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ABSTRACT

Background and aims: Deficits in cognitive control represent a core feature of addiction. Internet
Gaming Disorder (IGD) offers an ideal model to study the mechanisms underlying cognitive control
deficits in addiction, eliminating the confounding effects of substance use. Studies have reported
behavioral and neural deficits in reactive control in IGD, but it remains unclear whether individuals
with IGD are compromised in proactive control or behavioral adjustment by learning from the
changing contexts. Methods: Here, fMRI data of 21 male young adults with IGD and 21 matched
healthy controls (HC) were collected during a stop-signal task. We employed group independent
component analysis to investigate group differences in temporally coherent, large-scale functional
network activities during post-error slowing, the typical type of behavioral adjustments. We also
employed a Bayesian belief model to quantify the trial-by-trial learning of the likelihood of stop signal
– P(Stop) – a broader process underlying behavioral adjustment, and identified the alterations in
functional network responses to P(Stop). Results: The results showed diminished engagement of the
fronto-parietal network during post-error slowing, and weaker activity in the ventral attention and
anterior default mode network in response to P(Stop) in IGD relative to HC. Discussion and con-
clusions: These results add to the literatures by suggesting deficits in updating and anticipating
conflicts as well as in behavioral adjustment according to contextual information in individuals with
IGD.
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INTRODUCTION

Internet gaming disorder (IGD) represents a putative
behavioral addiction that has been included as a condition
deserving further studies by the Diagnostic and Statistical
Manual of Mental Disorders 5th Edition (DSM-5) (Amer-
ican Psychiatric Association, 2013). Recently, gaming dis-
order was also included in 11th Edition of International
Classification of Diseases (ICD-11) (World Health Organi-
zation, 2020). Relatively free from the confounding effects of
substance use, IGD offers an ideal model to study the neural
mechanisms of addiction (Cho et al., 2014). Deficits in
cognitive control are central to etiological processes of
addiction, including IGD. Cognitive control has been stud-
ied with a myriad of behavioral paradigms and comprises
both reactive and proactive processes (Hu, Ide, Zhang, & Li,
2016; Wang et al., 2018). Extant research has largely focused
on the behavioral and neural bases of reactive processes,
such as response inhibition (Argyriou, Davison, & Lee, 2017;
Chen et al., 2015), and few studies investigated whether
contextual learning and behavioral adjustment, a core pro-
cess of proactive control (Reed, Vile, Osborne, Romano, &
Truzoli, 2015; Verbruggen, Stevens, & Chambers, 2014),
may be compromised in IGD.

In experimental psychology, the stop signal task (SST) is
one of the most widely used paradigms to study behavioral
adjustment. In the SST, participants make trial-by-trial
adjustment in reaction time (RT) in order to negotiate the
conflicting needs to respond to go signal quickly and to avoid
making a response in stop trials (Ide, Shenoy, Yu, & Li, 2013).
Participants typically slow down in RT in the go trials
following a stop error as compared to those following another
go trial, and this RT adjustment has been called post-error
slowing (PES) (Li et al., 2008). PES reflects behavioral
adjustment to the immediate experience of an error, antici-
pation of a higher likelihood of a stop signal, and consequently
a more cautious approach in executing a motor response.

Many studies have focused on the effect of drug use on
behavioral and neural response to PES. For example,
diminished PES was found after acute injections of alcohol
(Bombeke, Schouppe, Duthoo, & Notebaert, 2013) and in
opioid (Liao et al., 2014) and cocaine (Li, Milivojevic, Kemp,
Hong, & Sinha, 2006) dependent individuals. By comparing
post-error go trials with increased RT (pSEi) and those that
did not increase in RT (pSEni), Li and colleagues demon-
strated decreased activation in the right dorsolateral pre-
frontal cortex during PES in alcohol dependent as compared
to control participants (Li, Luo, Yan, Bergquist, & Sinha,
2009). Other studies showed that long-term alcohol con-
sumption compromised frontal-striatal circuit function,
leading to poor post-error behavior adjustment (Lawrence,
Luty, Bogdan, Sahakian, & Clark, 2009). Thus, PES may
represent a robust behavioral marker of addiction, and it is
of importance to examine whether PES is altered in in-
dividuals with IGD.

A Bayes-optimal decision-making model has been pro-
posed to incorporate learning in examining behavioral

adjustment in the SST. In this model, participants choose to
go or stop by combining sensory evidence in a trial and prior
belief about the likelihood of a stop trial (Shenoy & Yu,
2011). Specifically, each trial contributes to one’s belief about
the likelihood of encountering a subsequent stop trial,
P(stop), and one strategically modulates RT accordingly: an
increase in P(Stop) predicts a prolonged go trial RT – a
sequential effect (Hu, Ide, Zhang, & Li, 2015; Ide et al., 2013;
Ide, Hu, Zhang, Yu, & Li, 2015; Shenoy & Yu, 2011). It is
likely that deficits in behavioral adjustment reflect a specific
instance of impaired ability to use contextual information to
anticipate stop signals and adjust behavior accordingly.
Indeed, an earlier work showed that PES was less correlated
with the Bayesian account of sequential effect in cocaine
dependent relative to control subjects (Ide et al., 2015).
Previous imaging studies have found that bilateral inferior
frontal gyrus, inferior parietal lobule and anterior pre-sup-
plementary motor area are modulated by the probability of
stop trials (Chikazoe et al., 2009; Hu, Ide, Zhang, Sinha, &
Li, 2015). Neural deficits have also been shown in the left
insula, bilateral inferior frontal gyrus, and inferior parietal
lobule in response to P(Stop) in occasional stimulant
including methylphenidate users and in alcohol dependent
individuals performing the SST (Harle et al., 2014; Hu, Ide,
Zhang, Sinha, et al., 2015). Thus, examining Bayesian
learning would advance our understanding of the psycho-
logical processes of behavioral adjustment in IGD.

General linear modeling (GLM) represents a major
approach in identifying regional brain activations during
cognitive performance and has been widely used in studies
of the SST (Hu, Ide, Zhang, & Li, 2015; Li et al., 2009). In
contrast, as a data-driven approach, independent compo-
nent analysis (ICA) reveals “hidden” factors from a set of
measurements such that the sources of the observed data are
maximally independent. Requiring no prior knowledge, ICA
helps in identifying functional networks rather than indi-
vidual brain regions of importance to psychological pro-
cesses (Zhang & Li, 2012). Group ICA (gICA) may identify
functional networks that participate in multiple cognitive
processes (Xu et al., 2013) that elude detection by GLM-
based analyses (Xu, Calhoun, & Potenza, 2015). Previous
research using gICA has revealed functional networks un-
derlying SST performance (Zhang & Li, 2012). For instance,
an earlier study demonstrated disengagement of a network
comprising the inferior frontal cortex and intraparietal sul-
cus during PES in substance-abusing individuals (Elton
et al., 2014).

