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Abstract

Neuronal variability patterns promote the formation and organization of neural circuits. 

Macroscale similarities in regional variability patterns may therefore be linked to the strength and 

topography of inter-regional functional connections. To assess this relationship, we used multi-

echo resting-state fMRI and investigated macroscale connectivity-variability associations in 154 

adult humans (86 women; mean age = 22yrs). We computed inter-regional measures of moment-

to-moment BOLD signal variability and related them to inter-regional functional connectivity. 

Region pairs that showed stronger functional connectivity also showed similar BOLD signal 

variability patterns, independent of inter-regional distance and structural similarity. Connectivity-

variability associations were predominant within all networks and followed a hierarchical spatial 

organization that separated sensory, motor and attention systems from limbic, default and 

frontoparietal control association networks. Results were replicated in a second held-out fMRI 

run. These findings suggest that macroscale BOLD signal variability is an organizational feature 

of large-scale functional networks, and shared inter-regional BOLD signal variability may underlie 

macroscale brain network dynamics.

Introduction

Local intrinsic variability and connectivity are two fundamental elements that characterize 

spontaneous brain activity, both at the micro- and macro-scale. Often studied in isolation, 

variability arises from moment-to-moment fluctuations in the activity of single neurons, 

and connectivity is determined from a set of synaptic connections between neurons (Faisal, 
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Selen, & Wolpert, 2008; Uddin, 2020). Increasingly, electrophysiological studies show that 

these two core features of neural functioning are co-dependent. Variability provides the 

moving energy that allows neurons to interact with each other and form functional networks 

(Deco et al., 2009, 2011; Fuchs et al., 2007; Honey et al., 2007; McIntosh et al., 2010; Mišić 

et al., 2011; Shafiei et al., 2019; Vakorin, Lippe & McIntosh, 2011). Neurons that belong to 

the same functional population present shared spiking variability (Doiron & Litwin-Kumar, 

2014; Goris, Movshon, & Simoncelli, 2014; Lin et al., 2015). Yet, it remains unclear how 

the interaction between local neuronal variability and distributed connectivity translates 

to the study of the regional fMRI BOLD signal, and how it impacts the architecture of 

large-scale functional brain networks.

A parallel between neuronal recordings and the fMRI BOLD signal has been drawn by 

a recent line of evidence suggesting that variability measured in any given brain region 

is directly related to the region’s functional embeddedness (Garrett et al., 2018). The 

more a brain area is integrated with other brain areas, the greater the variability in its 

BOLD signal. This observation is consistent with the idea that a fragmented biological 

system has a small dynamic range (Pincus, 1994). While these findings extend our 

understanding of BOLD signal dynamics and provide substantial innovation linking local 

moment-to-moment variability to whole-brain network dimensionality, there remains a need 

to characterize whether and how inter-regional coherence in variability patterns is associated 

with macroscale network architecture.

If at a microscale, neurons that belong to the same neuronal population show coordinated 

intrinsic variability, and such variability patterns in turn relate to their synaptic connections; 

then, we may expect that at a macroscale, brain regions embedded in the same functional 

network should also show similar BOLD signal variability patterns. In other words, 

similarities in BOLD signal variability patterns may be proportional to the strength and 

topography of functional connections. To date, this hypothesis has not been tested, primarily 

due to the different ways that BOLD variability and macroscale functional connectivity have 

been conceptualized in the literature. Namely, BOLD signal variability has been typically 

derived within single brain areas (intra-regionally; Garrett et al., 2010, 2011, 2013, 2018; 

Nomi et al., 2017), whereas functional connectivity has been estimated as the Pearson’s 

correlation between mean regional timeseries (inter-regionally; Craddock et al., 2013). If 

one wishes to assess the correspondence in magnitude and topography between macroscale 

variability and connectivity patterns, then one needs to estimate BOLD variability at the 

inter-regional level, in a manner similar to how functional connectivity is computed. In 

this way, similarities in mean regional timeseries can be related to similarities in the 

variability of regional timeseries. Pearson’s correlation, Euclidean distance and absolute 

difference are all equivalent methods usually applied to derive measures of similarity (for 

more information see Kriegeskorte, Mur & Bandettini, 2008). Here, we introduce a new 

measure, inter-regional BOLD signal variability, calculated as the absolute value of the 

difference between regional variability scores, that can be readily associated with functional 

connectivity metrics. Delineating inter-regional BOLD variability patterns might hold the 

key to address macroscale connectivity-variability associations.
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Recent resting-state fMRI investigations have characterized the architecture of macroscale 

cortical networks using gradient mapping techniques that decompose functional connectivity 

profiles into low-rank components representing different cortical axes of functional 

organization (Hong et al., 2019; Huntenburg, Bazin & Margulies, 2018; Larivière et al., 

2019; Vos de Wael et al., 2020). Studies using this approach have consistently reported 

functional connectivity patterns organized according to functional hierarchies that span 

from low-level sensory-motor regions to higher-level cognitive brain areas (Bethlehem 

et al., 2020; Margulies et al., 2016). Whether BOLD signal variability patterns and 

consequently connectivity-variability associations, also unfold along functional hierarchies 

remains unclear.

In the present study, we used multi-echo resting-state fMRI data to characterize inter-

regional BOLD signal variability patterns and their relationship with resting-state functional 

connectivity. We determined whether regions that showed high connectivity strength also 

uniquely showed similar BOLD variability patterns, independently of their inter-regional 

distance and structural similarities (morphometric similarity). Finally, we assessed the 

topographical distribution of connectivity-variability interactions by comparing within- 

and between-network profiles, and by testing whether inter-regional BOLD variability-

connectivity similarities were organized along a set of low-dimensional macroscale cortical 

gradients.

Materials and Methods

Sample and study description

Data from 154 healthy young adults were included in the present study (mean age=22y; 

age range=18-34y; 56% women). Participants underwent one structural MRI scan and two 

multi-echo resting-state fMRI scans of 10-min duration each, within the same session. The 

main analyses reported here were performed on the first run only. The second run was 

used as a held-out replication set. Data were collected at the Cornell Magnetic Resonance 

Imaging Facility, at Cornell University (New York, US). All participants provided written 

informed consent. Research protocols were approved by the Cornell University Institutional 

Review Board.

