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Abstract 

Background:  Vascular invasion with tumor thrombus frequently occurs in advanced 
renal cell carcinoma (RCC). Thrombectomy is one of the most challenging surgeries 
with high rate of perioperative morbidity and mortality. However, the mechanisms 
driving tumor thrombus formation are poorly understood which is required for design-
ing effective therapy for eliminating tumor thrombus.

Results:  We perform single-cell RNA sequencing analysis of 19 surgical tissue speci-
mens from 8 clear cell renal cell carcinoma (ccRCC) patients with tumor thrombus. We 
observe tumor thrombus has increased tissue resident CD8+ T cells with a progeni-
tor exhausted phenotype compared with the matched primary tumors. Remarkably, 
macrophages, malignant cells, endothelial cells and myofibroblasts from TTs exhibit 
enhanced remodeling of the extracellular matrix. The macrophages and malignant 
cells from primary tumors represent proinflammatory states, but also increase the 
expression of immunosuppressive markers compared to tumor thrombus. Finally, dif-
ferential gene expression and interaction analyses reveal that tumor-stroma interplay 
reshapes the extracellular matrix in tumor thrombus associated with poor survival.

Conclusions:  Our comprehensive picture of the ecosystem of ccRCC with tumor 
thrombus provides deeper insights into the mechanisms of tumor thrombus forma-
tion, which may aid in the design of effective neoadjuvant therapy to promote down-
staging of tumor thrombus and decrease the perioperative morbidity and mortality of 
thrombectomy.
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Background
There were more than 431,280 new kidney cancer cases diagnosed in 2020 world-
wide [1], of which the most common histological subtype is clear cell renal cell 
carcinoma (ccRCC), accounting for approximately 70–80% of all renal cell carci-
noma (RCC) cases [2–5]. One unique clinical aspect of RCC is that it can invade 
through the renal vein into the inferior vena cava (IVC), and even grow up to the 
right cardiac chambers [6]. Venous tumor thrombus (TT) in the renal vein or infe-
rior vena cava was reported in approximately 15% of RCC patients [7]. Reese et al. 
showed the tumor thrombus level does not necessarily affect disease-specific sur-
vival, but has a major impact on the complexity of surgery with a significant risk 
of hemorrhage, unstable hemodynamics and death [8–11]. Neoadjuvant systemic 
therapy may potentially decrease the TT burden and thus improve the safety and 
feasibility of tumor thrombectomy potentially improving the curative potential of 
surgical resection [12–14]. However, the underlying mechanism of TT formation 
is poorly understood, which prevents the design of effective neoadjuvant therapy 
for downstaging tumor thrombus and decreasing the perioperative morbidity and 
mortality of thrombectomy.

Bulk genomic studies, including ours, have revealed that most TTs with the pro-
pensity of rapid growth [15], harbored limited additional genomic alterations com-
pared with matched primary tumors (PTs) [16–18]. The lack of fixation of new 
driver events in TTs may be due to their rapid extension and/or limited selective 
pressure in the intravascular space. Notably, we previously showed that the cases 
with TTs had distinct transcriptomic profiles compared to those without TTs by 
unsupervised clustering analysis of bulk RNA-seq data [16]. But a limited num-
ber of differentially expressed genes were identified between PTs and paired TTs, 
while multiple pathways related to the immune response and extracellular matrix 
and structure were significantly enriched in TTs [16]. Moreover, a higher propor-
tion of macrophages in PTs of patients with TTs than in those of patients without 
TTs was observed by CIBERSORT analysis [16]. Thus, not only cancer cells but also 
tumor-infiltrating cells may participate in the process of tumor thrombus. And the 
cell type-specific gene expression patterns will promote the understanding of the 
intratumoral heterogeneity and the biology of tumor thrombus, and help discover 
more effective targets for tumor thrombus therapy.

In this study, we dissected the tumor ecosystem in 19 surgical tissue speci-
mens from 8 ccRCC patients (discovery cohort) by single-cell RNA sequencing 
(scRNA-seq). Moreover, we included the bulk RNA-seq data of 60 tumor throm-
bus and paired primary tumor specimens from 30 ccRCC patients with TTs [16], 
the CheckMate 025 cohort [19, 20], the Cancer Genome Atlas Kidney Renal 
Clear Cell Carcinoma (TCGA KIRC) and the IMmotion 150 cohort [21] as vali-
dation cohorts. We aimed to investigate the multicellular heterogeneity of tumor 
cell communities of tumor thrombus to provide valuable biological and clinical 
insights into this disease.
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Results
scRNA‑seq profiling of the tumor ecosystem in tumor thrombus and matched primary 

tumors

To elucidate the tumor ecosystem in venous tumor thrombus, we collected 19 surgi-
cal tissue specimens (discovery cohort) from treatment-naïve ccRCC patients (ccRCC, 
n = 8) for scRNA-seq. Tumor thrombus (n = 8), paired primary tumors (n = 8) and adja-
cent renal tissues (n = 3) were referred to as TTs, PTs and ARTs, respectively (Fig. 1a and 
Additional file 2: Table S1). Moreover, we included 4 different cohorts with bulk RNA-
seq data for further validation (Fig. 1b). Approximately 1 billion unique transcripts were 
obtained from 140,805 cells: 62,035 cells from TTs, 58,695 cells from PTs, and 20,075 
cells from ARTs. After filtering, a total of 120,780 cells were used for further analysis 
(Additional file 1: Fig. S1a-c). We identified and visualized 9 major cell types according 
to the expression of canonical gene markers using the Uniform Manifold Approxima-
tion and Projection (UMAP) method [22] (Fig. 1c-f and Additional file 1: Fig. S1a-c): epi-
thelial cells, T cells, natural killer (NK) cells, myeloid cells, myofibroblasts, endothelial 
cells (ECs), B cells, plasma cells and mast cells. For the 16 PT and TT samples, all these 
cell subtypes were shared among patients and between PTs and TTs with no consistent 
change, albeit at different proportions (Fig. 1g). For the ART samples, in addition to the 
immune and stromal cells, we obtained a total of 6809 normal epithelial cells and further 
identified as the proximal tubule cells and the loop of Henle cells based on the classic 
markers, as described previously [22] (Fig. 1f-g and Additional file 1: Fig. S1d). In sum-
mary, our results revealed substantial heterogeneity of ecosystem compositions among 
the ART, PT and TT samples.