In the current study, we employed gICA to examine
fMRI data of the SST and compared IGD subjects and
healthy controls (HCs) in neural responses during post-error
behavioral adjustment. We also investigated the neural
representation of probabilistic expectations of the stop signal
during the SST. According to previous findings, we hy-
pothesized that IGD subjects relative to HCs would show
deficient activity in the fronto-parietal network (FPN), a
circuit widely implicated in action withholding/cancellation
(Zhang, Geng, & Lee, 2017), during PES. We also posited
attenuated activity in the ventral attention network (VAN), a
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network that partakes in monitoring environmental infor-
mation (Congdon et al., 2010; Zhang, Hu, Bednarski, Erd-
man, & Li, 2014), in response to P(Stop) in individuals with
IGD.

MATERIALS AND METHODS

Participants and clinical assessments

Considering the higher occurrence of IGD among men and
to avoid the potential confounds of gender (Ko et al., 2009),
we recruited 22 male participants with IGD and 22 HC for
the current study. Inclusion criteria included 18–30 years of
age, right-handed, not currently taking any psychotropic
medications, no contraindications for MRI, and no current
or previous psychiatric or neurological illness as assessed
with the Chinese version of the MINI International
Neuropsychiatric Interview (Si et al., 2009). Additional in-
clusion criteria for the IGD group included: (i) meeting at
least 5 of the 9 diagnostic criteria for IGD as proposed in the
DSM-5 (American Psychiatric Association, 2013; Ko et al.,
2014); (ii) scores ≥50 on Young’s online Internet addiction
test (IAT) (Young, 2016); (iii) engagement in Internet
gaming for >20 hours per week for a minimum of 1 year;
and (iv) Internet gaming as their primary online activity.
Additional inclusion criteria for HC included: (i) meeting
fewer than 5 of the 9 diagnostic criteria for IGD in the DSM-
5; (ii) <50 on the IAT; and (iii) never engaging in Internet
gaming. The Beck Anxiety Inventory (BAI) (Beck, Brown,
Epstein, & Steer, 1988) and Beck Depression Inventory
(BDI) (Beck, Erbaugh, Ward, Mock, & Mendelsohn, 1961)
were used to assess anxiety and depressive symptoms.

Imaging sessions with head movements exceeding 3 mm
in translation or 38 in rotation were removed. In addition,
performance with a more than 50% rate of response in the
go trials, 40–60% stop success rate was deemed compliant
with instructions (Jilka et al., 2014). Imaging data of two
subjects were excluded for these reasons from subsequent
data analysis, and the final sample comprised 21 IGDs and
21 HCs.

Stop-signal task and behavioral data analyses

Participants performed a stop signal task (Zhang & Li,
2012). They were instructed to quickly press the button
when they saw the go signal, while in 25% of these trials, a
stop signal would come up after the go signal (stop trials),
and they should inhibit the response to go signal when they
encountered the stop signal. Go and stop trials were inter-
mixed randomly in presentation. A fixation dot appeared on
the screen to begin in a trial, and after a fore-period varying
from 1 s to 5 s, the dot became a circle – the go signal –
instructing a response. The circle disappeared at button
press or after 1 s if the participant failed to respond. In
approximately one quarter of trials, the circle was followed
by a ‘cross’ – the stop signal – prompting participants to
withhold button press. The trial terminated at button press
or after 1 s if participant successfully inhibited the response.

The time between the go and stop signals, the stop signal
delay (SSD), started at 200 ms and varied from one stop trial
to the next according to a staircase procedure, increasing or
decreasing by 64 ms each after a successful or failed stop
trial. Participants were trained briefly out of the scanner
before imaging to ensure that they understood the task. To
balance the statistic power and fatigue that may result from a
lengthy task, we shorted the duration of each session (rela-
tive to (Zhang & Li, 2012)), with three 8-min sessions of the
task. The total number of trials varied slightly between
subjects, based on the subjects’ response rate and actual
inter-stimulus-interval. The average trial numbers of each
session of each individual ranged from 78 to 82 (77.77 ±
1.75).

We computed the RT difference between the go trials
that followed a stop error (pSE) and those that followed
another go trial (pG) to quantify the extent of PES (PES
effect). We used a dynamic Bayesian model to estimate the
probability of stop signal, or P(Stop). The model assumes
that subjects anticipate an impending stop signal on each
trial, based on prior stimulus history. They believe that stop
signal frequency rk on trial k has probability a of being the
same as rk�1, and probability (1 � a) of being re-sampled
from a prior distribution p(rk) (Angela & Cohen, 2009).
Previous studies found that individual learning rates are
typically too unstable to produce robust regressors for
imaging data analyses (Daw & Doya, 2006; Schonberg,
Daw, Joel, & O’Doherty, 2007; Wimmer, Daw, & Shohamy,
2012). Thus, following previous work (Harle et al., 2014;
Ide et al., 2013; Shenoy & Yu, 2011), we employed the
standard model-based fMRI analyses with a fixed set of
parameters across all subjects, the mean of the prior dis-
tribution 5 0.25, scale 5 10 and a learning parameter a 5
0.8, to characterize P(Stop) and regional responses to
P(Stop) (Harle et al., 2014; Ide et al., 2013; Shenoy & Yu,
2011). A sequential effect, was quantified by Pearson cor-
relation between P(Stop) and RT on go trials for individual
subjects (Ide et al., 2015).

Image acquisition and preprocessing

MR imaging was conducted with a Siemens Trio 3-Tesla
scanner (Siemens, Erlangen, Germany). Thirty-four 3.0 mm
axial fMRI data were acquired using an echo-planar imaging
(EPI) sequence with TR 5 2,000 ms; TE 5 30 ms; flip angle
5 858; matrix size 5 64 3 64; resolution5 3 3 3 mm2;
FOV 5 220p220 mm2. One hundred forty-four high-reso-
lution slices were obtained using T1-weighted sagittal 3-D
magnetization prepared rapid gradient-echo sequence: TR5
2,530 ms, TE5 3.39 ms, TI5 1,100 ms, FA5 78, FOV5 256
3 256 mm, thickness 5 1.33 mm, in-plane resolution 5 1
3 1 mm2.

First five TRs of each session were discarded, and the
images were analyzed using the standard process in DPABI
version 4.2 (Yan, Wang, Zuo, & Zang, 2016), including slice
timing correction, realignment, normalization to 3 3 3 3 3
mm3 MNI space, and smoothing with a Gaussian kernel of 8
mm at full width half maximum (FWHM).
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Generalized linear model for post-error slowing and
stop signal anticipation

Generalized linear models were conducted using SPM12
(Welcome Department of Cognitive Neurology, London,
UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm12). In
the first GLM (GLM 1, G model), to explore the neural
responses to post-error slowing, go signal onsets in each trial
type were convolved with a canonical hemodynamic
response function (HRF) and with the temporal derivative of
the canonical HRF. Four trial outcomes were distinguished:
go success (G), go error (F), stop success (SS), and stop error
(SE). G trials were then divided into those that followed a G
(pG), and SE (pSE) trial. The pG/pSE trials were further
divided into those that increased in RT (pGi/pSEi) and those
that did not increase in RT (pGni/pSEni), as compared with
the mean RT of all preceding pG trials during each session
(Li et al., 2008). The motion parameters were included as
regressors of no interest. We also included RT of G trials,
SSD of SS and SE trials as parametric modulators (Li et al.,
2009).