MRI data acquisition and preprocessing

MRI data were acquired on a 3T GE750 Discovery series MRI scanner using a 32-channel 

head coil. Anatomical scans were acquired using a T1-weighted volumetric magnetization-

prepared rapid gradient-echo sequence (TR=2500s; TE=3.4ms; 7° flip angle; 1mm isotropic 

voxels, 176 slices, duration=5m25s) with 2x acceleration and sensitivity encoding. Two 

resting-state fMRI scans were acquired using a multi-echo EPI sequence with online 

reconstruction (TR=3000ms; TE1=13.7ms, TE2=30ms, TE3=47ms; 83° flip angle; matrix 

size=72x72; FOV=210mm; 46 axial slices; 3mm isotropic voxels; 204 volumes) with 2.5x 

acceleration and sensitivity encoding. During these two functional scans, participants were 

asked to keep their eyes open, and to blink and breath normally in the darkened scanner bay.
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Anatomical images were skull stripped in FSL BET (Smith, 2002) using the default 

parameters. Whole-brain cortical reconstruction and volumetric segmentation were 

completed using FreeSurfer v6.0.1 (Fischl & Dale, 2000).

Functional images were preprocessed using multi-echo independent components analysis 

(ME-ICA v3.2 beta: https://github.com/ME-ICA/me-ica; Kundu et al., 2012). Our study is 

the first, to our knowledge, to use multi-echo resting-state fMRI data to model BOLD signal 

variability and its relationship to functional connectivity. Multi-echo resting-state fMRI has 

been shown to provide better spatial coverage compared to single-echo resting-state fMRI 

by combining data from three different echoes, and higher tSNR by relying on the unique 

TE-dependence of the BOLD signal (Kundu et al., 2012). ME-ICA uses spatial ICA to 

distinguish between BOLD signal and non-BOLD artifact sources (Kundu et al., 2012). As 

a result, (1) motion artifacts that are likely still present in single-echo data (Gotts, Gilmore 

& Martin, 2020) and can greatly impact variability estimations (Millar et al., 2020), are 

significantly mitigated (high sensitivity); and (2) the ability to map whole-brain functional 

connections is significantly increased (high specificity; Kundu et al., 2013, 2017; Lynch 

et al., 2020). ME-ICA applied to multi-echo resting-state fMRI data thus allowed us to 

obtain reliable estimations of both functional connectivity and BOLD signal variability. 

Importantly, global signal regression, smoothing or filtering are not required on multi-echo 

data.

In the present study, minimal preprocessing was done on each echo prior to ME-ICA. 

Motion parameter estimation was also carried out at this step and later incorporated into 

ME-ICA. Visual inspections were performed on post-processed data to ensure accuracy in 

anatomo-functional co-registration, removal of noise, temporal signal to noise ratio (tSNR), 

and amount of BOLD-like data retained. Participants were excluded in cases of abnormal 

patterns of tSNR (5 participants), having high DVARS (i.e., high motion; 1 participant) and 

having fewer than 10 components of BOLD-like data following denoising (1 participant) 

resulting in the final sample of 154 participants.

Experimental design and statistical analyses

In this study, we examined inter-regional measures of BOLD signal variability via 

mean squared successive difference (MSSD) and related them to resting-state functional 

connectivity via Pearson’s correlation and dot product estimations. In the next sections we 

will refer to resting-state functional connectivity as rsFC, to inter-regional BOLD signal 

variability as irsMSSD (inter-regional similarity in MSSD), and to the Connectivity (rsFC) 

− Variability (irsMSSD) Association as CoVA (CoVAcor via Pearson’s correlation and 

CoVAdp via dot product).

rsFC calculations.—ME-ICA outputs containing the denoised ICA coefficient (i.e., 

“mefc” files) were used for the computation of rsFC via Pearson’s correlation. “Mefc” 

files are component maps of accepted BOLD ICA components (i.e., components that show 

BOLD-like profiles) and are used to derive functional connectivity estimations (see Kundu 

et al., 2013 for full details). The “mefc” nomenclature stands for multi-echo functional 
connectivity.
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rsFC values were generated through the CONN toolbox (Whitfield-Gabrieli & Nieto-

Castanon, 2012) using the 7-Network, 200 node Schaefer group-parcellation solution 

(Figure 1A; Schaefer et al., 2018; Yeo et al., 2011). Following Kundu et al. (2013), 

Pearson’s correlation values were then transformed to z scores (Fisher transformation) and 

adjusted for degrees of freedom (i.e., number of accepted BOLD signal components; see Eq. 

1).

z = arctanh(r) × d . f . − 3 (1)

Intra-regional BOLD signal variability calculations.—ME-ICA outputs containing 

the denoised timeseries for the accepted BOLD ICA components (i.e., “hikts” files) were 

used for the computation of intra-regional BOLD signal variability. “Hikts” stands for high 
kappa time series. Kappa is a T2* weighting metric derived for each ICA component. High 

Kappa indicates high TE-dependency. Hence, components that have high kappa values are 

classified as BOLD signal components.

BOLD signal variability was estimated using MSSD given its ability to model the temporal 

continuity of resting-state fMRI and thus capturing the variability in signal amplitude 

between successive time points (von Neumann et al., 1941), and its independence from 

shifts in the mean (Garrett et al., 2011). Similar to previous work (Nomi et al., 2017), 

MSSD was calculated by first z scoring each regional timeseries, subtracting each time point 

from its preceding time point, and then calculating the square root of the average of all 

subtractions for each timeseries (Eq 2: i and i+1 are two successive time points belonging to 

the same regional time course). Importantly, differently from our rsFC computations, MSSD 

scores were not adjusted for the number of components, as the number of accepted BOLD 

components was not significantly related to the average subject-level variability (Figure S1).

Intra‐regional MSSD =
∑i = 1

n − 1 (xi + 1 − xi)2

n − 1
(2)

We would like to draw the reader’s attention to our choice of normalizing each regional 

timeseries prior to MSSD calculations. Typically in the variability literature, independently 

of the variability metric used (e.g., SD or MSSD), timeseries data are mean centered (to 

have a mean of 100; see e.g., Garrett et al., 2010) and not normalized (mean = 0; SD = 1; 

see Nomi et al., 2017). Temporal variability, calculated on centered timeseries data, reflects 

the dynamic range of a system and likely underpins mechanisms of information transfer in 

the brain (Garrett et al., 2013). Normalizing timeseries data implies instead disregarding the 

absolute dynamic range of regional timeseries, in that all regions are now constrained to 

have a standard deviation of 1. Yet, what we obtain is still to be considered variability. We 

expand on this matter in the discussion section. In the section “Control Analysis” below, we 

report additional analyses comparing our approach to previously published literature.

