Skip to main content
. Author manuscript; available in PMC: 2023 May 1.
Published in final edited form as: Neural Netw. 2022 Feb 10;149:95–106. doi: 10.1016/j.neunet.2022.02.001

Table 1:

Notations in LELBOVAEx.

Notations in the ELBO
θ: parameters in the decoder.
ψ: parameters in the encoder.
N: the total number of observations.
T: the total number of clusters.
D: the dimension of the latent representation z.
Σ : diag(σ2(x; ψ)).
xij: the jth dimension of the nth observation.
yn: cluster membership for the nth observation.
pyn=k=γik, Nk=n=1Nγnk.
L: the number of Monte Carlo samples in Stochastic
Gradient Variational Bayes (SGVB).
z^n=1Ll=1Lznlz¯k=1Nkn=1Nγnkz^n.
Uk=1Nkn=1Nγnkz^nz¯kz^nz¯kT.
βk = β0 + Nk: the posterior scalar precision in NW distribution.
mk=1βkβ0m0+Nkz¯k: the posterior mean of cluster k.
Wk1=W01+NkSk+β0Nkβ0+Nkz¯km0z¯km0T.
νk=ν0+Nk: the kth posterior degrees of freedom of NW.