In the second GLM (GLM 2, F model), to examine the
neural correlates of stop signal anticipation, we modeled
BOLD signals by convolving the onsets of the fixation point
of each G, SS, and SE trial with a canonical hemodynamic
response function (HRF) and the temporal derivative of the
canonical HRF, with motion parameters included as re-
gressors of no interest. The P(Stop) of G trials [G x P(Stop)],
P(Stop) of SS trials [SS x P(Stop)], SSD of SS trials, P(Stop)
of SE trials [SE x P(Stop)], SSD of SE trials were included as
parametric modulators (Harle et al., 2014; Hu, Ide, Zhang, &
Li, 2015).

Group independent component analysis and temporal
sorting

The spatially processed images were analyzed with group
ICA (GIFT, http://mialab.mrn.org/software/gift, version
4.0b). Briefly, data from all sessions of participants were
concatenated into a single dataset and reduced in
dimensionality using two stages of principal component
analysis (PCA) (Zhang & Li, 2012). The data were then
separated with an infomax algorithm into 29 indepen-
dent components, determined by the modified minimal
description length (MDL) criteria (Li, Adali, & Calhoun,
2007). Extraction was repeated 20 times using ICASSO
to assess the stability of independent components
(Himberg, Hyv€arinen, & Esposito, 2004). The time
course and spatial map for each component were back-
reconstructed for each participant. We visually identified
a priori networks for our hypotheses (i.e. FPN and
VAN) according to previous findings (Laird et al., 2011;
Smith et al., 2009).

To examine the relevance of each component to PES, we
performed multiple regression temporal sorting to compare
component time courses with the modeled event time
courses in GLM 1. The resulting beta weights indicated the
extent to which a given network was temporally associated

with, or ‘engaged’ in each event. Beta weights were averaged
across runs for each event for each subject.

Similarly, a multiple regression temporal sorting was
performed to compare component time courses with the
modeled event time courses in GLM 2. The parametric
modulator of P(Stop) ([G x P(Stop)], [SS x P(Stop)], [SE x
P(Stop)]) were weighted by the proportion of trial number
each of G, SS, and SE trials, respectively, to examine the
relevance to P(Stop) of each component ([f x P(Stop)]). A
positive value for a certain functional network indicated that
the activation of this functional network increased along
with the likelihood that a stop signal would appear (Hu, Ide,
Zhang, & Li, 2015).

Group differences of functional network activities

For PES, we examined the beta weight contrast for ‘pSEi-
pSEni’ and ‘(pSEi-pSEni)- (pGi-pGni)’ of the FPNs (the
left fronto-parietal network (lFPN) and right fronto-pari-
etal network (rFPN), corresponding to the IC34 and IC60
of Allen et al. (2011) with two-sample t tests. To offer
exploratory results, we performed t tests for each
component and evaluated the findings with a Bonferroni-
corrected threshold. Similarly, the beta weight of [f x
P(Stop)] for VAN (corresponding to the IC71 of Allen
et al. (2011)) was examined with a two-sample t test to
investigate the group difference, and, to offer exploratory
results, we performed t tests for each component and
evaluated the findings at the same Bonferroni-corrected
threshold.

Given the small sample size, we computed the post-hoc
power of two-sample t test (two groups) using GpPower
(Faul, Erdfelder, Lang, & Buchner, 2007). In post-hoc
analyses, Power (1-b) is computed as a function of a

(0.05), the population effect size, and the sample size in
our study.

Ethics

This study was approved by the Institutional Review Board
of the State Key Laboratory of Cognitive Neuroscience and
Learning, Beijing Normal University (study number:
ICBIR_A_0075_002). All participants providing written
informed consent prior to the study.

RESULTS

Demographic and behavioral characteristics

The demographic characteristics of the IGD and HC are
shown in Table 1. Compared with HC, IGD reported higher
YIAS score and more frequent Internet gaming, as well as
higher levels of anxiety and higher proportion of Alcohol
use. IGD and HC both showed post-error slowing (one-t
test; IGD: t(20) 5 2.29, p 5 0.033; HC: t(20) 5 2.95, p 5
0.008) and sequential effect (one-t test; IGD: t(20) 5 3.73, p
5 0.001; HC: t(20) 5 2.96, p 5 0.008), but IGD and HC
showed no difference in SST performance measures.
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Group differences in neural response

The activity of two functional networks during post-error
slowing and two functional networks during Bayesian
learning anticipation of stop signal differed between IGD and
HC. Functional networks were labelled based on the primary
regions of positive spatial integration in each network ac-
cording to the known intrinsic connectivity of the networks
(Allen et al., 2011; Laird et al., 2011; Smith et al., 2009).

Altered functional networks in post-error slowing. The left
(Fig. 1) and right fronto-parietal network (Fig. 2) encom-
passed the dorsolateral prefrontal cortices and posterior
parietal cortex. Beta weights in these networks were lower
for the ‘pSEi-pSEni’ contrast (lFPN: t(1,40) 5 �2.97, p 5
0.005, Cohen’s d 5 �0.92, r 5 �0.42, power 5 0.90; rFPN:
t(1,40) 5 �2.54, p 5 0.015, Cohen’s d 5 �0.78, r 5 �0.36,
power 5 0.80) and for the ‘(pSEi-pSEni)- (pGi-pGni)’
contrast (lFPN: t(1,40) 5 �2.55, p 5 0.015, Cohen’s d 5

�0.79, r 5 �0.37, power 5 0.81; rFPN: t(1,40) 5 �2.08, p 5
0.044, Cohen’s d5 �0.64, r5 �0.31, power 5 0.65) in IGD,
as compared to HC. Exploratory results showed no signifi-
cant finding with Bonferroni correction.

Altered functional networks responding to P(Stop). The
ventral attention network, comprising the temporo-parietal
junction, insula, supplementary motor area, inferior frontal
gyrus and inferior parietal lobule, showed lower beta weight
for [f x P(Stop)] in IGD relative to HC (t(1,40) 5 �2.76, p 5
0.009, Cohen’s d 5 �0.85, r 5 �0.39, power 5 0.86; Fig. 3).

Exploratory results showed that the beta weight for [f x
P(Stop)] of anterior default mode network (aDMN), corre-
sponding to IC25 in Allen et al. (2011) and comprising the
medial frontal gyrus, was decreased in IGD relative to HC
(Bonferroni corrected, t(1,40) 5 �3.76, p < 0.001, Cohen’s
d 5 �1.16, r 5 �0.50, power 5 0.98; Fig. 4).