T/NK cell clustering and state analysis identifies tumor thrombus are enriched with tissue 

resident CD8+ T cells in a progenitor exhausted state compared to primary tumors

Considering that recent studies have observed dramatic reduction of tumor throm-
bus in ccRCC patients after ICB therapy [23–26], we speculated that tumor-infiltrating 
immune cells may play important roles in the process. Therefore, we first performed 
unsupervised clustering of T and NK cells and obtained 12 clusters across ARTs, PTs 
and TTs, including four subtypes of CD4+ T cells (CD4-C1 to CD4-C4), five subclus-
ters of CD8+ T cells (CD8-C1 to CD8-C5), two NK subclusters (NK1 and NK2) and one 
NKT cluster (Fig. 2a-d, Additional file 1: Fig. S2a-d and Additional file 3: Table S2).

For CD4+ T cells, we identified naïve (CD4-C1; CCR7+), helper (CD4-C2; IL2+, CD4-
C3; IL7+), and suppressive regulatory Treg (CD4-C4; FOXP3+) CD4+ T cells (Fig.  2d 
and Additional file 1: Fig. S2d). To determine the differences among ARTs, PTs and TTs, 
we calculated the percentage of each cluster in ARTs, PTs and TTs, and found that the 
relative percentage of naïve CD4+ T cells (CD4-C1) in PTs was reduced compared with 
those in ARTs and TTs (Additional file 1: Fig. S2e), and the proportion of suppressive 
Tregs (CD4-C4) was higher (Fig. 2e), indicating there might be in a more immune sup-
pressive state in PTs.

For CD8+ T cells, we identified tissue resident (CD8-C1; CD69+), terminal exhausted 
(CD8-C2 and CD8-C3; PDCD1+ and TOX+), cycling (CD8-C4; MKI67+) and mucosal-
associated invariant T (MAIT) (CD8-C5; IL7R+ and CCR4−) CD8+ T cells (Fig. 2d and 
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Fig. 1  scRNA-seq profiling of the kidney primary tumors and tumor thrombus microenvironments. a, b 
Schematic diagram of the study strategy. The discovery cohort is shown in (a), and validation cohorts 1, 
2, 3 and 4 are shown in (b). Validation cohort 1, 60 tumor thrombus and paired primary tumor specimens 
from 30 ccRCC patients. Validation cohort 2, 120 samples with advanced clear cell renal cell carcinoma with 
nivolumab treatment from CheckMate 025 cohort. Validation cohort 3, 531 samples of TCGA KIRC cohort. 
Validation cohorts 4, 82 samples with metastatic renal cell carcinoma with sunitinib treatment from IMmotion 
150 cohort. c UMAP plot showing the annotation and color codes for cell types in the ccRCC ecosystem. 
Epithelial cell including normal epithelial cell (the proximal tubule cell and the loop of Henle cell) in ARTs and 
malignant epithelial cell in PTs and TTs. d, e The UMAP plot showing cell origins by color, patient origin (d), 
and ART, PT or TT origin (e). f Heatmap showing the expression of marker genes in the indicated cell types. g 
Histogram indicating the proportions of cells in tissues of each patient. N, adjacent renal tissues. C, primary 
tumors. T, tumor thrombus
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Fig. 2  scRNA-seq revealed heterogeneity in T/NK cells in primary tumors and tumor thrombus. a UMAP 
plot showing the subtypes of T/NK cells derived from ART, PT and TT samples. Each cluster is color-coded 
according to cell type. b UMAP plot illustrating T/NK cells clustered and color-coded according to each 
patient. c Bar plot illustrating the fraction of T/NK subgroups in ARTs, PTs and TTs. d Heatmap indicating 
the expression of selected gene sets in T/NK subtypes, including naïve, resident, inhibitory, cytokine, 
costimulatory, transcription factor (TF), and cell type. e Box plots illustrating the average proportion of 
CD4-C4, CD8-C1, and CD8-C3 subtypes among ARTs, PTs and TTs. p values were determined by a two-sided 
Wilcoxon test. f Violin and box plots showing the signature score distribution for progenitor exhausted 
and terminally exhausted CD8+ T cells within CD8-C1 to CD8-C4 subsets. p values were determined by 
a two-sided Wilcoxon test. ****, p < 0.0001. g Heatmap showing the fold change in the expression of the 
progenitor exhausted gene set of CD8-C1 to CD8-C4 cells in PTs compared with TTs. h Box plots representing 
the percentage of CD8-C1 and the scores of progenitor exhausted signature and CD8-C1 signature in paired 
PT and TT bulk RNA-seq samples. The CD8-C1 cell fraction per sample as inferred by CIBERSORTx. p values 
were determined by a two-sided Wilcoxon test
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Additional file 1: Fig. S2c-d) according to the expression of canonical markers [27–31]. 
Similar with the proportion of CD4-C1 cells (Additional file 1: Fig. S2e), the abundance 
of CD8-C1 cells was also increased in TTs compared with PTs, but much less in both 
PTs and TTs than in ARTs (Fig. 2e). Although a considerable amount of tissue resident 
CD8+ T cells has been found in normal kidney tissues [32–34], the mechanisms for it 
are still largely unknown. Consistent with our finding, another study about hepatocellu-
lar carcinoma (HCC) also revealed the tissue resident CD8+ T cells were more abundant 
in adjacent non-tumor tissues than in tumors [35]. Furthermore, as observed previously 
in ccRCC [36], the proportion of exhausted CD8+ T cells (CD8-C3) was increased in 
tumor tissues, but with no significant difference between PTs and TTs (Fig. 2e and Addi-
tional file 1: Fig. S2e), indicating that CD8+ T cells are exhausted in both PTs and TTs. In 
pseudotime analysis, we removed MAIT cells, due to their differing TCR characteristics 
[35]. The continuous developmental trajectory of CD8-C1 to C4 represented a binary 
branched structure: CD8-C1 was the root, CD8-C3 and C4 were the end states of the 
two branches, and CD8-C2 was in a transitioning state (Additional file 1: Fig. S2f ), which 
were very similar between PTs and TTs. Pathway analysis from the trajectory indicated 
T cell activation and lymphocyte differentiation was upregulated at an earlier stage, and 
cell cycle, ATP metabolism and hypoxia related pathways were highly enriched in the 
end state of CD8+ T cells (Additional file 1: Fig. S2g). These results suggested the CD8+ 
T cells shared the same transition trajectory between PTs and TTs, along with dysfunc-
tional and metabolic disorders, and finally turned to be exhausted in both PTs and TTs.

