
REVIEW

Dietary Sphingomyelin Metabolism and Roles in
Gut Health and Cognitive Development
Chenyu Jiang,1,2 Ling-Zhi Cheong,3 Xue Zhang,1,2 Abdelmoneim H Ali,1,2 Qingzhe Jin,1,2 Wei Wei,1,2 and Xingguo Wang1,2

1State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, China; 2Collaborative Innovation Center of Food Safety and Quality Control in
Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China; and 3Department of Food Science and Engineering, College of
Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China

ABSTRACT

Sphingomyelin (SM) is a widely occurring sphingolipid that is a major plasma membrane constituent. Milk and dairy products are rich SM sources,
and human milk has high SM content. Numerous studies have evaluated the roles of SM in maintaining cell membrane structure and cellular signal
transduction. There has been a growing interest in exploring the role of dietary SM, especially from human milk, in imparting health benefits. This
review focuses on recent publications regarding SM content in several dietary sources and dietary SM metabolism. SM digestion and absorption are
slow and incomplete and mainly occur in the middle sections of the small intestine. This review also evaluates the effect of dietary SM on gut health
and cognitive development. Studies indicate that SM may promote gut health by reducing intestinal cholesterol absorption in adults. However,
there has been a lack of data supporting clinical trials. An association between milk SM and neural development is evident before childhood.
Hence, additional studies and well-designed randomized controlled trials that incorporate dietary SM evaluation, SM metabolism, and its long-term
functions on infants and children are required. Adv Nutr 2022;13:474–491.

Statement of Significance: Sphingomyelin from food is increasingly recognized as bioactive lipids. This review provides new insights on
the dietary sources and metabolism of sphingomyelin, as well as clinical trials on gut health and infant cognitive development.
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Introduction
Sphingomyelin (SM), a major sphingolipid (SL) in human
and bovine milk, is a critical structural constituent of neurons
and lipid bilayers (1). SLs are a class of lipids comprising
SM and glycosphingolipids. The predominant SL in plants
and mammals is glucosylceramide and SM, respectively. SLs
are a biomembrane component of almost all eukaryotes and
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are involved in cell proliferation and differentiation, stress
response, membrane transportation, intracellular and extra-
cellular signal transduction, cell migration, autophagy, and
apoptotic cell death. SL metabolites, especially sphingosine
(Sph), are involved in cell growth and death (2, 3).

SM is synthesized at the endoplasmic reticulum and the
Golgi by sphingomyelin synthases (4). SM is composed of
a long-chain Sph base backbone, a fatty acid (FA) that
is esterified by an amide group and a phosphorylcholine
polar head group attached to the hydroxyl group of the
sphingoid base (Figure 1A) (5). The predominant FAs of
SM are long-chain or very-long-chain MUFAs or SFAs (6).
Most of the existing studies examined sphingoid bases,
such as 4-sphingosine (d18:1), whereas other bases, such as
dihydrosphingosine (d18:0), 4-hydroxy sphinganine (t18:0),
4,8-sphingadienine (d18:2), and 4-hydroxy-8-sphingenine
(t18:1), form a smaller proportion (Figure 1B) (7).

SM is generally present at low food levels, and the
SM polarity is different from that of glycerophospholipids
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FIGURE 1 (A) Structure and composition of SM (d18:1/23:0). (B) Naturally occurring sphingoid bases. The prefix d and t indicate the
number of hydroxyl groups of the di- and tri-hydroxy base, respectively. SM, sphingomyelin.

because of its asymmetric molecular structure as well as
extensive hydrogen-bonding capacity (8). Natural SMs (e.g.,
milk SM) can exhibit important acyl chain heterogeneities
in terms of length and saturation, which may affect the
mechanical properties and biological functions of the milk
fat globule membrane (MFGM) or liposome carriers (9).

This study aims to present a comprehensive overview
of the current dietary SM knowledge, including natural
sources, concentration, and molecular species, as well as
its health benefits. The analytical methods used to identify
and quantify food SM are important but are not extensively
discussed and were therefore first summarized with the
dietary SM contents. Special attention was given to the
digestion and metabolism of dietary SM and recent studies
on the physiological SM functions, especially on the infant’s
neural development and intestinal tract maturation. This
review focuses on the SM found in dietary phospholipids
(PLs) rather than on the combination of SM or glycerophos-
pholipids.