Because IGD reported higher levels of anxiety and higher
proportion of alcohol use, we also examined group

Table 1. Participants' characteristics and behavioral performance in the SST

IGD (n 5 21) HC (n 5 21)
t/c2/U Pmean ± SD mean ± SD

Clinical assessments
Age (years) 22.29 ± 1.42 21.82 ± 1.85 0.84 0.405
Education (years) 16.14 ± 1.32 16.00 ± 1.82 0.29 0.772
YIAT score 69.62 ± 12.48 25.19 ± 6.74 14.35 <0.001***
Internet gaming (h/wk) 31.83 ± 9.64 – 5.59a <0.001***
Alcohol use (at least once/month) 6b/0.29c 13b/0.62c 4.71d 0.030*
Cigarette use (at least once/month) 0b/0.00c 0b/0.00c – –
BAI score 4.57 ± 4.82 1.81 ± 2.80 2.27 0.030*
BDI score 6.38 ± 7.69 3.38 ± 4.50 1.54 0.131
SST performance
Mean number of trials (per session) 78.09 ± 1.92 77.46 ± 1.55 1.16 0.252
Mean number of G (per session) 52.39 ± 5.70 48.35 ± 9.36 1.69 0.099
Mean number of F (per session) 5.14 ± 3.91 8.88 ± 7.63 �2.00 0.053
Mean number of SS (per session) 11.02 ± 1.03 11.21 ± 1.33 �0.54 0.591
Mean number of SE (per session) 9.54 ± 1.81 9.02 ± 1.07 1.14 0.261
GS % 91.10 ± 6.91 84.41 ± 13.62 2.00 0.054
SS % 53.78 ± 4.39 55.76 ± 2.32 �2.71 0.073
Mean GoRT (ms) 690.42 ± 109.94 721.94 ± 77.37 �1.07 0.289
Critical SSD 473.63 ± 133.07 495.89 ± 113.83 �0.58 0.563
SSRT 212.41 ± 56.12 226.80 ± 61.77 �0.79 0.434
PES effect (ms) 32.92 ± 61.54 47.8 ± 81.67 �0.66 0.512
Sequential effect 0.15 ± 0.19 0.09 ± 0.14 1.23 0.225
Mean FD 0.13 ± 0.05 0.12 ± 0.06 0.38 0.704

Abbreviations: SD 5 standard deviation; IGD 5 Internet gaming disorder; HC 5 healthy control; YIAT 5 Young's online Internet
addiction test; Internet gaming (hrs/wk) 5 Internet gaming hours per week; BAI 5 Back Anxiety Inventory; BDI 5 Beck Depression
Inventory; Mean number of trials (per session) 5 the average number of trials per session; Mean number of G (per session) 5 the average
number of successful go trials per session; Mean number of F (per session) 5 the average number of failed go trials per session; Mean
number of SS (per session) 5 the average number of successful stop trials per session; Mean number of SE (per session) 5 the average
number of stop error trials per session; GS (%) and SS (%) 5 percentage of successful go and stop trials; Mean GoRT (ms) 5 the mean
reaction time of successful go trials; PES effect (ms)5 the RT difference between the go trials that followed a stop error (pSE) and those that
followed another go trial (pG); Critical SSD 5 Critical stop-signal delay; SSRT 5 Stop-signal reaction time; Sequential effect5 Pearson
correlation between P(Stop) and RT on go trials for individual subjects; Mean FD 5 the frame-wise displacement (FD) of head position.
a U value.
b the number of participants.
c the rate of alcohol and cigarette use.
d c2 value.
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Fig. 3. The ventral attention network (VAN) coding of P(Stop). A: Spatial map displayed at a threshold at p 5 0.00001; B: Lower
engagement in ventral attention network coding of P(Stop) in IGD

Fig. 1. The left fronto-parietal network (lFPN). A: Spatial map displayed at a threshold at p5 0.00001; B: Lower engagement in lFPN during
post-error slowing in IGD

Fig. 2. The right fronto-parietal network (rFPN). A: Spatial map displayed at a threshold at p 5 0.00001; B: Lower engagement in rFPN
during post-error slowing in IGD
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differences with anxiety score and alcohol use state (15 use,
0 5 no use) as covariates. The results were similar with
current findings (Supplementary Information Table S1).

DISCUSSION

To our knowledge, this is the first report to identify alter-
ations in functional network activities for proactive control
in IGD, a behavioral addiction independent of drug effects.
We found, despite indistinguishable behavioral perfor-
mance, lower engagement of the fronto-parietal network
during post-error slowing and weaker activity in the ventral
attention network and the anterior default mode network
during Bayesian learning in IGD as compared to HC. These
results suggested altered neural activity not only during
post-error behavioral adjustment, but also during probabi-
listic expectations of the stop signal. We highlighted the
main findings in discussion.

Altered functional networks in post-error slowing

The left and right fronto-parietal network showed lower
engagement during PES in IGD. Frontal and parietal cortices
respond to cued attention allocation (Luks, Simpson, Dale, &
Hough, 2007) and preparatory control of response switching
(Rushworth, Paus, & Sipila, 2001). An extensive body of work
also provides evidence that activation ofmiddle frontal regions
reflects response adjustment strategies to balance the opposing
go and stop demands (Chevrier, Noseworthy, & Schachar,
2007), following conflicts or errors (Ridderinkhof, van den
Wildenberg, Segalowitz, & Carter, 2004). Further, fronto-pa-
rietal circuit (e.g. dorsolateral prefrontal cortices) dysfunction
compromised post-signal behavioral adjustment in cocaine
and alcohol addicted individuals (Chevrier et al., 2007; Hester,
Simoes-Franklin, & Garavan, 2007; Li et al., 2009).

The lFPN and rFPN may support different functional
dimensions of cognitive control. Previous studies have
proposed that the rFPN is involved in high attentional load
stop trials, hence in support of the restraint of actions, while

lFPN is involved in low attentional load go trials, hence in
support of the cancellation of actions, in the SST (Schachar
et al., 2007; Stevens, Kiehl, Pearlson, & Calhoun, 2009; Xu,
Calhoun, Pearlson, & Potenza, 2014). Indeed, consistent
with the temporal organization of these functional roles,
Zhang and Li (2012) also found that the activity of the lFPN
significantly lagged in time behind the rFPN during the SST.

Thus, decreased activity in the fronto-parietal network in
IGD may indicate that individuals with IGD are unable to
utilize this network to adjust response strategies to balance
the opposing demands of the go and stop trials to restrain
action and to inhibit a motor response following errors.

Altered functional networks responding to P(Stop)

The ventral attention network. IGD showed attenuated
activity for Bayesian learning in the ventral attention
network. The VAN responds to changes in events and
reorients attention to the stop signal (Congdon et al., 2010;
Zhang & Li, 2012). Previous studies have implicated many
areas in the VAN in updating the probability of stop signal
to adjust behavior and compromised activities in these areas
in addiction (Hu, Ide, Zhang, Sinha, et al., 2015; Shi et al.,
2019). For example, occasional stimulant users demon-
strated subtle deficits in anticipation of a stop signal in the
inferior frontal gyrus (Harle et al., 2014). Schlosser et al.
(2009) reported that methylphenidate attenuated inferior
parietal lobule response to uncertainty when making de-
cisions according to sensory information. Thus, the
disruption of the VAN suggests lower efficiency of bottom-
up signal filtering, resulting in difficulties to adapt behavioral
responses to environmental needs (Collantoni et al., 2016).

The anterior default mode network. The anterior default
mode network showed greater disengagement during stop
signal anticipation. The aDMN was deactivated, consistent
with earlier findings of downregulation during a cognitively
demanding task (Greicius, Krasnow, Reiss, & Menon, 2003).
However, aDMN is also involved in bottom-up cue-elicited

Fig. 4. The coding of P(Stop) in anterior default mode network (aDMN). A: Spatial map displayed at a threshold at p 5 0.00001; B: Higher
disengagement in aDMN coding of P(Stop) in IGD
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attentional processes during cognitive control (Bonini et al.,
2014), particularly in response to transiently presented
stimuli and stimulus complexity (McKiernan, Kaufman,
Kucera-Thompson, & Binder, 2003), and self-processing
(Molnar-Szakacs & Uddin, 2013). As a critical area of the
aDMN, the medial frontal cortices, showed increasing acti-
vation to stop signal likelihood (Hu, Ide, Zhang, & Li, 2015;
Vink et al., 2005).