irsMSSD calculations.—Inter-regional BOLD signal variability was obtained by taking 

the absolute value of the difference in MSSD scores between pairs of regions, multiplied 
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by −1 (a constant of 1 was also added; Figure 1B). Greater inter-regional variability 

values indicate greater similarity in BOLD signal variability between regions. irsMSSD 

scores, similarly to rsFC, were also constrained on the 7-Network, 200 node Schaefer group-

parcellation scheme. irsMSSD is calculated following Eq. 3 (note: MSSDX and MSSDY are 

intra-regional MSSD values for region X and region Y respectively).

irsMSSD = − ∣ MSSDX − MSSDY ∣ + 1 (3)

CoVAcor computations and significance testing.—To evaluate the association 

between rsFC and irsMSSD, we took the lower triangles of each subject’s rsFC and 

irsMSSD matrices and computed the Pearson’s correlation between each rsFC edge and 

the corresponding irsMSSD score, across subjects. In doing so, we obtained a group-level 

CoVA correlation (CoVAcor) matrix depicting the group-level association between the 

connectivity strength and the similarity in variability scores for each pair of regions. In order 

to determine which CoVAcor values were reliable, we implemented the spin test technique 

(Alexander-Bloch et al., 2018; Vázquez-Rodríguez et al., 2019). We generated 400 spherical 

projection null models by randomly permuting network labels of the Schaefer parcellation, 

while preserving spatial autocorrelation. New parcellations were hence obtained at each 

repetition (200x for rsFC and 200x for irsMSSD) and rsFC and irsMSSD values were 

reassigned according to the new network labels. We then correlated (Pearson’s correlation) 

our unpermuted rsFC matrices with our permuted irsMSSD matrices and our permuted 

rsFC matrices with our unpermuted inter-regional MSSD matrices, across subjects. In both 

cases, we assessed how many original correlation values were greater than the obtained 

null correlation values and divided by the total number of permutations (p-value). We 

then averaged across the two resulting sets of p-values. Notably, the main goal in this 

set of analyses was to characterize the larger patterns in the data, rather than identifying 

the significance of any individual correlation (hence the lack of multiple comparisons 

correction).

Nuisance variables.—Next, we addressed the possibility that CoVA could be explained 

by confounding factors, namely the Euclidean distance between regions and the similarity in 

their grey matter profiles, morphometric similarity (MS). Inter-regional Euclidean distance 

measures were calculated between regions’ centroids (Figure C). Regions were once again 

defined using the 7-Network, 200 node Schaefer group-parcellation scheme. One single 

200x200 distance matrix was thus generated for the whole sample. Individual inter-regional 

structural similarity, morphometric similarity (MS), was derived following prior work 

(Morgan et al., 2019; Seidlitz et al., 2018; Figure 1D). First, each participant’s default 

FreeSurfer fsaverage surfaces were resampled onto the Schaefer group atlas, allowing us to 

label the anatomy of each individual’s T1 image using the 7-Network, 200 node Schaefer 

group-parcellation scheme. Next, FreeSurfer’s default anatomical recon-all outputs were 

recalculated on the Schaefer parcellation, for each participant. Surface area, brain volume, 

cortical thickness, mean curvature, Gaussian curvature measures were then extracted for 

each region, for each individual, and each parameter was z-scored separately. Lastly, for 
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each pair of regions, Pearson’s correlation across these six parameters was computed for 

each subject (Morgan et al., 2019; Seidlitz et al., 2018).

Hierarchical regression & dominance analysis.—To quantify the potential 

contribution of Euclidean distance and MS to connectivity-variability interactions, we 

built a node-wise hierarchical regression model on group-level data, predicting rsFC from 

inter-regional Euclidean distance, morphometric similarity (MS) and irsMSSD. Similar to 

previous work (Vázquez-Rodríguez et al., 2019), we used group rsFC between each node i 
and all other nodes (i ≠ j), as our dependent variable. As independent variables, our baseline 

model included measures of Euclidean distance between nodes. We then added group MS 

scores between nodes (model 1), and lastly group irsMSSD values (model 2). Finally, we 

estimated the node-wise goodness of fit for all three models, by calculating node-wise 

adjusted R2 and adjusted R2 change scores. In summary, (i) the hierarchical regression 

model did not include subject-wise data; (ii) at each step, the model was fitted on each 

node separately, excluding the node itself and collapsing across all other nodes; and (iii) 

the primary aim of the hierarchical regression was to determine the contribution of each 

predictor, rather than model selection. For this latter reason, statistical tests between the 

various models were not performed.

To expand on our hierarchical regression model and quantify the node-level contribution of 

each predictor to functional connectivity, we ran a node-wise dominance analysis (DA). 

DA was run predicting functional connectivity from Euclidean distance, morphometric 

similarity and inter-regional variability. Dominance analysis allowed us to complement our 

hierarchical regression by estimating the relative importance of each predictor in a single 

multiple regression model. Several pairwise comparisons were performed: two predictors 

at a time were compared against all possible sub-models (i.e., a total of 2p-1 sub-models, 

with p being the number of predictors). The incremental contribution of a predictor was then 

quantified as the increase in R2 obtained when the predictor was added to each subset of 

the remaining predictors. For each predictor, a Total Dominance score can be derived, which 

represents the additional contribution of each predictor to all subset models. Typically, the 

Percentage Relative Importance of each predictor is reported and is expressed as the percent 

value of the Total Dominance score. In our case, we calculated a node-wise Percentage 

Relative Importance value for each predictor separately (for more information on dominance 

analysis: Budescu, 1993; Azen and Budescu, 2003; https://github.com/dominance-analysis/

dominance-analysis).

CoVAdp calculations.—Our CoVAcor analyses allowed us to assess magnitude 

similarities between rsFC strength and shared BOLD signal variability at the regional level. 

We were next interested in characterizing network-level CoVA patterns, more specifically 

in assessing whether within- and between-network connections exhibited different CoVA 

patterns. To this end, we identified whole brain within- and between-network measures in 

our subject-level rsFC and irsMSSD matrices and vectorized them. For each individual and 

for both rsFC and irsMSSD, we concatenated our 7 vectors of within-network connections 

and z scored them together and repeated this step for our 21 vectors of between-network 

connections. Doing so resulted in four final normalized vectors: two (one rsFC and one 
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irsMSSD) depicting all within-network connections (3093) and two depicting all between-

network connections (16807). We next computed the dot product between our within rsFC 

and our within irsMSSD vectors by multiplying each element of the former by each element 

of the latter and dividing by the total number of within-network connections (see Eq. 4: 

I = total number of within-network edges; i = single within-network edge). We applied 

the same dot product computations on the between rsFC and between irsMSSD vectors. 