Current Status of Knowledge
Literature search methods
We performed a literature search in PubMed (1965 through
18 June 2021). The following combinations of keywords
were used as search terms: “sphingomyelin,” “human breast
milk,” “dietary products,” “milk fat globe membrane,”
“metabolism,” “absorption,” “digestion,” “intestinal,” “gut,”
“inflammation,” “neurodevelopment,” and “clinical trials.”
Given that the present article is not a systematic review, we
may not have identified all studies, and we must acknowledge
a certain publication bias. However, all of the authors
conducted the literature search independently (as presented
in Supplemental Figure 1).

Dietary sources of SM and its quantification
Milk.
Milk fat is an emulsion of natural oil and water, which
mainly comprises triglycerides (TGs), PLs, cholesterol, and
various lipids (10). Milk-fat globules are surrounded by
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MFGM derived from the membranes of mammary cells, and
most MFGM products applied in studies come from bovine
milk. The polar lipids in milk fat are generally localized
to the MFGM. The polar lipids in milk mainly comprise
SM and glycerophospholipids, such as phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylserine
(PS), and phosphatidylinositol (PI) (1, 11). The addition of
polar lipid constituents to food systems has currently become
a growing area of interest because of their superior emulsion
stability and improved rheological properties (12).

Human breast milk. Table 1 summarized the relative SM
content in mature human milk reported in different countries
and regions over the last 3 decades. The total PL content in
human milk is 14.7–42.2 mg/100 mL (3.05–5.06 mg/g total
lipid). SM is found to be the most abundant PL in human
breast milk (28.4–45.5% of the total PL content), followed
by PC, PE, PS, and PI. Most studies that have compared
the content and composition of different PLs in human milk
have reported the abundance of PLs in the following order:
SM > PC > PE (13–17), whereas other studies have reported
the PL abundance in the order SM > PE > PC (18–20).

The PL compositions in human milk have been suggested
to vary with the lactation period progression (15) and are
classified as colostrum (1–5 d postpartum), transitional (6–
15 d postpartum), and mature milk (>15 d postpartum).
However, no consensus exists on the variation in PL or SM
content in human milk at different lactation periods. The
highest PL contents are present in transitional milk with a
minimal change in the SM content with lactation period
progression (15, 17, 21). However, a marked decreased PL
contents between 1 and 12 mo postpartum was reported
(18). By contrast, elevated PL concentrations were reported
in mature human milk between 2 and 12 mo postpartum
(22). Apart from regional, individual, and maternal diets,
the reported PL contents (including SM) in human milk
also depend on the sensitivity of analytical methods used for
quantification.

Figure 2 shows that SM contains more long-chain FAs
(LCFAs) compared with glycerophospholipids, especially
series 40 and 42, which account for more than 50% of the
total SM (23). Supplemental Figure 2 shows the Sph base
species and their specific FA composition in breast-milk
SM. Sphingosine (d18:1) was the predominant sphingoid
base, accounting for 83.6% of breast-milk SM, followed by
4,8-sphingosine (d18:2) (7.2%) and 4-hydroxysphingosine
(t18:0) (5.7%). The t18:0 content is an indication of a plant-
based diet.

Only a few studies focused on total FAs in SM (7, 20),
which may be due to the difficulty in the separation of polar
lipids, especially for milk samples. The FA composition was
evaluated in milk SM using GC (Figure 3) (24, 25). The
predominant FAs in SM had longer chain lengths than the
composition of total FAs in human breast milk. In breast-
milk SM, the predominant long-chain saturated FAs are hex-
adecanoic acid (16:0, 5.3–21.3%), octadecanoic acid (18:0,
12.7–13.8%), eicosanoic acid (20:0, 6.3–10.2%), docosanoic

acid (22:0, 16.4–20.7%), and tetracosanoic acid (24:0, 8.1–
17.5%). Thus, SM has a higher melting temperature that
can be easily separated from other PLs at room temperature
(16). Among the PLs of breast milk, SM has the lowest
PUFA content. The predominant unsaturated FAs in SM of
breast milk are 15-tetracosenoic acid (24:1n–9, 9.7–16.1%),
9-octadecenoic acid (18:1n–9), 9,12-octadecadienoic acid
(18:2n–6), and 13-docosenoic acid (22:1n–9) (15, 20). The
presence of 24:1n–9 in breast milk SM enables its absorption
in infants (20).