Altered intra-aDMN functional connectivity may be
associated with impaired awareness (Blumenfeld et al.,
2003), and diminished self-referential thinking may hinder
behavioral regulation after unexpected feedback (Patterson
& Newman, 1993). In addition, altered activity and func-
tional connectivity of regions within this network (e.g. the
ventromedial prefrontal cortex) were also found during er-
ror processing and resting-state in addictive individuals
(Sutherland, McHugh, Pariyadath, & Stein, 2012; Worhun-
sky et al., 2013; Zhang et al., 2014). Therefore, the greater
disengagement of aDMN found in the present study may
reflect less attentional and monitoring/reflectivity processing
to unexpected cues and, as a result, suboptimal readiness to
withhold response, in IGD.

General discussion

The current findings are in accordance with a previous re-
view of the SST, which implicated the fronto-parietal
network in action withholding/cancellation and the ventral
attention network in interference resolution (Zhang et al.,
2017). Our findings were also consistent with the previous
findings that substance dependent participants showed
failure to use con-textual information to update the proba-
bility of the stop signal (Harle et al., 2014; Ide et al., 2015)
and to adjust behavior after errors (Hester et al., 2007; Li
et al., 2009). It may suggest that these impairments might be
general across different types of addiction.

IGD in this study reported higher levels of anxiety and
alcohol use than HC, though none met criteria for an anxiety
or alcohol use disorder as assessed with the Chinese version
of the MINI International Neuropsychiatric Interview (Si
et al., 2009). We controlled anxiety score and drink state in
data analyses; however, the potential influence of anxiety
and alcohol use on the present findings cannot be ruled out
entirely. Based on problem behavior theory and previous
studies, comorbidities of anxiety and alcohol use are com-
mon in IGD (Demirci, Akg€on€ul, & Akpinar, 2015; Ho et al.,
2014; Ko et al., 2008; Tonioni et al., 2012). We hope the
current findings would reflect the broad populations of IGD.

The results of conventional GLM did not survive the
corrected threshold. However, the main regions revealed
with voxel-wise p < 0.005 (uncorrected) were consistent with
the ICA findings (Supplementary Information Table S2).
ICA identifies regional signals that contribute to functional
networks, whereas GLM examines the aggregate signal in a
particular region. It is worth noting that different functional
networks may share the same brain regions, suggesting that
individual brain regions may serve concurrent but different
or even opposite functional roles when engaged as part of

different functional networks (Xu et al., 2013). Thus, ICA is
able to identify alterations in task-related, concurrent, but
opposite changes in time courses in the same brain regions
that may not be detected by GLM-based analyses (Xu et al.,
2015). Furthermore, this highlights the complexity of
regional activations and the utility of ICA in considering
regional interactions to provide nuanced understanding of
the function of a brain region.

Limitations of the study

Some limitations need to be considered for the current
study. Firstly, we recruited only male participants in the
study, which limits the generalizability of the current find-
ings to female IGD. Secondly, IGD participants in the pre-
sent study represented a sample of students enrolled in
Chinese universities and thus the findings may not be
generalized to a broader clinical population. Thirdly,
although the results showed acceptable effect size and post-
hoc power, the current findings remain to be verified in the
future, considering the limited sample size and relatively
small trial number of each participant. Finally, this is a
cross-sectional study, and whether the alterations in func-
tional network engagement represent a consequence of IGD
or a risk factor of IGD remains to be determined.

CONCLUSIONS

The current study investigated functional network activities
for behavioral adjustment and Bayesian learning from the
changing contexts in IGD.We found decreased engagement in
functional networks for post-error response restraint and
behavioral adjustment; and weaker activity in functional net-
works for attentional monitoring and sensory salience evalu-
ation during Bayesian learning for behavioral adjustment in
IGD. Together, IGD showed not only deficits in trial-by-trial
behavioral adjustments, but also a broader impairment to use
contextual information to expect and update the adjustment
demand. It remains to be seen whether these findings would
be shared across drug and behavioral addictions.

Funding sources: This study was supported by the National
Natural Science Foundation of China (No. 31871122,
31170990, and 31700966) and Open Project grant from the
State Key Laboratory of Cognitive Neuroscience and
Learning (to Sheng, Zhang).

Authors’ contribution: JTZ, and XYF were responsible for
the study concept and design. SSM, LL, and YWY contrib-
uted to the data acquisition. SSM, PW, and SZ assisted with
data analysis and interpretation of findings. SSM drafted the
manuscript. JTZ, CSRL, NZ, and XYF provided critical
revision of the manuscript. All authors critically reviewed
the content and approved final version for publication.

Conflict of interest: The authors have no conflict of interest.

Journal of Behavioral Addictions 10 (2021) 1, 112–122 119



SUPPLEMENTARY MATERIAL

Supplementary data to this article can be found online at
https://doi.org/10.1556/2006.2021.00010.

REFERENCES

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M.,
Silva, R. F., et al. (2011). A baseline for the multivariate com-
parison of resting-state networks. Frontiers in Systems Neuro-
science, 5, 2. https://doi.org/10.3389/fnsys.2011.00002.

American Psychiatric Association. (2013). Diagnostic and statistical
manual of mental disorders (5th ed.). Washington, DC:
American Psychiatric Association.

Angela, J. Y., & Cohen, J. D. (2009). Sequential effects: Superstition
or rational behavior? Paper presented at the advances in neural
information processing systems.

Argyriou, E., Davison, C. B., & Lee, T. T. C. (2017). Response in-
hibition and internet gaming disorder: A meta-analysis.
Addictive Behaviors, 71, 54–60. https://doi.org/10.1016/j.
addbeh.2017.02.026.

Beck, A. T., Brown, G., Epstein, N., & Steer, R. A. (1988). An in-
ventory for measuring clinical anxiety – Psychometric proper-
ties. Journal of Consulting and Clinical Psychology, 56(6), 893–
897. https://doi.org/10.1037/0022-006x.56.6.893.

Beck, A. T., Erbaugh, J., Ward, C. H., Mock, J., & Mendelsohn, M.
(1961). An inventory for measuring depression. Archives of
General Psychiatry, 4(6), 561-&.

Blumenfeld, H., Westerveld, M., Ostroff, R. B., Vanderhill, S. D.,
Freeman, J., Necochea, A., et al. (2003). Selective frontal, pari-
etal, and temporal networks in generalized seizures. Neuro-
image, 19(4), 1556–1566. https://doi.org/10.1016/S1053-
8119(03)00204-0.

Bombeke, K., Schouppe, N., Duthoo, W., & Notebaert, W. (2013).
The effect of alcohol and placebo on post-error adjustments.
Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/
fnhum.2013.00003.

Bonini, F., Burle, B., Liegeois-Chauvel, C., Regis, J., Chauvel, P., &
Vidal, F. (2014). Action monitoring and medial frontal cortex:
Leading role of supplementary motor area. Science, 343(6173),
888–891. https://doi.org/10.1126/science.1247412.