Differences between average within- and between-network CoVAdp scores were assessed 

across participants via paired t-test. Notably, dot product calculations were also repeated for 

each network separately resulting in 28 correlation coefficients for each subject (z scoring 

happened for each network separately). For each network, within- and between-network 

CoVAdp (CoVA via dot product) measures were contrasted against each other across 

individuals via repeated measures ANOVA.

Finally, we averaged within- and between-network CoVAdp values across individuals. We 

thus obtained a 7x7 group-level CoVAdp matrix that was used to assess whether our 28 

CoVAdp values were reliably non-zero via one-sample t-tests with Bonferroni correction.

ccorr(rsFC, irsMSSD) = ∑
i = 1

I rsFCi irsMSSDi
I (4)

Whole-brain CoVA topographic organization.—Building on our region-wise 

CoVAcor and network-wise CoVAdp calculations, we wanted to further delineate the 

topographic distribution of our CoVA patterns. First, we applied a linear hierarchical 

clustering algorithm with Ward’s linkage on our CoVAdp group matrix. Second, we 

implemented gradient mapping on our unpermuted CoVAcor group matrix using BrainSpace, 

a toolbox implemented in MATLAB (https://github.com/MICA-MNI/BrainSpace; Vos de 

Wael et al., 2020). Gradient mapping is a nonlinear dimensionality reduction technique 

that relies on unsupervised manifold learning approaches, diffusion map embedding in 

the case of the present study (Coifman et al., 2005; Margulies et al., 2016), to project 

high-dimensional brain-derived similarity matrices into a lower dimensional manifold space 

(Huntenburg, Bazin & Margulies, 2018; Margulies et al., 2016). Our input matrix was 

transformed into a normalized angle affinity matrix prior to diffusion map embedding 

calculations. Similar to PCA, but with the additional benefit of capturing non-linear trends 

in the data, diffusion map embedding allowed us to identify and locate components (i.e., 

gradients) that described the greatest amount of variance in our CoVAcor patterns. Each node 

of our transformed matrix was represented as a point in the embedded space with nodes 

showing high functional association between rsFC and irsMSSD being closer together, and 

nodes with low CoVA being farther apart. Diffusion maps were set to use an α parameter 

of 0.5, in line with previous studies using gradient mapping on functional connectivity data 

(Hong et al., 2019; Margulies et al., 2016). Gradients were mapped and visualized onto the 

conte69 cortical surface template (Van Essen et al., 2012). Analyses were restricted to the 

first two gradients.
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As last step, to place our gradients in the context of the current gradient literature, 

we sought to quantify the degree of overlap between our first gradient obtained on 

CoVAcor and the first gradient obtained by Margulies and colleagues (2016). To do so, 

we downloaded Margulies and colleagues’ first gradient volume data (available here: https://

www.neuroconnlab.org/data/index.html), and constrained them to the 7-Network, 200 node 

Schaefer group-parcellation solution. We finally correlated (Spearman’s r) our 200 gradient 

values with the 200 gradient values obtained by Margulies and colleagues (2016).

Replication and control analyses

Intra-run replication.—To assess the robustness of our CoVA findings, we repeated both 

our CoVAcor and CoVAdp computations on our second, held-out, resting-state fMRI run. 

We correlated CoVAcor and CoVAdp patterns from the second run with our CoVAcor and 

CoVAdp from the first run (Pearson’s and Spearman’s). Our replication sample consisted 

of the same subjects included in the primary analyses (n=154). Resting-state data were 

acquired and preprocessed in the same fashion across the two runs. rsFC and irsMSSD 

calculations were conducted identically across the two runs. CoVAcor computations on our 

replication set only included those connections that survived permutation testing on the first 

run. CoVAdp computations were carried out on the full set of 28 within/between network 

connections.

Inter-run replication.—Replicating CoVA on a second held-out run did not however 

address the possibility that CoVA patterns simply derived from the dependency of rsFC and 

irsMSSD on the same timeseries data (i.e., same run). To address this potential confound, 

we estimated our CoVAcor and CoVAdp metrics from rsFC and irsMSSD measures that 

belonged to different runs. In other words, we looked at how rsFC patterns derived from 

our first run were related to irsMSSD scores computed on our second run (case 1), and 

vice versa (case 2). CoVAcor and CoVAdp estimations together with CoVAdp statistics 

(one sample t-tests; paired t-tests) and hierarchical clustering calculations were conducted 

analogously to the main CoVA analyses.

Control analysis.—Variability results and the interpretation of variability effects depend 

heavily on the methodological approaches taken (Waschke et al., 2021), both in terms of 

(1) how timeseries data are normalized prior to variability calculations, and of (2) what 

type of metric is used to estimate BOLD variability. In this work, BOLD variability was 

calculated using MSSD on z-scored regional timeseries. To assess the validity of our 

methodological choices, we ran two sets of control analyses taking different (1) regional 

timeseries normalization and (2) variability metric approaches.

(1) Intra-regional MSSD was calculated on mean centered regional timeseries data (whole 

brain mean was set to 100; mean centered MSSD), similarly to previous work (Garrett et 

al., 2010, 2011b, 2013; Wutte et al., 2011). Mean centered MSSD was compared to MSSD 

estimated on normalized timeseries data (our main approach; z-scored MSSD). Specifically, 

single-subject mean centered MSSD scores were correlated with their correspondent z-

scored MSSD values across the 200 brain parcels (Pearson’s r). Fisher z-transformation 

was then applied to the within-subject correlation values and a one sample t-test was run 
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to assess whether the resulting correlation values were significantly different from zero, 

across subjects. Lastly, region-level (CoVAcor) and network-level (CoVAdp) associations 

were recomputed between functional connectivity and mean centered MSSD.

(2) Intra-regional variability was calculated via standard deviation (SD) on mean centered 

timeseries data, as in prior work (see Garrett et al., 2010, 2011b, 2013; Wutte et al., 

2011) and compared with z-scored MSSD calculations and with mean centered MSSD 

calculations, using the same statistical steps outlined above.

Data and code availability

Analyses were implemented in MATLAB and R. The resampling procedure used to permute 

rsFC and irsMSSD data was instead coded in Python following existing documentation 

(https://netneurotools.readthedocs.io/en/latest/auto_examples/plot_perm_pvals.html). Scripts 

are available at the following link: https://github.com/lbc-spreng/Baracchini_CoVA. Data is 

being compiled for release in a forthcoming publication.