SM is the primary molecular nervonic acid (24:1n–
9) carrier. The lack of permeability of nervonic acid to
the placental barrier retains the ability to cross mammary
epithelium and intestinal epithelium. It crosses the mammary
epithelial barrier where it appears as nervonyl-SM of the
MFGM. In addition, nervonic acid crosses the intestinal
epithelium, where it is incorporated into the SM of the heart
and liver of suckling rats as nervonyl-SM (26). Nervonic
acid rapidly accumulates in the fetal brain during 32–37 wk
of pregnancy. Moreover, nervonic acid is an essential con-
stituent of the neuronal membrane and plays a crucial role
in problems (e.g., early myelination, peroxisomal disorders,
and undernourishment) (27).

Other mammalian milk. Table 1 lists the SM content and
its proportion in some mammalian milk samples. Similar
to human milk, PC, PE, and SM are the predominant PLs
of mammalian milk. Most studies on mammalian milk PLs
are focused on bovine and goat milk. The PL content in
bovine milk accounts for 0.36–0.55% of the total lipid content
(4.78–8.77 mg/g of fat and 20.0–22.9 mg/100 mL of milk),
and the SM content accounts for 19.9–27.4% of the total
PL content. Surprisingly, SM was the predominant PL in
mare milk, followed by PC. The PLs in mare milk constitute
approximately 1% of the total lipids, which is more than that
in other mammalian milk. However, the total lipid content in
mare milk is very low (13). Furthermore, the SM contents in
yak (33.1%) and donkey (36.0%) milk are markedly greater
than that in cow milk, and SM is the predominant PL in
yak (28) and donkey milk (16). Hence, yak and donkey milk
would be potential raw materials suitable for infant formula.

The differences in SM content listed in Table 1 may be
due to various factors (e.g., animal species, lactation period,
dietary habits, and environmental and seasonal factors). In
addition, very few comparative studies on PL composition
in human and other animal milk were noted. Moreover,
the studies used different analytical methods to report the
phospholipid content. Thus, studies on PLs in mammalian
and human milk are not comparable.

Dairy products.
Dairy products are essential foods in daily human life.
Table 1 summarizes the relative SM content in dairy products.
Among the dairy products, PLs are abundant in butter,
cheese, and cream. Cheese whey has the highest PL content
(8.95% of the sample), whereas the PL content in other dairy
products is below 0.30%. Buttermilk powder had the highest
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FIGURE 2 Relative amount of the molecular species of phospholipid classes and SM in human milk. Only species whose content is >3%
are shown. PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; SM, sphingomyelin. Adapted from reference
23 with permission.

PL content in total lipids (31.72% of total lipids). Butter
had the highest relative content of SM (33.70–34.30% of the
total PLs), followed by cream (13.93–28.60% of the total
PLs) and buttermilk powder (16.87–23.90% of total PLs).
Some difference exists in the relative SM content between

the different varieties of dairy products for the same species
(29–32). Previously, dairy-derived ingredients rich in SM
(e.g., skimmed-milk powder and whey protein concentrate
containing milk fat and MFGM) have been used in infant
formulations. The SM levels found in commercially available

FIGURE 3 Composition of fatty acids evaluated in milk sphingomyelin using GC. Adapted from references 24 and 25 with permission.
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dairy ingredients used for manufacturing depend on their
composition and manufacturing processes, which would
affect the SM content of subsequent products that use these
ingredients in turn (1, 33). The contents of both PLs and
SM in different dairy products can be used as references to
estimate the intake or to study the influence of purification
and processing methods (31).

Egg yolk.
The avian egg yolk (including chicken, duck, goose, turkey,
and quail) contains abundant PLs. The most abundant egg
yolk PLs are PC and PE, which account for 71.0–87.8% and
10.1–18.0% of the total PLs (34), respectively. The water
content in egg yolk, extraction efficiency, and egg type
can influence PL content (35). Using analytical methods
to efficiently extract and purify PLs is necessary. Using
improved analytical techniques, 12 PLs were detected in the
egg yolk (i.e., PC, LPC, PE, lysophosphatidylethanolamine,
PI, lysophosphatidylinositol, PG, lysophosphatidylglycerol,
phosphatidic acid, lysophosphatidic acid, SM, and PS)
(35–37).