There are evidences showed that certain CD8+ T cells in the progenitor exhausted state 
could enhance the efficacy of immune checkpoint blockade (ICB) therapy in melanoma and 
kidney cancer [37, 38]. Meanwhile, considering a striking regression of TTs with ICB therapy 
in some ccRCC patients [23–26], we asked whether there was certain subset of CD8+ T cells 
we recovered may resemble the progenitor exhausted phenotype. Then, we scored the CD8+ 
T cell subclusters for progenitor and terminally exhausted gene signatures according to the 
published studies [37, 38]. We noticed that the progenitor exhausted signature was significantly 
enriched in CD8-C1 subcluster, and the terminally exhausted signature was obviously lower 
than that of other subsets (Fig. 2f). Moreover, most of the progenitor exhausted signature genes 
showed upregulated expression in CD8-C1 cells in TT samples (Fig. 2g), which further demon-
strated the progenitor exhausted phenotype was enriched in TTs. Furthermore, we examined a 
larger cohort of patients with paired PT and TT bulk transcriptomes and observed significantly 
increased proportions of the CD8-C1 subset in TTs compared with PTs, and the progenitor 
exhausted and CD8-C1 signature scores were both upregulated in TTs (Fig. 2h). Having iden-
tified CD8-C1 cells (the tissue resident CD8+ T cells) and its signature were enriched more 
in TTs than in PTs, we next examined whether CD8-C1 cells we found will show a better 
response to anti-PD-1 therapy by using the pretherapy bulk RNA-seq data from a larger cohort 
of ccRCC patients (CheckMate 025) treated with nivolumab (anti-PD-1) [19, 20]. As expected, 
the high levels of the CD8-C1 signature were associated with improved progression free sur-
vival (PFS) (Additional file 1: Fig. S2h), which was also supported by another study published 
recently that they observed a strong enrichment of the tissue resident CD8+ T cell cluster in 
one ccRCC patient with complete response to ICB [31]. Collectively, these results suggested 
that a high signature of tissue resident CD8+ T cells in both primary ccRCC and tumor throm-
bus may be the hint of a good response to ICB therapy.
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Macrophages show enhanced ECM remodeling activity in tumor thrombus, 

and immune‑reactive perturbations in primary tumors

In addition to adaptive immunity, the innate immune cells might be a first barrier for 
rapid extension of TTs in the intravascular space, which may have important impacts 
on tumor thrombus formation and resistance to ICB therapy. Thus, we analyzed the 
transcriptomes of 16,267 myeloid cells in PTs (n = 7689), TTs (n = 7129) and ARTs 
(n = 1449). Myeloid cells exhibited remarkable heterogeneity and were categorized 
into 14 clusters. Based on the expression of canonical markers, we annotated these 
clusters into six subtypes for macrophages (Macro1-Macro6), two for monocytes 
(Mono1-Mono2), four for DCs (DC1-DC4), one for neutrophils and one for cycling 
cells (Fig.  3a-c, Additional  file  1: Fig. S3a-d and Additional  file  4: Table  S3). Mac-
rophages were enriched in PTs and TTs compared with ARTs, except Macro4 cluster 
(Fig. 3b, d and Additional file 1: Fig. S3e). Neutrophils were remarkably depleted in 
both PTs and TTs compared with ARTs (Fig. 3d), implying tumor cells of PTs and TTs 
may escape elimination by circulating neutrophils. To better understand the roles of 
these myeloid-related populations, we first examined the immune checkpoint- and 
evasion-related gene expression levels. Almost all these genes were highly expressed 
in the myeloid subpopulations except neutrophils (Fig.  3e). While CD274 (PD-L1) 
and PDCD1LG2 (PD-L2), both ligands for PD-1 signaling mediating immune check-
point in T cells, were detected sparsely across all myeloid subpopulations (Fig.  3e). 
These results suggested that neutrophils might be more effective in confronting can-
cer cells, and other macrophages, monocytes and DCs might already be ‘educated’ by 
PT or TT tumor cells.

Macrophages are usually classified into two canonical subtypes, proinflammatory 
M1 and anti-inflammatory M2 [39–41]. However, we could not clearly distinguish 
M1 and M2 macrophages by known marker genes such as CD86, TLR4 (M1) and 
CD163 and MSR1 (M2), as they were all expressed in Macro1-Macro3 and Macro5-
Macro6 but poorly expressed in Macro4 (Fig.  3f ). While the tumor-associated 
macrophage (TAM) markers, as well as CD68 and HLA-DRA as both M1/M2 and 
tumor-associated macrophage (TAM) markers were highly expressed in each mac-
rophage subtype (Fig. 3f ), indicating they were all TAMs. Intriguingly, we noticed a 
significant enrichment of gene expression signatures in the proinflammatory pheno-
type, such as response to interferon, and antigen presentation pathways in TAMs of 
PTs compared to that of TTs (Fig.  3g and Additional  file  1: Fig. S3f ). Surprisingly, 
these TAMs in PTs also upregulated expression of immune checkpoint and evasion 
markers compared to TTs (Fig.  3h). Thus, TAMs in PTs exhibited both proinflam-
matory and immune suppressive phenotypes, potentially contributing to tumor cells 
immune escape. Whereas, in TTs, we observed increased signature scores associated 
with tumor progression-related pathways, including epithelial-mesenchymal tran-
sition (EMT), extracellular structure organization and angiogenesis (Fig.  3g-h and 
Additional file 1: Fig. S3f ). These findings were consistent with previous reports that 
macrophages act as shapers of the tumor ECM to facilitate cell migration and angio-
genesis [42, 43]. Collectively, the complexity of TAMs demonstrated distinct dysfunc-
tional states between PTs and TTs, with a more immunosuppressive phenotype in 
PTs, and enhanced ECM remodeling in TTs.
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Malignant cells exhibited increased ECM remodeling in tumor thrombus, and a more 

immunosuppressive phenotype in primary tumors

To better understand cellular programs active in cancer cells that may function 
together with the immune cells, we next sought to identify the expression patterns of 