Results

Inter-regional measures of BOLD signal variability are associated with rsFC patterns

To evaluate the association between connectivity and variability, we computed the Pearson’s 

correlation between each rsFC edge and each corresponding irsMSSD value across 

participants (CoVAcor). Across the brain, patterns of CoVA were revealed (Figure 2A) 

wherein regions that are highly correlated with one another also show similar variability 

patterns. The strength of the association between rsFC and irsMSSD was highest within 

the canonical seven functional networks (i.e., along the diagonal) relative to their between-

network counterparts (i.e., off diagonals). Figure 2B shows those CoVAcor values that 

survived permutation testing (3512/19900; p<.05). This second matrix highlights again 

the predominance of positive CoVAcor patterns and the presence of a stronger diagonal 

(CoVAcor within networks) and weaker off diagonals (CoVAcor between networks).

Inter-regional measures of BOLD signal variability uniquely explain rsFC patterns

To quantify the potential contribution of Euclidean distance and inter-regional structural 

similarity to CoVA patterns, we built a node-wise group-level hierarchical regression model 

predicting rsFC from Euclidean distance, Euclidean distance and morphometric similarity 

(MS) and finally from irsMSSD holding Euclidean distance and MS constant. Figure 3 

summarizes our three-stage hierarchical regression results. Panel A captures node-wise 

adjusted R2 scores when predicting rsFC solely from Euclidean distance measures between 

brain regions (baseline model). On average, distance explained 22% of rsFC variance across 

all nodes. Overall, the pattern of associations between distance and rsFC was variable across 

the brain (interquartile range = 0.21). Panel B depicts node-wise adjusted R2 change scores 

when adding MS measures to the baseline model. On average, MS only accounted for an 

increment of 4% in the variation in rsFC over the baseline model (interquartile range = 

0.05; average adjusted R2 = 0.26). Finally, panel C shows the node-wise adjusted R2 change 

scores obtained from entering irsMSSD into the final regression model holding distance 

and MS constant. Introducing irsMSSD explained an additional 27% of rsFC variance 
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(interquartile range = 0.21; average adjusted R2 = 0.53). Together, these results indicate that 

irsMSSD uniquely adheres to rsFC patterns over and above measures of Euclidean distance 

and morphometric similarity.

To expand on our hierarchical regression findings and better delineate the node-level 

contribution of each predictor to functional connectivity, we ran a Dominance Analysis 

on a single multiple regression model, predicting functional connectivity from Euclidean 

distance, morphometric similarity and inter-regional variability. The relative importance of 

each predictor was quantified for each node (note: nodes were rearranged to have left 

and right hemispheres together; Table S1). To aid interpretation, we report the Percentage 

Relative Importance per network for each predictor (Figure 4).

In line with our hierarchical regression results, DA findings revealed how overall inter-

regional MSSD contributed the most to functional connectivity, followed by Euclidean 

distance and lastly by morphometric similarity.

Within network connections exhibit the strongest associations between rsFC and inter-
regional BOLD signal variability

Next, we extended our region-wise CoVAcor findings to empirically assess whether within- 

and between-network connections exhibited different CoVA patterns. Network-level CoVA 

metrics were obtained by calculating the dot product between within-network rsFC and 

within-network irsMSSD scores and between-network rsFC and between-network irsMSSD 

values, respectively.

We first observed a significant overall difference in CoVA between within-network and 

between-network connections across participants (t(153) = 27.87, p < .001; 95% C.I. = 

[0.12 0.14]; mean of the differences = 0.13; Cohen’s d = 2.25; Figure 5A). Within-network 

connections displayed overall greater CoVAdp, in line with our exploratory CoVAcor findings 

(Figure 2). Next, we examined CoVAdp for each network separately (Figure 5B). For each 

of the seven canonical networks, CoVAdp values were higher for within- compared with 

between-network connections across participants (all F’s > 20, p’s < .001). One sample 

t-tests (Bonferroni adjusted p-values < .005) revealed that all 7 within-network CoVAdp 

scores were reliably non-zero, in addition to some between-network connections (see Figure 

4B).

To assess the spatial organization of CoVAdp patterns, we implemented a hierarchical 

clustering algorithm with Ward’s linkage on our CoVAdp matrix. Three separate clusters 

were identified: (1) visual (occipital), (2) somatomotor/dorsal attention/ventral attention 

(pericentral, dorsal frontoparietal, midcingulo-insular), and (3) limbic/frontoparietal control/

default networks (lateral and medial frontoparietal; network nomenclature in brackets 

follows recent work by Uddin, Yeo & Spreng, 2019). These results highlight a functional 

segregation between unimodal visual, somatomotor/attention and heteromodal/associative 

networks in CoVAdp patterns.
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Associations between rsFC and inter-regional BOLD signal variability follow a unimodal-
heteromodal topographical organization

Motivated by our CoVAdp linear hierarchical clustering results, we decided to further 

investigate the topographical distribution of CoVA patterns through the implementation of 

gradient mapping on our unpermuted node-wise group-level CoVAcor matrix (Figure 2A).

The first gradient (14% of the variance in the CoVAcor matrix explained; Figure 6A-C), 

separated nodes of the somatomotor, dorsal and ventral attention networks from nodes of the 

limbic, frontoparietal control and default networks. Nodes belonging to the visual network 

were near zero. The second gradient (11% variance explained; Figure 6A-C) separated 

visual and dorsal attention network nodes from nodes belonging to the somatomotor, limbic 

and default networks. Nodes located in the ventral attention and frontoparietal control 

networks had values closer to zero.

As last step, to place our gradient results in the context of the current gradient literature, 

we correlated our first gradient obtained on CoVAcor with the first gradient obtained by 

Margulies and colleagues (2016). We found a high correspondence between our gradient and 

Margulies gradient scores (Spearman’s rho = 0.82, p<.001; Figure S2).

Together, these results complement our linear hierarchical clustering findings from the 

CoVAdp group matrix and show how CoVA patterns unfold along a unimodal-transmodal 

topographical organization, which has previously been determined on a fundamentally 

different input matrix (Margulies et al., 2016).

CoVA patterns are stable features

Intra-run replication.—We repeated both our CoVAcor and CoVAdp computations on our 

second, held-out, resting-state fMRI run. Replication effects were moderate for CoVAcor 

(Pearson’s r = 0.44; Spearman’s r = 0.39; p < .001) and strong for CoVAdp (Pearson’s r = 

0.98; Spearman’s r = 0.96; p < .001).