The total SM content in egg yolks ranges from 190 to
285 mg/100 g, and the SM content accounts for 0.9–1.1% of
the total PL content (34, 35, 38). At least 11 SM species were
identified in egg yolk by LC-MS (36). The predominant Sph
base in egg yolk is d18:1, and the predominant FAs are 14:0,
15:0, 16:0, 16:1n–7, 17:0, 18:0, 18:2n–6, 18:3n–3, 20:0, 20:1n–
9, and 22:0.

Quantification and identification of SM
In-depth studies on SM function are affected and limited by
detection technology. Table 1 summarizes various analytical
methods used for SM characterization from different dietary
sources. Thin-layer chromatography (TLC) is a classical
method used for the quantification and semiquantification
of PLs (39). However, TLC is time-consuming and not
suitable for high-throughput analysis (40). The commonly
used methods to identify PL classes include HPLC with evap-
orative light-scattering detection (ELSD) and phosphorus
NMR (31P NMR). Hence, removing TGs and other neutral
lipids before the quantitative analysis of milk PLs using the
HPLC-ELSD method is necessary (41), whereas samples with
low levels (1%, wt:wt) of PLs could be detected using the
31P NMR method without the need for polar lipid extraction
or longer analysis times and/or a sophisticated instrument
(40, 42, 43) shown in Supplemental Figure 3. However,
the methods described above cannot meet requirements of
molecular information on PL FAs. Since the metabolic of
different PL FAs varies from the position in PLs to polar
groups (44). LC-MS methods [e.g., hydrophilic interaction
LC (HILIC)–tandem MS] have been widely used to obtain
molecular SM information and can be used to quantify all the
analytes of interest in a single run (35, 45, 46). Furthermore,
MS/MS analysis can be used to evaluate the FA composition
in PLs (34). The analysis procedure of SM (d18:1/22:0)
species, a commonly obtained species when analyzing SM

structure via HILIC-electrospray ionization–ion trap–time-
of-flight–MS, is shown in Supplemental Figure 4 (47). In
recent years, several new chromatography–MS methods have
been developed [e.g., supercritical fluid chromatography–
MS (48) and ion mobility spectrometry–MS (49)], which
can improve characterization efficiency and accuracy. Those
studies provided a growing number of analytical methods
suitable for SM high-throughput analysis, which enables
further SM metabolomic and clinical studies.

Digestion and absorption of SM
The daily SL intake in the common Western diet is ap-
proximately 300–400 mg (50). The daily SM consumption
among infants is approximately 150 mg (13, 51). The
daily consumption of 800 mL of human milk can provide
approximately 62 mg SM for a term newborn, whereas the
consumption of 170 mL of breast milk can provide 13 mg of
SM for a preterm infant (13).

Alkaline sphingomyelinase.
Contrary to dietary glycerine, SLs are not degraded by pan-
creatic enzymes. SM is successively hydrolyzed by alkaline
sphingomyelinase (alk-SMase) and neutral ceramidase (N-
CDase) to act on the intestinal epithelium brush margin and
intestinal cavity. Alk-SMase was identified as a new member
of the nucleotide pyrophosphatase/phosphodiesterase (NPP)
family and is also called NPP7 (52).

Furthermore, alk-SMase protects the intestinal mucosa
from inflammation and tumorigenesis. Alk-SMase can
hydrolyze and inactivate the platelet-activating factor (a
proinflammatory PL) involved in the pathogenesis of inflam-
matory bowel disease (53).

SM digestion in adults.
Nilsson and Duan (52) summarized that SM hydrolysis
takes place in the small intestine and colon. Alk-SMase
was detected in the intestinal tract and human bile. High
concentrations of alk-SMase were observed in the intestinal
tract, and the highest alk-SMase content was found in the
middle portion of the small intestine (54). The SM digestion
occurs in the small intestine, mainly in the middle and lower
sections. This is consistent with the alk-SMase distribution in
the intestinal tract, which is important for SM digestion. The
N-CDase distribution in the intestinal tract is parallel to the
alk-SMase distribution along the intestinal tract. Therefore,
alk-SMase and N-CDase have a synergistic effect in SM
digestion.