Fig. 3  Detailed characterization of myeloid cells in primary tumors and tumor thrombus. a UMAP 
plot showing the subtypes of myeloid-derived cells derived from ART, PT and TT samples. Each cluster 
is color-coded according to cell type. b Bar plot illustrating the average proportion of each myeloid 
subtype among ARTs, PTs and TTs. c Heatmap showing the expression of marker genes in each subtype of 
myeloid-derived cells. d Box plots illustrating the fraction of the subclusters of Macro1–3 and neutrophils 
in ARTs, PTs and TTs. p values were determined by a two-sided Wilcoxon test. e Dot plot showing the 
percentage of cells and expression level in each cell type expressing immune checkpoint and evasion-related 
genes. f Violin plots representing the expression levels of M1, M2 and TAM marker genes in macrophage 
subtypes. p values were determined by a two-sided Wilcoxon test. g Heatmap of GSEA scores indicating the 
pathways significantly enriched in PTs or TTs. INF-γ, interferon- γ. INF-α, interferon- α. Antigen Proc. and Pres., 
antigen presentation and processing. Extra. structure organization, extracellular structure organization. EMT, 
epithelial-mesenchymal transition. h Violin and box plots comparing the expression distributions of immune 
checkpoint and evasion-related genes and ECM remodeling and angiogenesis-related genes between PTs 
and TTs. p values were determined by a two-sided Wilcoxon test. ***, p < 0.001
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the malignant cells between PTs and TTs. The tumor cells were confirmed by the detec-
tion of copy number variations (CNVs), inferred by scRNA-seq data, using myofibro-
blasts and endothelial cells as references, according to a published study [44]. Seven 
of 8 patients showed similar CNV patterns and subclonal structures between TTs and 
PTs, except patient P06 (Fig. 4a-b and Additional file 1: Fig. S4a), supporting the previ-
ous studies of limited additional genomic alterations in TTs [16, 18]. Then, we evalu-
ated the transcriptional difference of malignant cells between PTs and TTs. In total, we 
obtained 15,012 malignant epithelial cells from PTs and 12,078 cells from TT specimens. 
Since the proximal tubule cells has been identified as the origin of ccRCC [22], we then 
compared the hypoxia and angiogenesis signatures, which were two of classic biological 
states contributed to carcinogenesis, across the malignant cells and the proximal tubule 
cells. Consistent with previous studies, both PT and TT malignant cells had significantly 
higher hypoxia and angiogenesis signatures than cells from ARTs (Additional file 1: Fig. 
S4b). Then, focusing on the malignant cells, we totally obtained 4 clusters, and the pro-
portion in individual patients was different in each subcluster, further supporting a high 
degree of intertumoral heterogeneity (Fig. 4c-e and Additional file 1: Fig. S4c-f ). To bet-
ter understand the transcriptional heterogeneity of them, we scored the four clusters by 
GSVA Hallmark analysis, and observed dramatic transcriptional program differences 
among each cluster (Fig. 4f ). In detail, cluster 1 was the most abundant and character-
ized with increased hypoxia, glycolysis, oxidative phosphorylation (OXPHOS), along 
with concomitant immune activation and metabolic pathways (Fig.  4f ). The coexist-
ence of glycolysis and OXPHOS metabolic states in ccRCC has been reported in another 
study [38] in which the hybrid phenotype in RCC contributes to metabolic plasticity, 
allowing cancer cells to adapt to various microenvironment [45–47]. Furthermore, 
interestingly, similar with the TAMs, we observed an enrichment of genes involved in 
interferon-γ (IFN-γ) response and antigen presenting pathways with upregulated expres-
sion of immune checkpoint and evasion genes in PTs compared to TTs (Fig. 4g-h, Addi-
tional file 1: Fig. S4g-h and Additional file 5: Table S4). It demonstrated their capacity to 
promote immune escape and repress the anti-tumor immune response. While, the TT 
tumor cells were activated in ECM remodeling and response to metal ion related path-
ways (Fig. 4g and Additional file 1: Fig. S4g-h). Consistent with these results, a significant 
higher proportion of CD274+ malignant cells in PTs, and more COL4A1+ tumor cells in 
TTs were observed (Fig. 4i), indicating the higher immunosuppressive state in PTs and 
the dynamic remodeling of ECM in TTs. Furthermore, we found the classic ferropto-
sis suppressor gene GPX4 showed upregulated expression in TTs (Additional file 1: Fig. 
S4h), implying inducing ferroptosis through regulation of GPX4 for tumor therapy might 
be more effective in TTs than in PTs in ccRCC patients. In summary, at single-cell reso-
lution, we revealed the malignant cells in PTs demonstrated a stronger immunosuppres-
sive phenotype, while tumor cells in TTs showed a higher ECM reprogramming state.

Endothelial cells represent upregulation of ECM remodeling related pathways in tumor 

thrombus, and highly‑abundant CCL4+ and NDUFA4L2+ endothelial cells are associated 

with poor survival

To further evaluate endothelial cells roles that may facilitate tumor thrombus growth 
and extension in the intravascular space, we focused on endothelial cells (ECs), and 
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obtained 16,221 ECs from PTs (n = 4808), TTs (n = 7915) and ARTs (n = 3498). These 
cells were subclustered into six different clusters (Fig. 5a-c and Additional file 1: Fig. S5a-
c), and each of them was identified based on the classically expressed genes in ECs [48, 
49], including glomerular like ECs (Endo1: SOST+), cancer-related ECs (Endo2: NDU-
FA4L2+), arterial ECs (Endo3: GJA5+), ACKR1+ ECs (Endo4: ACKR1+), the tip cells 