Inter-run replication.—Our second set of replication analyses involved calculating CoVA 

patterns across runs. We estimated CoVAcor and CoVAdp metrics from rsFC and irsMSSD 

measures that belonged to different runs. In other words, we looked at how rsFC patterns 

derived from our first run were related to irsMSSD scores computed on our second run 

(case 1), and vice versa (case 2). We found that in both cases CoVAcor and CoVAdp metrics 

recapitulated our main intra-run estimations (Figure S3 and S4). Namely, nodes belonging to 

the same network exhibited the strongest CoVAcor scores. Within-network connections that 

showed the highest CoVAdp scores, were significantly different from zero (one sample t-test 

results with Bonferroni adjusted p-values < .005) and from between-network connections 

(case 1: t(153) = 29.04, p < .001; 95% C.I. = [0.11 0.13]; mean of the differences = 

0.12; Cohen’s d = 2.34; case 2: t(153) = 22.84, p < .001; 95% C.I. = [0.10 0.12]; mean 

of the differences = 0.11; Cohen’s d = 1.84). Lastly, hierarchical clustering with Ward’s 

linkage revealed a unimodal-heteromodal network organization that distinguished visual, 

from attentional and somatomotor networks and limbic, control and default networks. Taken 

together, these results highlight the stability and generalizability of CoVA patterns.
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CoVA patterns depend on how BOLD variability is computed

Given the presence of different analytic approaches to estimate BOLD variability both in 

terms of (1) how timeseries data are normalized prior to variability calculations, and of 

(2) what type of variability metric is used, we sought to validate our choice of computing 

variability via MSSD on z-scored regional timeseries.

(1) First, we assessed whether measures of intra-regional z-scored MSSD were related to 

measures of intra-regional mean centered MSSD. We found a weak negative correlation 

between the two (r mean (SD) = −0.04 (±0.16); t(153) = −2.82, p = .005; 95% C.I. 

= [−0.06, −0.01]). Second, we recalculated inter-regional variability scores by taking 

the absolute value of the difference between regional mean centered MSSD scores. We 

observed high similarity in inter-regional mean centered variability across the whole brain 

(Figure S5A). Third, we recomputed region-level (CoVAcor) and network-level (CoVAdp) 

associations between functional connectivity and inter-regional mean centered MSSD. 

In both cases, connectivity-variability patterns showed a weaker segregation of within- 

from between-network CoVA scores, dominated by an overall stronger between-network 

connectivity-variability coupling than our results using z-scored MSSD (Figure S6A and 

S6C).

(2) Next, we recalculated intra-regional variability via SD on mean centered timeseries data. 

Mean centered SD values showed a strong positive correlation with mean centered MSSD 

calculations (r mean (SD) = 0.97 (±0.01); t(153) = 138.8, p = <.001; 95% C.I. = [2.17, 

2.23]), but a moderate negative correlation with z-scored MSSD calculations, as expected 

(r mean (SD) = −0.23 (±0.15); t(153) = −18.58, p = <.001; 95% C.I. = [−0.27, −0.22]). 

Furthermore, inter-regional mean centered SD values (Figure S5B) highly overlapped with 

inter-regional mean centered MSSD scores. Similarly, CoVAcor and CoVAdp associations 

on mean centered SD data (Figure S6B and S6D) replicated CoVAcor and CoVAdp patterns 

obtained on mean centered MSSD data.

As a final step, we submitted the CoVAcor group matrix obtained on mean centered SD 

data, to gradient analysis. The spatial hierarchy we initially observed using z-scored MSSD, 

which aligned with gradient findings previously reported (e.g., Margulies et al., 2016), was 

disrupted when calculating gradients on mean centered SD values (Figure S7A-C).

Together, these findings show how CoVA patterns are impacted by how timeseries 

normalization is conducted, independently of the variability metric used.

Discussion

Variability of neural signals permits the nervous system to explore a greater range of 

network configurations and achieve a dynamic range of responses (Uddin, 2020; McIntosh 

et al., 2010). Functional connectivity between brain regions is thought to underlie cognition 

and behavior (Reid et al., 2019). Still, the relationship between inter-regional BOLD 

signal variability and inter-regional functional connectivity has not been explored. In this 

study, we used multi-echo resting-state fMRI to reliably characterize resting-state functional 

connectivity and resting-state BOLD signal variability patterns. We determined that region-
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level macroscale intrinsic dynamics adhere to the configuration of intrinsic functional 

networks. We examined local macroscale fluctuations in terms of inter-regional interactions 

in BOLD signal variability measures and we related them to inter-regional rsFC measures. 

We found that pairs of brain regions that showed high functional connectivity strength 

also showed similar moment-to-moment BOLD signal variability patterns. We demonstrated 

that connectivity-variability associations, CoVA, were predominant within all networks and 

followed a unimodal-heteromodal topographical organization that separated sensory, motor 

and attention systems, from higher-order association networks. Our observations were robust 

to different statistical approaches, replicated in a second held-out resting-state fMRI run and 

were invariant to inter-run estimations.

Temporal variability in the present study was estimated on z-scored regional timeseries via 

MSSD (first derivative of a timeseries). We showed how different timeseries normalization 

and variability approaches yielded distinct inter-regional variability scores that differently 

cohered with functional connectivity patterns. These findings confirm recent work 

highlighting how variability results and the interpretation of variability effects depend 

heavily on the methodological approaches taken (Waschke et al., 2021). Further work is 

needed to comprehensively examine and compare the different analytic approaches used in 

the literature to compute BOLD temporal variability. However, in the context of the present 

study, how should one interpret intra- and inter-regional temporal variability?

The factor to consider when interpreting our findings is how regional timeseries are 

normalized. In previous reports (e.g. Garrett et al., 2010), mean-centered timeseries data 

are used, whereby timeseries’ variance is preserved. This approach permits inferences on 

the dynamic range of a system. In the present study, regional timeseries were z-scored, 

with variance constrained and equal across regions. Our variability can be considered 

conceptually related to permutation entropy used in electrophysiology. Permutation entropy 

maintains the temporal structure of the timeseries and estimates the frequency of occurrence 

of ranks or “motifs”, signal patterns created by grouping neighbouring timepoints (Bandt 

and Pompe, 2002). While permutation entropy, unlike z-scored MSSD, is calculated on 

such motifs (see Figure 1 of Riedl et al., 2013) and thus ignores the value range of the 

data, it detects transitions between signal patterns, capturing dynamic changes in timeseries 

data (Cao et al., 2004). Similarly, z-scored MSSD also allows for the characterization of 

moment-to-moment transitions in regional signal patterns, while taking into account the 

continuous, scaled regional signal.