Two sources of alk-SMase in humans are the bile and
intestinal mucosa. Figure 4 shows the SM digestion and ab-
sorption pathways (54). Recent studies found that, once SM
is hydrolyzed, ceramide (Cer) is subsequently broken down
by alkaline, neutral, and acid ceramidases, which affects
the brush margin of the intestinal epithelium and intestinal
lumen. Studies on rats that fed [3H]Sph- or [14C]stearic acid–
labeled SM showed that little or no labeled SM was absorbed
intact into the chyle (54). SM was sequentially hydrolyzed
to Cer and then to sphingosine and free FAs. Similarly,
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FIGURE 4 Pathways for the digestion and absorption of SM. Alk-SMase, alkaline sphingomyelinase; Cer, ceramide; FA, fatty acid; N-CDase,
neutral ceramidase; Ser, serine; SM, sphingomyelin; Sph, sphingosine; Sph-1-P, sphingosine-1-phosphate; TG, triglyceride. Adapted from
reference 54 with permission.

no evidence was obtained for the incorporation of intact
dietary Cer into chyle lipoproteins either as Cer or as SM
after feeding [3H]palmitoyl-Sph, but the [3H]palmitic acid
appears primarily in chyle TGs. Contrary to SM and Cer, free
Sph is well absorbed and rapidly metabolized in the mucosal
cells. Most of the absorbed Sph is converted to palmitic
acid and incorporated into chylomicrons. All 3 hydrolyze
the amide linkage to release FA and Sph. Acid ceramidase is
located in the lysosome (55), whereas neutral ceramidase is
found in the plasma membrane rich in caveolin (56). Alkaline
ceramidase is distributed in the Golgi and endoplasmic
reticulum and prefers Cer with a very long chain (57). Free
Sph is absorbed and rapidly metabolized in mucosal cells.
Most of the absorbed Sph is converted into chylomicron
palmitic acid, which is catalyzed by sphingosine kinase,
sphingosine-1-phosphate lyase, and palmitaldehyde oxidase.
These enzymes are enriched in the intestinal mucosa. A
small Sph proportion is incorporated into the mucosal Cer
and other complex sphingolipids (58). A smaller proportion
of the sphingoid bases are reincorporated into mucosal
ceramide and more complex sphingolipids, and some of this
newly formed Cer appears as chyle Cer rather than chyle SM
(54, 59).

Nevertheless, SM digestion and absorption are slow and
incomplete, and a large SM proportion is retained in the
intestine (6) and would be co-excreted with cholesterol to
reduce intestinal cholesterol absorption (60). Incomplete
SM digestion generates Cer and Sph, which can be ab-
sorbed by intestinal mucosal cells (61). The intestinal alk-
SMase of mice can hydrolyze 8 μmol SM within 1 h in

vitro (62). However, in vivo studies suggested that only
7 μmol SM was completely digested in rats within 24 h
(63). The presence of cholesterol, glycerophospholipids,
TGs, diacylglycerol, and FAs in the intestinal tract can
inhibit alk-SMase activity (64). Glycerophospholipid and
its hydrolytic product can inhibit alk-SMase activity in
the intestinal tract in bile salt presence. The descending
order of alk-SMase inhibition by glycerophospholipids is as
follows: phosphatidic acid > PS > PI > PC > PE (64).
The inhibition caused by other PLs may be due to the
competition between these PLs and SM for the enzyme
substrate-binding site (65). In addition, the pancreas may
influence SM hydrolysis and Cer (62). The high bile salt
concentration in the intestinal cavity may also inhibit alk-
SMase activity. Moreover, Cer has been found to accumulate
in people with obesity or dyslipidemia and alter cellular
processes in response to fuel surplus (66), whereas micro-
somal TGs transfer protein that regulates plasma Cer and
SM concentrations by transferring these SLs between vesicles
(67).

Maximum bile salt stimulation occurs at the critical
micelle concentration (CMC), although bile salt is necessary
for alk-SMase activation. Moreover, alk-SMase and N-
CDase activity concentrations are reduced when bile salt
concentration is higher than CMC. SM digestion is affected
at the lower part of the small intestine because bile salt
concentration in the upper intestine is higher than that in the
CMC under physiological conditions. In addition, most fats
and PLs are digested, and bile salt concentration is lowered
because of absorption.
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FIGURE 5 Digestion of dietary SM after meal consumption. Alk-SMase, alkaline sphingomyelinase; CCK, cholecystokinin; CDase,
ceramidase; Cer, ceramide; FA, fatty acid; SM, sphingomyelin; Sph, sphingosine. Adapted from reference 69 with permission.