Fig. 4  Identification and characterization of malignant cells in primary tumors and tumor thrombus. a, b 
Heatmaps showing large-scale CNVs for individual malignant cells (rows) from P02 (left) (a) and P06 (right) 
(b). Endothelial cells and myofibroblasts were treated as references (top), and malignant cells were observed 
in PTs and TTs (bottom). The color bar red indicates amplifications, and blue indicates deletions. c UMAP plot 
representing the subtypes of malignant cells from PT and TT samples. d UMAP plot showing malignant cells 
derived from PTs and TTs, colored by tissue origin. e UMAP plot illustrating color-coded tumor cells, according 
to each patient. f Differentially expressed pathways were scored per cell by GSVA among 4 malignant cell 
subtypes. g GSEA of the interferon-γ (IFN-γ) signaling pathway and antigen presentation and processing 
(Antigen Proc. and Pres.) enrichment scores in all malignant cells in PTs compared with in TTs; collagen 
containing extracellular matrix (Collagen conta. Extra. matrix) and response to metal ion enrichment scores 
in all tumor cells in TTs compared with in PTs. h Heatmap depicting the differential expression fold change of 
PTs compared with TTs for immune checkpoint and evasion-related genes. i Box plots showing the fraction of 
CD274+ and COL4A1+ tumor cells in PT and TT single-cell samples. p values were determined by a two-sided 
Wilcoxon test
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(Endo6: CXCR4+), and one undefined cluster (Endo5) (Fig. 5a-c, Additional file 1: Fig. 
S5a-c and Additional file 6: Table S5). Furthermore, we found the ratio of Endo2 in TTs 
was higher than that in ARTs and PTs (Fig. 5d and Additional file 1: Fig. S5d), suggest-
ing that cancer related vasculature formation may facilitate the rapid extension of TTs 
in the intravascular space. In support, we observed significantly increased percentages 
of Endo2 subset in TTs through analyzing the bulk transcriptomes from a large cohort 
of patients with 30 paired PTs and TTs (Fig.  5e). Moreover, the high levels of Endo2 
gene signature were significantly associated with poor survival in TCGA KIRC cohort 
(Fig. 5f and Additional file 1: Fig. S5e). Interestingly, like TAMs and malignant cells, we 
found significantly increased expression signatures associated with interferon response 
and antigen binding pathways in ECs of PTs (Fig. 5g and Additional file 1: Fig. S5f-g), 
but along with variation in genes expression related to immunosuppression among the 
subsets of ECs between PTs and TTs (Additional file 1: Fig. S5h). At the same time, we 
noticed in Endo2 subset, the expression level of most of genes related to immunosup-
pression was upregulated in PTs compared with TTs (Additional file 1: Fig. S5h), sug-
gesting these cells in PTs might be in a more immunosuppressive state. Furthermore, 
we found that the ECs had enhanced ECM remodeling and cell proliferation activities in 
TTs (Fig. 5g and Additional file 1: Fig. S5f-g). Thus, these data indicated that in addition 
to TAMs and cancer cells in TTs, endothelial cells in TTs may modify the ECM to facili-
tate tumor thrombus growth, and the molecular therapies targeting the cells with Endo2 
signature might be able to specifically downstage the vena cava thrombus.

Myofibroblasts in tumor thrombus enhance ECM remodeling with increased extracellular 

matrix production compared with primary tumors

Fibroblasts have been shown to be a major contributor to ECM remodeling in tumor 
progression in previously studies. Thus, we further investigated fibroblasts in ARTs, 

Fig. 5  Detailed characterizations of endothelial cells and myofibroblasts in ARTs, PTs and TTs. a UMAP plot 
showing the subtypes of endothelial cells derived from ART, PT and TT samples. Each cluster is color-coded 
according to cell type. b Bar plot illustrating the average proportion of each endothelial subtype among 
ARTs, PTs and TTs. c Heatmap showing the expression of marker genes in each subtype of endothelial cells. 
d Box plots illustrating the fraction of Endo2 subgroup in ARTs, PTs and TTs. p values were determined by a 
two-sided Wilcoxon test. e Box plots showing the percentage of Endo2 in paired PT and TT bulk RNA-seq 
samples, inferred by CIBERSORTx. p values were determined by a two-sided Wilcoxon test. f Kaplan-Meier 
plot showing that KIRC patients in the TCGA dataset with high expression of Endo2 signature had shorter 
progression free survival (PFS). g Heatmap of GSEA scores indicating the pathways significantly enriched 
in PTs or TTs. Extra. structure organization, extracellular structure organization. h UMAP plot showing the 
subtypes of myofibroblasts derived from the ART, PT and TT samples. Each cluster is color-coded according 
to cell type. i Bar plot illustrating the average proportion of each myofibroblast subtype among ARTs, PTs 
and TTs. j Heatmap showing the expression of marker genes in each subtype of myofibroblasts. k Box plot 
illustrating the average proportion of Myo2 subcluster among ARTs, PTs and TTs. p values were determined by 
a two-sided Wilcoxon test. l Box plot representing the proportions of subclusters of Myo2 in myofibroblasts 
between normal (N) and tumor (T) samples in the TCGA cohort. p values were determined by a two-sided 
Wilcoxon test. m Kaplan-Meier plot showing that KIRC patients in the TCGA dataset with high expression 
of CD248 had worse progression free survival (PFS). n Kaplan-Meier plot showing that patients from the 
sunitinib arm of the IMmotion150 cohort with a high Myo2 signature score had improved progression free 
survival. o Heatmap of GSEA enrichment scores for indicating gene sets significantly enriched in PTs or 
TTs. Collagen fibril organ, collagen fibril organization. Extra. structure organization, extracellular structure 
organization. EMT, epithelial- mesenchymal transition. p Violin and box plots demonstrating the expression 
levels of CD248, COL1A1, COL4A1, and FN1 between PTs and TTs. p values were determined by a two-sided 
Wilcoxon test. ***, p < 0.001

(See figure on next page.)
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PTs and TTs. Almost all fibroblasts were positive for α-SMA, a conventional marker of 
myofibroblasts (Fig. 1f, Additional file 1: Fig. S1c), which is consistent with the findings 
in a previous ccRCC report [36]. We found five distinct subtypes by reclustering 10,726 
myofibroblasts, according to the published studies [36, 50] (Fig. 5h-j, Additional file 1: 
Fig. S5i-k and Additional  file  6: Table  S5). In detail, our findings identified a state of 
stress with highly expressed heat shock proteins in Myo1, a highly vascular pericyte-like 
phenotype in Myo2, ACTG2+ myofibroblasts association in Myo3, antigen presentation 
phenotype in Myo4, and the characteristics of cancer-associated myofibroblasts in Myo5 
[50]. Moreover, we found that vascular pericyte-like Myo2 was enriched in TTs and PTs 
compared to ARTs (Fig.  5k and Additional  file  1: Fig. S5l), suggesting that Myo2 may 
help to remodel tumor vessels toward a mature phenotype in tumor thrombus, since 
pericytes are necessary for vessel maturation [51, 52]. Furthermore, we validated this 
result in the TCGA KIRC cohort. Indeed, the percentage of Myo2 increased significantly 
in the tumor tissues of KIRC patients compared to normal tissues (Fig. 5l). In addition, 