Intra-regional z-scored MSSD can be interpreted as capturing a brain region’s normalized 

rate of change and thus “profiles” regional signal patterns. Greater variability (i.e., higher 

rate of change) indicates a more noisy/random regional timeseries. Less variability (i.e., 

slower rate of change) instead indicates a more repetitive/regular regional timeseries. Inter-
regional z-scored MSSD can be interpreted as quantifying the similarity between regional 

rates of change, or signal patterns. Greater inter-regional variability (i.e., smaller absolute 

difference between two regional MSSD scores) is found between regions that present 

similar, generally lower, overall signal complexity. We consider two possible scenarios to 

illustrate this point: (1) regions A and B both have low intra-regional normalized MSSD 

values, and (2) regions C and D both have high intra-regional normalized MSSD values. 
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Inter-regional variability in scenario (1) will likely be lower in magnitude than inter-regional 

variability calculated in scenario (2), due to a floor effect. This implies that regions with 

more regular timeseries (scenario 1) are likely to oscillate together more regularly. We 

preliminarily show that this is indeed the case (see Figure S8). Further work, however, is 

needed to expand upon the relationship between variance patterns and phase synchrony 

among brain regions.

At rest, our brain waxes and wanes between recurring multistable states and network 

configurations that may allow the system to transfer information between regions (Avena-

Koenigsberger, Mišić & Sporns., 2018; Beckmann et al., 2005; Smith et al., 2012). 

In doing so, brain dynamics have been shown to underpin and explain the integration 

and segregation patterns that characterize canonical large-scale networks, as assessed via 

functional connectivity (Bullmore & Sporns, 2012; Kaboodvand, Iravani, & Fransson, 2020; 

Sporns, 2011; Tognoli & Kelso, 2014). Here, we expanded on this view by showing how 

similarity in BOLD signal variability patterns between region pairs might be associated 

with similarities in mean regional timeseries measures between region pairs (i.e., functional 

connectivity).

Variability has been hypothesized to drive the formation of network configurations 

(McIntosh et al. 2010; Rubinov et al., 2009) and is related to the functional embeddedness 

of a brain region (Garrett et al., 2018). In this study, we expanded on such intra-regional 

findings and demonstrated that higher similarity in BOLD signal variability patterns between 
regions (i.e., similar overall signal complexity) was associated with stronger functional 

connections. This was the case mainly for regions that belonged to the same network. 

Similarly, when analyses were carried out on network- rather than region-level variability 

estimates, we found that within-network connectivity-variability associations were higher 

compared with their between-network counterparts. These results are consistent with the 

foundational observation that functional connections between regions that are part of the 

same network are more stable and higher in magnitude than connections between regions 

that belong to different networks (Fox et al., 2005; Shen et al., 2015; Zalesky et al., 

2014). Here, we conceptualized stability in terms of higher similarity in BOLD signal 

variability patterns between region pairs. Greater inter-regional entrainment may indeed 

facilitate information transfer in the brain. Entrainment may thus be present between regions 

that show similar overall signal complexity and more likely regularly oscillate.

Entrainment at the microscale level has been shown to result from phase coherence 

processes among neuronal oscillations (Fries 2005, 2015; Griffiths, McIntosh & Lefebvre, 

2019). Neurons receive inputs from different neuronal groups, yet they preferentially 

respond to and interconnect with those whose phase relation is tuned to their excitability 

cycle (Fries 2005, 2015). Recent dynamic functional connectivity studies on resting-state 

fMRI and MEG data have successfully translated inter-neuronal coherence concepts to 

notions of inter-regional phase coherence of BOLD signal oscillations. Similar to how 

neurons interact with each other, brain regions have been found to primarily communicate 

with those brain areas whose BOLD signal oscillates in the same frequency band (Cabral 

et al., 2017; Marzetti et al., 2013, 2019). If variability drives network configurations and 

underlies connectivity dynamics, then inter-regional BOLD signal variability measures 
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should also be governed by inter-regional phase coherence of BOLD oscillations. While 

our variability calculations do not allow for fine-grained inferences on the intrinsic moment-

to-moment variability of regional timeseries, we speculate that our inter-regional MSSD 

measures may reflect the overall rhythmic synchronization of BOLD signal oscillations 

between region pairs. In other words, such rhythmic inter-regional synchronization may 

manifest itself at a broader level, in similarities in overall signal complexity between regions.

At the intra-regional level, neural signal complexity has been widely shown to relate to 

information transfer mechanisms in the brain (Honey et al., 2007; Ghosh et al., 2008; Friston 

et al., 2012). A recent simulation study using EEG-fMRI data found that multi-scale entropy, 

a proxy of neural complexity, relates to functional connectivity (Wang et al., 2018). The 

authors showed that the greater the signal complexity in any one given region, the greater 

its functional connectivity with other brain regions (Wang et al., 2018). Our work builds 

on these findings by characterizing complexity (i.e., variability)-connectivity associations 

between region pairs (i.e., inter-regionally). In our study, connectivity and variability were 

tightly coupled, over and above influences of distance and structural similarity between 

regions, and their associations were robustly captured via both Pearson’s correlation on 

group-level data and dot product estimations on single-subject data.

Consistent with our speculations on connectivity-variability associations, 

electrocorticographic measures of local phase synchronization processes among neuronal 

populations have been shown to follow a spatially-organized hierarchical structure 

(Hasson et al., 2008; Honey et al., 2012). Low-level sensory regions show less neuronal 

synchronization, suggesting more rapid and isolated regional dynamics (Hasson et al., 

2008; Honey et al., 2012). Conversely, higher-order cognitive areas show greater neuronal 

synchronization, given that activity in these areas is influenced by information collected 

from different brain regions (Hasson et al., 2008; Honey et al., 2012). Similarly, in resting-

state fMRI, BOLD signal dynamics have been found to follow a unimodal-heteromodal 

hierarchical organization (e.g., Müller et al., 2020; Shafiei et al., 2020; Vidaurre, Smith & 

Woolrich, 2017). Resting-state functional connectivity patterns have also been separately 

shown to unfold along such precise spatial hierarchy (e.g., Bethlehem et al., 2020; Margulies 

et al., 2016). Our work begins to bring together these lines of research.