Chen, C. Y., Huang, M. F., Yen, J. Y., Chen, C. S., Liu, G. C.,
Yen, C. F., et al. (2015). Brain correlates of response inhi-
bition in Internet gaming disorder. Psychiatry and Clinical
Neurosciences, 69(4), 201–209. https://doi.org/10.1111/pcn.
12224.

Chevrier, A. D., Noseworthy, M. D., & Schachar, R. (2007).
Dissociation of response inhibition and performance moni-
toring in the stop signal task using event-related fMRI. Human
Brain Mapping, 28(12), 1347–1358. https://doi.org/10.1002/
hbm.20355.

Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., &
Konishi, S. (2009). Preparation to inhibit a response comple-
ments response inhibition during performance of a stop-signal
task. Journal of Neuroscience, 29(50), 15870–15877.

Cho, H., Kwon, M., Choi, J.-H., Lee, S.-K., Choi, J. S., Choi, S.-W.,
et al. (2014). Development of the Internet addiction scale based
on the Internet Gaming Disorder criteria suggested in DSM-5.
Addictive Behaviors, 39(9), 1361–1366.

Collantoni, E., Michelon, S., Tenconi, E., Degortes, D., Titton, F.,
Manara, R., et al. (2016). Functional connectivity correlates of
response inhibition impairment in anorexia nervosa. Psychiatry
Research-Neuroimaging, 247, 9–16.

Congdon, E., Mumford, J. A., Cohen, J. R., Galvan, A., Aron, A. R.,
Xue, G., et al. (2010). Engagement of large-scale networks is
related to individual differences in inhibitory control. Neuro-
image, 53(2), 653–663.

Daw, N. D., & Doya, K. (2006). The computational neurobiology of
learning and reward. Current Opinion in Neurobiology, 16(2),
199–204. https://doi.org/10.1016/j.conb.2006.03.006.

Demirci, K., Akg€on€ul, M., & Akpinar, A. (2015). Relationship of
smartphone use severity with sleep quality, depression, and
anxiety in university students. Journal of Behavioral Addictions,
4(2), 85–92.

Elton, A., Young, J., Smitherman, S., Gross, R. E., Mletzko, T., &
Kilts, C. D. (2014). Neural network activation during a stop-
signal task discriminates cocaine-dependent from non-drug-
abusing men. Addiction Biology, 19(3), 427–438. https://doi.org/
10.1111/adb.12011.

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). GpPower 3:
A flexible statistical power analysis program for the social,
behavioral, and biomedical sciences. Behavior Research Methods,
39(2), 175–191. https://doi.org/10.3758/bf03193146.

Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003).
Functional connectivity in the resting brain: A network analysis
of the default mode hypothesis. Proceedings of the National
Academy of Sciences of the United States of America, 100(1),
253–258. https://doi.org/10.1073/pnas.0135058100.

Harle, K. M., Shenoy, P., Stewart, J. L., Tapert, S. F., Yu, A. J., &
Paulus, M. P. (2014). Altered neural processing of the need to
stop in young adults at risk for stimulant dependence. Journal
of Neuroscience, 34(13), 4567–4580. https://doi.org/10.1523/
Jneurosci.2297-13.2014.

Hester, R., Simoes-Franklin, C., & Garavan, H. (2007). Post-error
behavior in active cocaine users: Poor awareness of errors in
the presence of intact performance adjustments. Neuro-
psychopharmacology, 32(9), 1974–1984. https://doi.org/10.1038/
sj.npp.1301326.

Himberg, J., Hyv€arinen, A., & Esposito, F. (2004). Validating the
independent components of neuroimaging time series via
clustering and visualization. Neuroimage, 22(3), 1214–1222.

Ho, R. C., Zhang, M. W. B., Tsang, T. Y., Toh, A. H., Pan, F., Lu, Y.
X., et al. (2014). The association between internet addiction and
psychiatric co-morbidity: A meta-analysis. BMC Psychiatry, 14.

Hu, S., Ide, J. S., Zhang, S., & Li, C. S. R. (2015). Anticipating
conflict: Neural correlates of a Bayesian belief and its motor
consequence. Neuroimage, 119, 286–295. https://doi.org/10.
1016/j.neuroimage.2015.06.032.

Hu, S., Ide, J. S., Zhang, S., & Li, C. R. (2016). The right superior
frontal gyrus and individual variation in proactive control of
impulsive response. Journal of Neuroscience, 36(50), 12688–
12696. https://doi.org/10.1523/JNEUROSCI.1175-16.2016.

120 Journal of Behavioral Addictions 10 (2021) 1, 112–122

https://doi.org/10.1556/2006.2021.00010
doi:https://doi.org/10.3389/fnsys.2011.00002
doi:https://doi.org/10.1016/j.addbeh.2017.02.026
doi:https://doi.org/10.1016/j.addbeh.2017.02.026
doi:https://doi.org/10.1037/0022-006x.56.6.893
doi:https://doi.org/10.1016/S1053-8119(03)00204-0
doi:https://doi.org/10.1016/S1053-8119(03)00204-0
doi:https://doi.org/10.3389/fnhum.2013.00003
doi:https://doi.org/10.3389/fnhum.2013.00003
doi:https://doi.org/10.1126/science.1247412
doi:https://doi.org/10.1111/pcn.12224
doi:https://doi.org/10.1111/pcn.12224
doi:https://doi.org/10.1002/hbm.20355
doi:https://doi.org/10.1002/hbm.20355
doi:https://doi.org/10.1016/j.conb.2006.03.006
doi:https://doi.org/10.1111/adb.12011
doi:https://doi.org/10.1111/adb.12011
doi:https://doi.org/10.3758/bf03193146
doi:https://doi.org/10.1073/pnas.0135058100
doi:https://doi.org/10.1523/Jneurosci.2297-13.2014
doi:https://doi.org/10.1523/Jneurosci.2297-13.2014
doi:https://doi.org/10.1038/sj.npp.1301326
doi:https://doi.org/10.1038/sj.npp.1301326
doi:https://doi.org/10.1016/j.neuroimage.2015.06.032
doi:https://doi.org/10.1016/j.neuroimage.2015.06.032
doi:https://doi.org/10.1523/JNEUROSCI.1175-16.2016


Hu, S., Ide, J. S., Zhang, S., Sinha, R., & Li, C. S. R. (2015). Conflict
anticipation in alcohol dependence – A model-based fMRI
study of stop signal task. Neuroimage-Clinical, 8, 39–50.

Ide, J. S., Hu, S. E., Zhang, S., Yu, A. J., & Li, C. S. R. (2015).
Impaired Bayesian learning for cognitive control in cocaine
dependence. Drug and Alcohol Dependence, 151, 220–227.

Ide, J. S., Shenoy, P., Yu, A. J., & Li, C. S. (2013). Bayesian pre-
diction and evaluation in the anterior cingulate cortex. Journal
of Neuroscience, 33(5), 2039–2047. https://doi.org/10.1523/
JNEUROSCI.2201-12.2013.

Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R.
M., et al. (2014). Damage to the salience network and in-
teractions with the default mode network. Journal of Neuro-
science , 34(33), 10798–10807. https://doi.org/10.1523/
JNEUROSCI.0518-14.2014.