Fig. 5  (See legend on previous page.)
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the marker gene of Myo2, CD248, was remarkably upregulated in tumors compared to 
the adjacent tissues (Additional file 1: Fig. S5m), and significantly associated with poor 
survival in KIRC patients (Fig. 5m and Additional file 1: Fig. S5n). Antiangiogenic tyros-
ine kinase inhibitors (TKIs) have been broadly applied in ccRCC patients, and pericytes 
play crucial roles in integrity of the tumor microvasculature [52–55]. Therefore, we 
further evaluated whether the proportion of Myo2 could predict the response to TKIs. 
We found in the IMmotion150 cohort [21], patients with sunitinib treatment had an 
improved PFS with high score of Myo2 signature (Fig. 5n), indicating that Myo2 might 
be a good predictor of response to TKIs in ccRCC patients.

Next, we examined whether there were also transcriptional differences in myofibro-
blasts between TTs and PTs, and found all the myofibroblast subclusters in PTs were 
enriched in the TNFα and UV response pathways, while almost all myofibroblasts in 
TTs increased the signatures associated with angiogenesis and ECM remodeling, includ-
ing extracellular matrix organization, collagen fibril organization and EMT pathways 
(Fig. 5o-p and Additional file 1: Fig. S5o). Therefore, myofibroblasts, like TAMs, malig-
nant cells and ECs, may also play promoting roles in ECM remodeling of TTs, thereby 
possibly representing a potential target for ccRCC patients with TTs.

Tumor‑stroma interplay reshaped the extracellular matrix in tumor thrombus associated 

with poor survival

Given the observations of activated ECM remodeling as common trends in mac-
rophages, malignant cells, ECs and myofibroblasts of TTs compared to PTs, we hypoth-
esized that the different cell populations participated in complex crosstalk. To identify 
possible non-cell-autonomous effects, we used CellPhoneDB to identify putative signal-
ing between different cell populations via known receptor-ligand pairs (Additional file 7: 
Table  S6). Notably, the interactions in multiple ligand-receptor pairs within the ECM 
remodeling pathway were stronger in TTs than in ARTs and PTs, and myofibroblasts 
were predicted to have the strongest signals of significant interactions with tumor cells 
and ECs, regardless of subgroups of them (Fig. 6a and Additional file 1: Fig. S6a). We 
additionally validated this finding in the validation cohort with 30 paired PT and TT 
bulk RNA-seq data. Consistent with the upregulated expression of ECM components 
and their receptors in stromal cells and other types of cells in TTs, the ECM assem-
bly signature was robustly more strongly correlated with the CIBERSORTx-estimated 
myofibroblast fraction in TTs compared with in PTs (Fig. 6b and Additional file 1: Fig. 
S6b), supporting that the ECM remodeling related pathways were more activated in TTs 
than that in PTs.

Given the strong interactions identified between myofibroblasts and malignant cells 
and endothelial cells, we first examined whether tumor cells governed stromal myofi-
broblasts recruitment. We combined the single-cell transcriptomes with bulk RNA-seq 
according to previous studies [56, 57]. For example, we searched for genes increased in 
tumor cells rather than in myofibroblasts in single-cell data that were correlated with 
myofibroblast abundance. In detail, we found extensive interactions between myofi-
broblasts and tumor cells. In detail, tumor cells upregulated COL20A1, COL28A1 
and TGFB1 expression to recruit more myofibroblasts in TTs compared with in PTs 
(Fig. 6c). Furthermore, myofibroblasts released collagen-related genes such as COL6A2, 
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COL1A2 and COL4A2 to promote extracellular matrix assembly and have higher cor-
relation with the abundance of myofibroblasts in TTs (Fig. 6c). The correlation between 
the relative abundance of myofibroblasts and extracellular matrix remodeling-related 
genes up-regulated in tumor cells was significantly higher in TTs than in PTs (Fig. 6d 
and Additional file 1: Fig. S6c). These data suggest that tumor cells might recruit more 
myofibroblasts in TTs by secreting ECM-related components. Additionally, we also 
found that myofibroblasts conferred enhanced recruitment of ECs in TTs than that in 
PTs, which might potentially facilitate angiogenesis (Fig. 6e-f and Additional file 1: Fig. 
S6d). Furthermore, the expression signature scores of ECM assembly, collagen-contain-
ing ECM and extracellular structure organization were all at a higher level in TTs than 

Fig. 6  Tumor-stroma interplay reshaped the extracellular matrix in tumor thrombus associated with 
poor survival. a Dot plot showing inferred interactions between epithelial cells (proximal tubule cells 
from ARTs and malignant cells from PTs and TTs) and macrophages, endothelial cells, and myofibroblasts. 
Circle size indicates the significance of the interaction, and circle color indicates the mean expression of 
ligand and receptor genes. The red letters represent ligands, and the black letters represent receptors. b 
Scatterplots demonstrating the extracellular matrix assembly (left) and EMT (right) signature score versus 
total myofibroblast cell fraction in bulk RNA-seq of PT-TT paired samples in the validation cohort. Cell-type 
fractions were inferred using CIBERSORTx. The Pearson coefficient (R) and associated p value are reported 
for each correlation. c Scatterplot depicting inferred cell-to-cell interactions between tumor cells and 
myofibroblasts by combining scRNA-seq data and bulk RNA-seq data. d Box plot showing the calculated 
correlation between extracellular matrix remodeling-related genes and myofibroblast relative abundance 
involved in PTs and TTs. p values were determined by a two-sided Wilcoxon test. e Scatterplot representing 
inferred cell-to-cell interactions between myofibroblasts and endothelial cells by combining scRNA-seq 
data and bulk RNA-seq data. f Box plot showing the calculated correlation between extracellular matrix 
remodeling-related genes and endothelial cell relative abundance involved in PTs and TTs. p values were 
determined by a two-sided Wilcoxon test. g Signature scores for extracellular matrix assembly (left) and 
collagen-containing extracellular matrix (right) in paired PT-TT bulk RNA-seq samples in the validation cohort. 
p values were determined by a two-sided Wilcoxon test. h Progression free survival for the TCGA KIRC cohort 
based on high tumor-stroma and stroma-tumor interaction signatures versus low signature expression
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that in PTs in the validation cohort of 30 paired PT and TT ccRCC patients (Fig. 6g and 
Additional file 1: Fig. S6e). Thus, we showed that the stronger tumor-stroma interplay in 
the tumor thrombus was accompanied by the upregulated expression of a specific set of 
ECM related genes and pathways in both tumor cells and stromal cells.

