio software (LI-COR® Inc., 

Lincoln, NE). Band intensity was quantitated using ImageJ software (National Institutes of 

Health, Bethesda, MD).

Statistical Analysis

Data are expressed as the mean ± SD with each experiment repeated at least three times. The 

statistical significance of differences for the mean values between groups was determined 

using Student’s t test. Differences with P < 0.05 were considered statistically significant.
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RESULTS

Knockdown CIRP Sensitizes Cancer Cells to Ionizing Radiation

The growth rate of the melanoma cells was first determined using clonogenic assays to 

compare A375, A375CIRP−/− cells, and M624, M624CIRP−/− cells with or without irradiation. 

The results showed that the colony number was reduced by approximately 50% in A375 

cells after 2 Gy irradiation. A375CIRP−/− cells had approximately 35% of colonies formed 

compared to A375 cells. Irradiation (2 Gy) of A375CIRP−/− further reduced the colony 

numbers to 10% compared to nonirradiated A375 cells (Fig. 1A and B). Similar results 

were observed in M624 cells, where radiation reduced colony numbers to 80% of the 

nonirradiated M624 cells, and CIRP knockdown resulted in approximately 50% reduction. 

Irradiated M624CIRP−/− cells showed reduced colony numbers to approximately 20% (Fig. 

1C and D). The knockdown of CIRP in both cell lines was confirmed by Western blot 

showing >70% reduction in CIRP protein expression in cells (Fig. 1E). The data indicate 

that CIRP plays a pro-proliferative role in both melanoma cell lines, and a synergetic effect 

in both cell lines when CIRP knockdown cells are exposed to radiation.

The rate of short-term (within 72 h after seeding) cell proliferation was also determined 

in melanoma cells compared to CIRP knockout cells. In A375 cells, the cell numbers 

increased to approximately 3.5-fold in 72 h without treatment and to 2.5-fold in CIRP 

knockdown cells. The 3.5-fold induction reduced to 2.4-fold in irradiated A375 cells, and 

2.5-fold induction reduced to 1.5-fold in irradiated A375CIRP−/− cells at 72 h (Fig. 2A). In 

M624 cells, nonirradiated cell numbers increased to 4.5-fold in 72 h, and CIRP knockdown 

reduced the induction to approximately threefold. After irradiation, the cell number of M624 

cells increased to 1.3-, 2.7- and 3.1-fold after 24, 48 and 72 h, respectively. Additionally, 

M624CIRP−/− cells increased to 1.2- and 2.1-fold after 24 and 48 h, and remained at 1.9-fold 

at 72 h (Fig. 2B).

CIRP Regulates Cell Cycle after Irradiation

We further measured the role of CIRP in regulating cell cycles after irradiation. A375 and 

A375CIRP−/− cells were irradiated to 0, 2, 5 and 10 Gy, and cell cycles were analyzed 24 

h after irradiation. Radiation doses of 0, 2 and 5 Gy did not cause significant cell cycle 

arrest in A375 and A375CIRP−/− cells. However, after 10 Gy irradiation of A375 cells, G2/M 

phase increased from 26% to 43%, while G0/G1 phase reduced from 54% to 42% and S 

phase reduced from 19% to 9% in 24 h. In A375CIRP−/− cells, no significant change could 

be detected in G2/M or G0/G1 phases, while the S phase reduced slightly from 18% to 

14%. These data indicate that CIRP may facilitate cells passing the cell cycle check point in 

radiation-induced cell cycle arrest (Fig. 3).

CIRP Affects Radiation-Induced DNA Damage

Since the progression of cell cycle is responsive to DNA damage and DNA repair progress, 

we determined the DNA damage level in A375 and A375CIRP−/− cells after irradiation. The 

expression level of γ-H2AX in cells was used as a DNA damage marker. In A375 cells, 

the c-H2AX expression level was induced to 2.1-fold in 15 min and 3.2-fold in 2 h, but 

reduced to background level at 4 h after 2 Gy irradiation. After 5 Gy irradiation, γ-H2AX 
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was induced to 3.5-fold in 15 min and reduced to approximately 1.5-fold in 2 and 4 h. In 

A375CIRP−/− cells, γ-H2AX was induced to 6.1-fold at 2 and 4 h postirradiation, with no 

significant change at 15 min postirradiation. In 5 Gy irradiated A375CIRP−/− cells, γ-H2AX 

expression level was induced to 12-, 10- and 15-fold at 15 min, 2 h and 4 h, respectively. 

The data showed that A375 cells demonstrated DNA repair progress at 2 and 4 h, while no 

DNA repair was observed in A375CIRP−/− cells (Fig. 4).

CIRP is Critical in Regulating Cell Apoptosis—Since the DNA damage level was not 

reduced after irradiation in A375CIRP−/− cells, and minimal cell cycle arrest was observed, 

we next investigated the cell apoptosis status of A375 and A375CIRP−/− cells. The Western 

blot of cleaved PARP showed that a 2 Gy dose caused an approximately 3.5-fold induction 

in cleaved PARP in A375 cells, and >7-fold induction in A375CIRP−/− cells. This indicated 

a lack of DNA repair progress, cell cycle arrest in CIRP knockdown cells, and an increased 

apoptosis rate after irradiation (Fig. 5).