Ko, C. H., Yen, J. Y., Chen, S. H., Wang, P. W., Chen, C. S., & Yen,
C. F. (2014). Evaluation of the diagnostic criteria of Internet
gaming disorder in the DSM-5 among young adults in Taiwan.
Journal of Psychiatric Research, 53, 103–110. https://doi.org/10.
1016/j.jpsychires.2014.02.008.

Ko, C.-H., Yen, J.-Y., Chen, S.-H., Yang, M.-J., Lin, H.-C., & Yen,
C.-F. (2009). Proposed diagnostic criteria and the screening and
diagnosing tool of Internet addiction in college students.
Comprehensive Psychiatry, 50(4), 378–384.

Ko, C. H., Yen, J. Y., Yen, C. F., Chen, C. S., Weng, C. C., & Chen,
C. C. (2008). The association between internet addiction and
problematic alcohol use in adolescents: The problem behavior
model. Cyberpsychology and Behavior, 11(5), 571–576.

Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L.,
McKay, D. R., et al. (2011). Behavioral interpretations of
intrinsic connectivity networks. Journal of Cognitive Neurosci-
ence, 23(12), 4022–4037. https://doi.org/10.1162/jocn_a_00077.

Lawrence, A. J., Luty, J., Bogdan, N. A., Sahakian, B. J., & Clark, L.
(2009). Impulsivity and response inhibition in alcohol depen-
dence and problem gambling. Psychopharmacology, 207(1),
163–172. https://doi.org/10.1007/s00213-009-1645-x.

Li, Y. O., Adali, T., & Calhoun, V. D. (2007). Estimating the number
of independent components for functional magnetic resonance
Imaging data. Human Brain Mapping, 28(11), 1251–1266.

Li, C. S. R., Huang, C., Yan, P. S., Paliwal, P., Constable, R. T., &
Sinha, R. (2008). Neural correlates of post-error slowing during
a stop signal task: A functional magnetic resonance imaging
study. Journal of Cognitive Neuroscience, 20(6), 1021–1029.
https://doi.org/10.1162/jocn.2008.20071.

Li, C.-S. R., Luo, X., Yan, P., Bergquist, K., & Sinha, R. (2009).
Altered impulse control in alcohol dependence: Neural mea-
sures of stop signal performance. Alcoholism: Clinical and
Experimental Research, 33(4), 740–750. https://doi.org/10.1111/
j.1530-0277.2008.00891.x.

Li, C. S., Milivojevic, V., Kemp, K., Hong, K., & Sinha, R. (2006).
Performance monitoring and stop signal inhibition in abstinent
patients with cocaine dependence. Drug and Alcohol Dependence,
85(3), 205–212. https://doi.org/10.1016/j.drugalcdep.2006.04.008.

Liao, D. L., Huang, C. Y., Hu, S., Fang, S. C., Wu, C. S., Chen, W. T.,
et al. (2014). Cognitive control in opioid dependence and
methadone maintenance treatment. PloS One, 9(4), e94589.
https://doi.org/10.1371/journal.pone.0094589.

Luks, T. L., Simpson, G. V., Dale, C. L., & Hough, M. G. (2007).
Preparatory allocation of attention and adjustments in conflict
processing. Neuroimage, 35(2), 949–958. https://doi.org/10.
1016/j.neuroimage.2006.11.041.

McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder,
J. R. (2003). A parametric manipulation of factors affecting
task-induced deactivation in functional neuroimaging. Journal
of Cognitive Neuroscience, 15(3), 394–408. https://doi.org/10.
1162/089892903321593117.

Molnar-Szakacs, I., & Uddin, L. Q. (2013). Self-processing and the
default mode network: Interactions with the mirror neuron
system. Frontiers in Human Neuroscience, 7, 571. https://doi.
org/10.3389/Fnhum.2013.00571.

Patterson, C. M., & Newman, J. P. (1993). Reflectivity and learning
from aversive events – Toward a psychological mechanism for
the syndromes of disinhibition. Psychological Review, 100(4),
716–736. https://doi.org/10.1037/0033-295x.100.4.716.

Reed, P., Vile, R., Osborne, L. A., Romano, M., & Truzoli, R. (2015).
Problematic internet usage and immune function. PloS One,
10(8), e0134538. https://doi.org/10.1371/journal.pone.0134538.

Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S.
J., & Carter, C. S. (2004). Neurocognitive mechanisms of
cognitive control: The role of prefrontal cortex in action se-
lection, response inhibition, performance monitoring, and
reward-based learning. Brain and Cognition, 56(2), 129–140.
https://doi.org/10.1016/j.bandc.2004.09.016.

Rushworth, M. F. S., Paus, T., & Sipila, P. K. (2001). Attention
systems and the organization of the human parietal cortex.
Journal of Neuroscience, 21(14), 5262–5271. https://doi.org/10.
1523/Jneurosci.21-14-05262.2001.

Schachar, R., Logan, G. D., Robaey, P., Chen, S., Ickowicz, A., &
Barr, C. (2007). Restraint and cancellation: Multiple inhibition
deficits in attention deficit hyperactivity disorder. Journal of
Abnormal Child Psychology, 35(2), 229–238. https://doi.org/10.
1007/s10802-006-9075-2.

Schlosser, R. G. M., Nenadic, I., Wagner, G., Zysset, S., Koch, K., &
Sauer, H. (2009). Dopaminergic modulation of brain systems
subserving decision making under uncertainty: A study with
fMRI and methylphenidate challenge. Synapse, 63(5), 429–442.

Schonberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007).
Reinforcement learning signals in the human striatum distin-
guish learners from nonlearners during reward-based decision
making. Journal of Neuroscience, 27(47), 12860–12867. https://
doi.org/10.1523/Jneurosci.2496-07.2007.

Shenoy, P., & Yu, A. J. (2011). Rational decision-making in
inhibitory control. Frontiers in Human Neuroscience, 5, 48.
https://doi.org/10.3389/Fnhum.2011.00048.

Shi, L., Lou, W. T., Wong, A., Zhang, F., Abrigo, J., Chu, W. C. W.,
et al. (2019). Neural evidence for long-term marriage shaping
the functional brain network organization between couples.
Neuroimage, 199, 87–92. https://doi.org/10.1016/j.neuroimage.
2019.05.058.

Si, T.-M., Shu, L., Dang, W.-M., Se, Y.-A., Chen, J.-X., Dong, W.-T.,
et al. (2009). Evaluation of the reliability and validity of Chinese
version of the Mini-International Neuropsychiatric Interview in
patients with mental disorders. Chinese Mental Health Journal,
23(7), 493–503.