In the current study, connectivity-variability associations followed a unimodal-transmodal 

gradient separating visual, somatomotor/dorsal/ventral attention, and limbic/frontoparietal/

default networks. The degree of segregation of these three topographical clusters was 

maximal for the visual network and weaker for heteromodal regions, potentially reflecting 

a gradual shift from local to distributed processing. Higher-order cognitive networks 

serve as high centrality networks, and as such, they need to optimally integrate signals 

coming from multiple sources (Cole, Pathak & Schneider, 2010; Margulies et al., 

2016; Zalesky et al., 2014; Zuo et al., 2012). Our findings corroborate and expand on 

previous electrocorticographic, fMRI BOLD dynamics and dynamic functional connectivity 

literatures and replicate work showing how the synchronization of BOLD oscillations 

manifests as a highly spatially organized phenomenon unfolding from sensorimotor areas 

to higher-level regions (Baria et al., 2011; Raut, Snyder, & Raichle, 2020). The convergence 

between our observations and this extensive and diverse body of evidence further supports 
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our speculations that greater inter-regional similarity in MSSD scores (i.e., inter-regional 

similarity in BOLD signal complexity) may represent greater inter-regional BOLD signal 

phase coherence and thus lead to stronger functional connections. In this scenario, the 

observed topographical hierarchy of CoVA may thus be dictated by regional differences 

in microscale neuronal phase coherence properties that are captured, at a macroscale, by 

differences in BOLD signal complexity modeled via z-scored MSSD.

Conclusions

Variability has been conceptualized as the driving mechanism that allows our brain to 

maximize information exchange between neurons on a moment-to-moment basis and 

contribute to the formation and spatio-temporal organization of resting-state functional 

networks (Deco et al., 2009; McIntosh et al., 2010; Mišić et al., 2011). At a macroscale, 

dynamic functional connectivity investigations have conceived resting-state functional 

networks as assemblies of brain regions that coherently fluctuate together over time in 

the low frequency range. This study reconciles extensive microscale literature with classic 

macroscale brain dynamics findings by modeling, for the first time, whole-brain moment-to-

moment intrinsic fluctuations via inter-regional BOLD signal variability estimations and 

showing how they uniquely adhere to resting-state functional network configurations. To 

date, BOLD signal variability has only been studied as an intra-regional phenomenon. 

Collectively, our findings offer new perspectives on the overarching principles governing the 

interaction between resting-state fMRI BOLD signal dynamics and functional connections. 

Furthermore, the convergence of different statistical approaches coupled with the use of 

multi-echo resting-state data further highlights the robustness of our inter-regional variability 

characterizations and ultimately opens up possibilities for future studies to assess the 

behavioral and clinical relevance of connectivity-variability associations.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Inter-regional matrices
(A) Resting-state functional connectivity (rsFC). Higher values (in red) indicate stronger 

functional connections.

(B) Inter-regional BOLD signal variability (irsMSSD). Higher values (in lighter red) indicate 

greater inter-regional similarity in BOLD signal variability scores.

(C) Euclidean distance between regional centroids. Higher values (in lighter red) indicate 

greater inter-regional distance.

(D) Similarity in grey matter structural profiles (morphometric similarity, MS). Higher 

values (in red) indicate greater similarity in grey matter profiles.
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Figure 2. Functional association between connectivity and variability via Pearson’s correlation 
(CoVAcor).
(A) Group-level unpermuted CoVAcor matrix. Each rsFC edge was correlated (Pearson’s r) 

with each irsMSSD score across subjects. CoVAcor patterns were predominantly driven by 

regions with high rsFC and high irsMSSD. Histograms at the bottom and at the right of 

the matrix represent the average correlation values for each of the 7 canonical large-scale 

networks’ within- (bottom) and between-connections (right). Histograms confirm stronger 

CoVAcor for regions belonging to the same network. (B) Group-level permuted CoVAcor 

matrix. To assess the statistical significance of CoVAcor patterns, we implemented the spin 

test technique (Alexander-Bloch et al., 2018; Vázquez-Rodríguez et al., 2019). Out of the 

19900 edge values constituting our unpermuted CoVAcor matrix, 3512 survived permutation 

testing. Permuted CoVAcor patterns were again primarily driven by positive connectivity-

variability associations and, more specifically, by connections between regions belonging 

to the same network (histograms on the bottom vs on the right). Note: the average of the 

between-community correlation values for the visual network is below 0.
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Figure 3. Three-stage hierarchical regression model.
To control for the influence of inter-regional Euclidean distance and similarity in grey 

matter profiles on our connectivity-variability associations, we built a three-stage node-wise 

hierarchical regression model on group-level data. Node-wise adjusted R2 scores were 

calculated for the baseline model. For model 1 and 2 adjusted R2 change scores are reported. 

(A) Baseline model. Euclidean distance between regions explained on average 22% of rsFC 

variance across all nodes. (B) Model 1. Adding morphometric similarity only accounted 

for an extra 4% of rsFC variance across all regions, over the baseline model. (C) Model 2. 

Introducing inter-regional MSSD (irsMSSD) explained an additional 27% of rsFC variance.
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Figure 4. Dominance Analysis.
Network-wise Percentage Relative Contribution values derived from a Dominance Analysis 

run on a single node-wise multiple regression model (FC = distance + structure + irsMSSD). 

Panels A-C represent the Percentage Relative Contribution values for each predictor. 

(A) Relative contribution of distance in explaining functional connectivity. (B) Relative 

contribution of morphometric similarity in explaining functional connectivity. (C) Relative 

contribution of inter-regional variability in explaining functional connectivity. Table D 

shows the network-wise mean Percentage Relative Contribution values for each predictor.
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Figure 5. Within- vs between-network CoVA patterns.
(A). Subject-level within- and between-network dot-product correlation values were 

averaged across networks, resulting in one within- (red) and one between-network (blue) 

distribution of dot product values. Within-network connections showed overall greater 

CoVAdp, consistent with our CoVAcor findings. (B) Group-level CoVAdp matrix within- 

and between-network CoVAdp values (28 in total) across individuals. One sample t-test 

computed on each element of CoVAdp, revealed that all 7 within-network CoVAdp scores 

were significantly different from zero, in addition to some between-network connections 

(reported as *). Three clusters, depicted by black lines, reveal the topographical distribution 

of CoVAdp patterns: (1) visual, (2) somatomotor/dorsal attention/ventral attention, and (3) 

limbic/frontoparietal control/default network.
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Figure 6. Gradient mapping of CoVA patterns.
Gradient mapping was implemented on our unpermuted node-wise group-level CoVAcor 

matrix using the diffusion map embedding algorithm. (A) Results for the first two gradients. 

The first gradient separated sensory, motor and attentional regions from higher-order 

cognitive nodes. The second gradient separated visual and dorsal attention network nodes 

from nodes belonging to the somatomotor, limbic and default networks. (B) Embedded 

space for the first two gradients. Each point is a node of the transformed matrix. Nodes 

showing high functional association between rsFC and irsMSSD are closer together 

in the embedded space, whereas nodes with low CoVA are farther apart (Visual: red; 

Somatomotor: blue; DAN: brown; VAN: purple; Control: dark green; Default: light green). 

(C) Ridge plots depicting the network-wise distribution of values for the two gradients.
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