DISCUSSION

CIRP is known to be activated by stressors, and its activation usually facilitates cell survival 

(3, 14). CIRP also inhibits DNA damage-induced apoptosis and affects chemotherapeutic 

sensitivity in cancer cells (15, 16). Our previously report study showed that CIRP regulates 

Stat3 and NF-κB pathways, which both promote cell survival after UVB irradiation (6, 17, 

18). However, the activation of these pro-survival signaling pathways often leads to cancer 

cell recovery after radiation treatment. In this report, we investigated the role of CIRP in 

cancer cell proliferation after irradiation. Knockdown CIRP in A375 cells decreases the cell 

viability and growth rate. This effect is synergistic to the effect of radiation on inhibiting 

the cancer cell proliferation (Figs. 1 and 2). These data confirm previously reported findings 

that CIRP is a pro-survival protein and helps the cells to survive under stress (16, 19). As 

radiation is known to induce cell cycle arrest, which relates closely to cell proliferation, 

we next determined the effect of CIRP on cell cycle arrest after irradiation. However, the 

radiation-induced cell cycle arrest was eliminated in CIRP knockdown cells, parental cancer 

cells were arrested after irradiation at G0/G1 phase, which is consistent with previously 

published studies (Fig. 3) (20–22). In addition, the level of γ-H2AX constantly increased 

in a dose- and time-dependent manner in CIRP knockdown cells within 4 h postirradiation, 

while the level of γ-H2AX increased but then began to decrease at 4 h in parental cells after 

irradiation. It is possible that the accumulation of DNA damage and non-arrested cell cycle 

after irradiation is the reason for lower cell viability and cell growth rate. We concur with the 

previously reported study that knockdown CIRP leads to more DNA damage in irradiated 

cells, although we had contrary data in γ-H2AX expression, as previously published work 

showed that the level of γ-H2AX increased more than parental cells in the first 10 min 

postirradiation and then decreased within 60 min compared to parental cancer cells (23). 

The different pattern of γ-H2AX may be due to cell line difference, since the DNA repair 

system in various cell lines may be different (24). In addition, the level of γ-H2AX is more 

commonly accepted as a DNA damage marker rather than DNA repair marker, especially in 

human skin cells (25–28). We further showed that unrepaired DNA damage and unregulated 

cell cycle lead to the higher level of apoptosis, as indicated by the induction of cleaved 
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PARP protein (Fig. 5). To conclude, we demonstrated that CIRP is a critical pro-cell survival 

and proliferation gene, which also participates in repairing DNA damage after irradiation. 

CIRP could be a potential target to sensitize the cancer cells to radiotherapy.
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FIG. 1. 
The role of CIRP in cell viability after irradiation. CIRP knockdown cells were established 

in A375 and M624 cell lines. Clonogenic assays of A375, A375CIRP−/− and M624, 

M624CIRP−/− cells after sham irradiation or 2 Gy irradiation were performed. Panel A: 

Representative plates of A375 and A375CIRP−/− cells. Panel B: Quantitative analysis of the 

number of A375 and A375CIRP−/− cell colonies. Panel C: Representative plates of M624 and 

M624CIRP−/− cells. Panel D: Quantitative analysis of the number of M624 and M624CIRP−/− 
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cell colonies. Panel E: Confirmation of CIRP knockdown in both A375 and M624 cells 

using Western blot and quantitative analysis. *P < 0.05 compared to control group.
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FIG. 2. 
The role of CIRP in cell viability after irradiation. MTT assay was performed to determine 

cell viability for (panel A) A375 and (panel B) M624 cells after sham irradiation or 2 Gy 

irradiation at 0, 24, 48 and 72 h. *P < 0.05 compared to control group.
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FIG. 3. 
CIRP regulates cell cycles after irradiation. A375 and A375CIRP−/− cells were synchronized 

in FBS-free media for 24 h and then received 0, 2, 5 or 10 Gy. Full media was added into 

cells immediately after irradiation. Cell cycle analysis was performed at 24 h postirradiation 

using flow cytometry. *P < 0.05 compared to control group.
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FIG. 4. 
The level of γ-H2AX in cells after irradiation. A375 and A375CIRP−/− cells were irradiated 

at 0, 2 and 5 Gy and proteins were extracted at the indicated time points postirradiation. The 

protein level of γ-H2AX was determined using Western blot analysis (panel A) and band 

intensity was quantitated using ImageJ software (panel B). *P < 0.05 compared to control 

group.
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FIG. 5. 
Role of CIRP in regulating PARP cleavage. The cleaved PARP in A375 and A375CIRP−/− 

cells at 24 h with or without 2 Gy irradiation was determined using Western blot analysis 

(panel A) and band intensity was quantitated using ImageJ software (panel B). *P < 0.05 

compared to control group.
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