Journal of Behavioral Addictions 10 (2021) 1, 112–122 121

doi:https://doi.org/10.1523/JNEUROSCI.2201-12.2013
doi:https://doi.org/10.1523/JNEUROSCI.2201-12.2013
doi:https://doi.org/10.1523/JNEUROSCI.0518-14.2014
doi:https://doi.org/10.1523/JNEUROSCI.0518-14.2014
doi:https://doi.org/10.1016/j.jpsychires.2014.02.008
doi:https://doi.org/10.1016/j.jpsychires.2014.02.008
doi:https://doi.org/10.1162/jocn_a_00077
doi:https://doi.org/10.1007/s00213-009-1645-x
doi:https://doi.org/10.1162/jocn.2008.20071
doi:https://doi.org/10.1111/j.1530-0277.2008.00891.x
doi:https://doi.org/10.1111/j.1530-0277.2008.00891.x
doi:https://doi.org/10.1016/j.drugalcdep.2006.04.008
doi:https://doi.org/10.1371/journal.pone.0094589
https://doi.org/10.1016/j.neuroimage.2006.11.041
https://doi.org/10.1016/j.neuroimage.2006.11.041
doi:https://doi.org/10.1162/089892903321593117
doi:https://doi.org/10.1162/089892903321593117
doi:https://doi.org/10.3389/Fnhum.2013.00571
doi:https://doi.org/10.3389/Fnhum.2013.00571
doi:https://doi.org/10.1037/0033-295x.100.4.716
doi:https://doi.org/10.1371/journal.pone.0134538
doi:https://doi.org/10.1016/j.bandc.2004.09.016
https://doi.org/10.1523/Jneurosci.21-14-05262.2001
https://doi.org/10.1523/Jneurosci.21-14-05262.2001
doi:https://doi.org/10.1007/s10802-006-9075-2
doi:https://doi.org/10.1007/s10802-006-9075-2
doi:https://doi.org/10.1523/Jneurosci.2496-07.2007
doi:https://doi.org/10.1523/Jneurosci.2496-07.2007
doi:https://doi.org/10.3389/Fnhum.2011.00048
doi:https://doi.org/10.1016/j.neuroimage.2019.05.058
doi:https://doi.org/10.1016/j.neuroimage.2019.05.058


Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M.,
Mackay, C. E., et al. (2009). Correspondence of the brain’s
functional architecture during activation and rest. Proceedings
of the National Academy of Sciences, 106(31), 13040–13045.

Stevens, M. C., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2009).
Brain network dynamics during error commission. Human Brain
Mapping, 30(1), 24–37. https://doi.org/10.1002/hbm.20478.

Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A.
(2012). Resting state functional connectivity in addiction: Les-
sons learned and a road ahead. Neuroimage, 62(4), 2281–2295.

Tonioni, F., D’Alessandris, L., Lai, C., Martinelli, D., Corvino, S.,
Vasale, M., et al. (2012). Internet addiction: Hours spent online,
behaviors and psychological symptoms. General Hospital Psy-
chiatry, 34(1), 80–87.

Verbruggen, F., Stevens, T., & Chambers, C. D. (2014). Proactive
and reactive stopping when distracted: An attentional account.
Journal of Experimental Psychology: Human Perception and
Performance, 40(4), 1295–1300. https://doi.org/10.1037/
a0036542.

Vink, M., Kahn, R. S., Raemaekers, M., van den Heuvel, M., Boersma,
M., & Ramsey, N. F. (2005). Function of striatum beyond inhi-
bition and execution of motor responses. Human Brain Mapping,
25(3), 336–344. https://doi.org/10.1002/hbm.20111.

Wang, W., Hu, S., Ide, J. S., Zhornitsky, S., Zhang, S., Yu, A. J., et al.
(2018). Motor preparation disrupts proactive control in the
stop signal task. Frontiers in Human Neuroscience, 12, 151.
https://doi.org/10.3389/fnhum.2018.00151.

Wimmer, G. E., Daw, N. D., & Shohamy, D. (2012). Generalization
of value in reinforcement learning by humans. European
Journal of Neuroscience, 35(7), 1092–1104. https://doi.org/10.
1111/j.1460-9568.2012.08017.x.

Worhunsky, P. D., Stevens, M. C., Carroll, K. M., Rounsaville, B. J.,
Calhoun, V. D., Pearlson, G. D., et al. (2013). Functional brain

networks associated with cognitive control, cocaine depen-
dence, and treatment outcome. Psychology of Addictive Behav-
iors, 27(2), 477–488. https://doi.org/10.1037/a0029092.

World Health Organization. (2020). ICD-11 for mortality and
morbidity statistics (ICD-11 MMS).

Xu, J. S., Calhoun, V. D., Pearlson, G. D., & Potenza, M. N. (2014).
Opposite modulation of brain functional networks implicated
at low vs. high demand of attention and working memory. PloS
One, 9(1), e87078. https://doi.org/10.1371/journal.pone.
0087078.

Xu, J. S., Calhoun, V. D., & Potenza, M. N. (2015). The absence of
task-related increases in BOLD signal does not equate to
absence of task-related brain activation. Journal of Neuroscience
Methods, 240, 125–127.

Xu, J. S., Zhang, S., Calhoun, V. D., Monterosso, J., Li, C. S. R.,
Worhunsky, P. D., et al. (2013). Task-related concurrent but
opposite modulations of overlapping functional networks as
revealed by spatial IA. Neuroimage, 79, 62–71.

Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI:
Data processing & analysis for (Resting-State) brain imaging.
Neuroinformatics, 14(3), 339–351.

Young, K. (2016). Internet addiction test (IAT): Stoelting.
Zhang, R. B., Geng, X. J., & Lee, T. M. C. (2017). Large-scale

functional neural network correlates of response inhibition: An
fMRI meta-analysis. Brain Structure and Function, 222(9),
3973–3990.

Zhang, S., Hu, S., Bednarski, S. R., Erdman, E., & Li, C. S. R. (2014).
Error-related functional connectivity of the thalamus in cocaine
dependence. Neuroimage-Clinical, 4, 585–592.

Zhang, S., & Li, C. S. R. (2012). Functional networks for cognitive
control in a stop signal task: Independent component analysis.
Human Brain Mapping, 33(1), 89–104. https://doi.org/10.1002/
hbm.21197.

Open Access. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://
creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the
original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.

122 Journal of Behavioral Addictions 10 (2021) 1, 112–122

doi:https://doi.org/10.1002/hbm.20478
doi:https://doi.org/10.1037/a0036542
doi:https://doi.org/10.1037/a0036542
doi:https://doi.org/10.1002/hbm.20111
doi:https://doi.org/10.3389/fnhum.2018.00151
doi:https://doi.org/10.1111/j.1460-9568.2012.08017.x
doi:https://doi.org/10.1111/j.1460-9568.2012.08017.x
doi:https://doi.org/10.1037/a0029092
doi:https://doi.org/10.1371/journal.pone.0087078
doi:https://doi.org/10.1371/journal.pone.0087078
doi:https://doi.org/10.1002/hbm.21197
doi:https://doi.org/10.1002/hbm.21197
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Outline placeholder
	Altered functional network activities for behavioral adjustments and Bayesian learning in young men with Internet gaming di ...
	Introduction
	Materials and methods
	Participants and clinical assessments
	Stop-signal task and behavioral data analyses
	Image acquisition and preprocessing
	Generalized linear model for post-error slowing and stop signal anticipation
	Group independent component analysis and temporal sorting
	Group differences of functional network activities
	Ethics

	Results
	Demographic and behavioral characteristics
	Group differences in neural response
	Altered functional networks in post-error slowing
	Altered functional networks responding to P(Stop)


	Discussion
	Altered functional networks in post-error slowing
	Altered functional networks responding to P(Stop)
	The ventral attention network
	The anterior default mode network

	General discussion
	Limitations of the study

	Conclusions
	References