To further investigate the association between tumor-stroma interplay and patient 
prognosis, we defined two interaction signature scores using significant L-R pairs to 
calculate the strengths of the ECM remodeling-related interactions in the TCGA KIRC 
cohort. The tumor-stroma interaction score was calculated between tumor cells and 
myofibroblasts, endothelial cells, and macrophages, while, the stroma-tumor interac-
tion score was generated between myofibroblasts and tumor cells, endothelial cells, and 
macrophages. Notably, we found a stronger tumor-stroma interplay was associated with 
poor survival (Fig. 6h and Additional file 1: Fig. S6f ). In summary, tumor-stroma inter-
play reshaped the extracellular matrix in tumor thrombus associated with poor survival.

Discussion
Surgical treatment of locally advanced ccRCC with TTs, especially with those that 
extend to the inferior vena cava, remains a clinical challenge. Neoadjuvant targeted ther-
apies, such as VEGFR or mTOR inhibitors, have been shown to reduce tumor thrombus 
levels and potentially make thrombectomy more feasible. However, the percentage of 
benefited patients showing thrombus regression from these treatments were extremely 
variable (from 25 to 67%) in different clinical studies [12]. Specifically, neoadjuvant 
immunotherapy was only effectively reducing the tumor thrombus size in some patients 
[23–26]. Thus, systematically deciphering the molecular differences between tumor 
thrombus and primary tumors is urgently needed for the development of new predictive 
markers and more effective therapies for ccRCC with TTs. Here, we presented a compre-
hensive single-cell transcriptomic atlas characterizing the heterogeneity of tumor cells, 
immune cells, and stromal cells in primary tumors and paired tumor thrombus. Cell 
type-specific biological features associated with the rapid extension of tumor thrombus 
in the intravascular space were also identified, which are potentially useful in designing 
more effective therapies for patients with tumor thrombus.

Our results showed that macrophages, malignant cells, endothelial cells and myofi-
broblasts in TTs exhibited enhanced remodeling of the extracellular matrix pathways 
compared to matched primary cancer cells, and the tumor-stroma interplay reshaped 
the extracellular matrix in tumor thrombus and was associated with poor survival. 
These results suggest that malignant cells of TTs are not independently suspended in 
the blood vessels, but require to form an ECM network embedded with immune cells 
and stroma cells to promote tumor thrombus growth. Although the cancer cells of TTs 
have intravasated into vein, and might have more opportunity to spread to lung, there is 
no direct experimental or clinical evidence that ccRCC patients with tumor thrombi are 
more likely to develop pulmonary metastasis. Previous studies demonstrated the ECM 
is important at initial stages of metastasis, where interactions between tumor cells and 
extracellular matrix induce an invasive phenotype [58, 59]. Moreover, TT grade has been 
reported as an independent predictor for metastatic outcome irrespective of the grade 
of the PTs [60], which suggests the invasion ability of tumor cells in TTs is very impor-
tant for metastatic potential. Our study demonstrated that ECM remodeling is crucial 
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for both metastasis and tumor thrombus growth. Thus, targeting ECM remodeling fac-
tors associating with TT formation might represent effective counter-measurements in 
ccRCC patients with TTs.

The high efficacy of ICB therapies in some ccRCC patients with tumor thrombus sug-
gest the need to identify what kind of features or markers are likely to benefit from ICBs, 
based on a better understanding of the immune microenvironment between the primary 
tumor and tumor thrombus. Our data revealed that TAMs did not polarize to either 
M1-like or M2-like subsets, but showed distinct molecular and metabolic phenotypes 
with no subset diversity between PTs and TTs. Interestingly, TAMs from PTs showed 
both pro-inflammatory and anti-inflammatory phenotypes compared with TTs, suggest-
ing TAMs in PTs may potentially facilitate the escape of tumor cells from immune sur-
veillance. Importantly, more abundant subcluster of CD8+ T cells with the progenitor 
exhausted state in TTs was further validation in a bulk RNA-seq cohort. These cells have 
similarities to those described as mediating ICB response in melanoma and advanced 
RCC patients [38, 61]. Our findings may provide a mechanistic explanation as to why 
some patients with TTs respond to anti-PD-1 immunotherapy effectively. Moreover, we 
detected an association between pre-therapy levels of tissue resident CD8+ T cell signa-
ture and better response to anti-PD-1 therapy, suggesting that anti-PD-1 immunother-
apy may obtain a greater benefit in reducing both primary tumor and tumor thrombus 
with higher proportions of tissue resident CD8+ T cells. Furthermore, these findings also 
suggest a potential value of tissue resident CD8+ T cell signature as a significant indica-
tor for ICB response in ccRCC patients. Thus, strategies enhancing tissue resident CD8+ 
T cells may have good application prospects in immunotherapy for ccRCC patients with 
TTs. Moreover, it is necessary for further clinical and mechanistic investigation regard-
ing the associations between tissue resident CD8+ T cells with ICB response in ccRCC 
patients with TTs given the small sample size of our single-cell and validation cohorts.

Conclusions
In summary, this study provides evidence of phenotypic heterogeneity between primary 
tumors and tumor thrombus, in terms of tumor cells, immune cells, and stromal cells. 
Our data can be a valuable resource, facilitating a deeper understanding of the mecha-
nisms associated with tumor thrombus and assisting in developing more effective neo-
adjuvant molecular therapies and biomarkers for advanced ccRCC patients with TT.

Methods
Clinical information and sample collection

All samples were obtained from Peking University Third Hospital, Beijing, China. Patient 
characteristics and clinical information are shown in Additional file 2 Table S1.

Single‑cell suspension preparation and sequencing

Single-cell suspensions for single-cell RNA-seq were obtained by mechanical and enzy-
matic dissociation. According to the manufacturer’s protocol, the Single Cell 3′ Library 
and Gel Bead Kit V3.1 (10X Genomics, 1,000,075) and Chromium Single Cell B Chip 
Kit (10x Genomics, 1,000,074) were used to prepare barcoded scRNA-seq. The librar-
ies were finally sequenced using an Illumina NovaSeq6000 sequencer with a sequencing 
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depth of at least 100,000 reads per cell with a paired-end 150 bp (PE150) reading strategy 
(performed by Capital Bio Technology, Beijing).

scRNA‑seq data processing

CellRanger (version 4.0.0) coupled with human reference version GRCh38 was used 
to process the 10X single-cell RNA-seq raw data for each sample, following the Dou-
bletFinder R package (version 1.2.2) [62] to computationally infer and remove doublets 
in each sample individually, with default parameters. After removal of doublets, we 
employed the Seurat R package (version 3.2.2) [63] to analyze the output-filtered gene 
expression matrices. In brief, low-quality cells were removed if they met the following 
conditions: (i) > 5000 or < 200 genes and (ii) > 50% UMIs derived from the mitochondrial 
genome according published papers [22, 48, 64–67]. Then, according to the published 
studies [50, 65, 68–70], the filtered expression matrix was then normalized with the 
function “NormalizeData”, followed by the identification of 2000 genes of high cell-to-
cell variation by using the function “FindVariableFeatures”. For multi-sample integration, 
we employed the function “FindIntegrationAnchors” to obtain “anchors” across individ-
ual samples. By inputting the anchors into the function “IntegrateData” and regressing 
out the influence of library size, percentage of mitochondria genes and cell-cycle scores, 
we created a “batch-corrected” expression matrix of all cells on the 2000 highly-variable 
genes. Based on the batch-corrected data, we performed Principal Component Analysis 
(PCA) with top 2000 variable features by using the function “RunPCA”. Cells were then 
clustered using the functions “FindNeighbors” and “FindClusters” with the first 50 prin-
cipal components (PCs). Finally, we conducted nonlinear dimensional reduction for data 
visualization. In brief, UMAP was performed on the top 50 PCs by using the function 
“RunUMAP”.

Cell type annotation and cluster marker identification

The function “FindAllMarkers” function was used to find markers for each of the 
identified clusters and annotated on the basis of the expression of canonical markers 
of particular cell types and the annotation reference created by SingleR (version 1.2.4) 
[71] based on the published single-cell transcriptome data of kidney cancer [22].

Differential gene expression analysis

The parameter MAST in the function “FindAllMarkers” was used to perform differ-
ential gene expression analysis. A gene was considered significantly different with 
adjusted p < 0.05 [72].

CNV estimation, identification of malignant cells and malignant cell subset analysis

To infer CNV patterns from the scRNA-seq data, we used an approach described on 
the website tutorial (https://​github.​com/​broad​insti​tute/​infer​CNV). The identification 
of malignant cells was performed based on previous reports [44, 73]. Endothelial cells 
and myofibroblasts were considered references. And 30% of them (as spike-in cells) 
were randomly selected together with epithelial cells for CNV inference and hier-
archical clustering in each patient. We considered the epithelial cells that clustered 

https://github.com/broadinstitute/inferCNV
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together with spike-in control cells to be ‘CNV-low’ cells, whereas the remaining cells 
were considered ‘CNV-high’, as malignant cells for further analysis.

Diversity score

We calculated the diversity score of a tumor based on the gene expression profiles of 
malignant cells according to a published literature from Ma et al. [74]. The PCA anal-
ysis was performed to project the original expression profiles of all malignant cells to 
reducing the dimensionality of such datasets and to derive PCs, which could increase 
interpretability but at the same time minimize information loss. Then we calculated 
tumor diversity score to measure the degree of intratumoral heterogeneity based on 
the PCs within tumor by referring to the diversity score algorithms.

Gene set enrichment analysis

We applied gene set enrichment analysis (GSEA) to analyze different pathways in dif-
ferent subclusters on the hallmark pathways and GO terms documented in the molec-
ular signature database [75–77]. We applied the GSVA R package (version 1.38.0) to 
estimate pathway activity scores for single cell [78]. The differential activities of path-
ways were calculated using the limma R package (version 3.46.0) [79].

Defining cell state scores

We used cell scores to evaluate the degree to which individual cell expressed a cer-
tain predefined expression gene set. To define progenitor exhausted and terminally 
exhausted phenotypes, we used the function “AddModuleScore” to calculate cell 
scores by using well-defined progenitor exhausted and terminally exhausted CD8+ T 
cell signatures [38, 61].

Pseudotime trajectory analysis

To characterize the potential process of CD8+ T functional changes and determine 
the potential lineage differentiation, we applied the Monocle2 (version 2.16.0) R pack-
age [80] excluding MAIT cells. The gene-cell matrix of UMI counts was provided as the 
input to Monocle, and then, the newCellDataSet function was employed to create a Cell-
DataSet with the parameter expressionFamily = negbinomial.size. We then performed 
the differentialGeneTest function to identify significantly different genes over time.

Investigating genes correlated with certain cellular abundances

We estimated the abundance of each cell type according to the average expression lev-
els of the top 50 cell-specific marker genes with average expression > 2 in each cell type 
in the bulk expression profiles. In addition, we manually excluded genes were obviously 
expressed in many other cell types [57]. Then, we calculated correlations between each 
gene and the abundance of certain cell types by using the function “corr” in the vali-
dation data. Furthermore, we identified different expression genes (DEGs) between two 
indicated cell types from single-cell profiles with log 2-transformed expression ratios 
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> 1.5 or < − 1.5 and compared the relative correlation of the abundance of myofibroblasts 
or ECs associated with extracellular matrix remodeling-related genes between PTs and 
TTs.

Quantification and statistical analysis

We performed all the statistical analyses using R software (version 4.0.0). For compari-
son of the signature scores or CIBERSORTx-inferred immune and nonimmune fractions 
between different cell groups and bulk RNA-Seq sample groups, a two-sided Wilcoxon 
test was used. Detailed descriptions of the statistical tests performed for individual anal-
ysis are provided in the Figure legends and Methods.
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