Hence, the SM digestion process and the exposure of the
distal small intestine and colon to SM and its metabolites may
be influenced by multiple factors (e.g., dietary SM amount,
presence of other lipids and bile salt, and the amount of
enzyme involved in SM digestion) (68). Figure 5 shows the
SM digestion process and regulation in the human intestinal
tract (69). Upon meal consumption, cholecystokinin (CCK)
stimulates the gallbladder contraction to transfer bile alk-
SMase and bile salt into the intestine. Meanwhile, CCK
increases pancreatic trypsin secretion. Pancreatic trypsin
and bile salt promote the dissociation of both intestinal
mucin and N-CDase from the mucosa into the lumen.
SM can be successively digested by alk-SMase and N-
CDase to form Sph in bile salt presence. Furthermore,
Sph is absorbed by epithelial cells and converted into FAs
or Cer.

SM digestion in the newborn.
A study on gastric and duodenal intubation of 11 breastfed
newborns suggested that the milk SM digestion in the
stomach and upper duodenum is negligible. Thus, this
suggested that the upper digestive tract is not involved in SM
digestion. Both alk-SMase and N-CDase are expressed in the
intestinal tracts of preterm and term newborns (53). These
enzymes can generate bioactive SL messengers to catalyze the
hydrolysis of endogenous SM in infants fed human milk and
milk SM. Sph that is released after SM digestion is absorbed
and phosphorylated into sphingosine-1-phosphate (Sph-1-
P), which is converted into palmitic acid by Sph-1-P-lyase
in the intestinal mucosa (70). Moreover, elevated NPP7 and
N-CDase concentrations were observed in the meconium of

both preterm and term human infants. In addition, palmityl
sphinganine and Sph (possible products of NPP7 and N-
CDase) were observed in meconium (53). Furthermore,
in a rat model, they reported that alk-SMase is rapidly
expressed before birth and that the enzyme concentrations
was stabilized at 4 wk after birth. Thus, they reported that
newborn rats gained the ability to digest milk SM early in
life.

Roles of SM in gut health and cognitive development
Apart from dietary SM, a previous study reported that
adding dihydrosphingomyelin into biological samples as an
internal standard enables the actual amount of endogenous
SM to be measured. SM concentrations in the brain, kidney,
and liver of the Institute of Cancer Research mice were
55.60 ± 0.43, 43.75 ± 0.21, and 22.26 ± 0.14 pmol/μg protein
(71). SM is an important cell membrane component and is
also involved in regulating cell growth, differentiation, and
apoptosis, as well as cholesterol distribution and homeostasis
(72–74). The effect of MFGM supplementation rich in SM
on the plasma lipidome is correlated with positive cognitive
and immunological effects (75). In addition, SM plasma
concentrations have been considered to be an indicator or
biomarker of some human diseases (e.g., atherosclerosis)
(76–78). Dietary SM has proven potential in influencing
inflammation by inhibiting intestinal lipid absorption (79),
altering gut microbiota (80), and blocking the leakage of
LPS across the gut barrier (81, 82). Table 2 summarizes
the recent advances in SM effect study based on human
models.
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Promoting neural development and intestinal tract matu-
ration in infants.
Although very little is known about the importance of
SM nutrition during the neonatal period, SM may affect
the growth and development of neonatal tissues by regu-
lating cell proliferation and differentiation. Prolonged and
exclusive breastfeeding plays an important role in early
neurodevelopment and childhood cognitive outcomes (83,
84). A study showed that feeding human milk or infant
formula to weanling rats for 28 d can lead to differences
in total brain SM concentrations (85). Dietary SM could
enhance the DHA concentration in the red cell membrane
and promote myelin formation in the central nervous system
and brain neuroplasticity, which are 2 imperative processes in
neuronal development (86, 87). Tanaka et al. (88) performed
a study on humans to investigate the effects of SM on the
mental, athletic, and behavioral development of premature
infants, which was the first report to evaluate the effect of
SM on infant neurodevelopment. They randomly allocated
24 premature infants with birth weights <1500 g into
test (fed SM-fortified milk; SM accounts for 20% of PLs)
and control (SM accounts for 13% of PLs) groups. Their
analysis suggested that the nutritional intervention of SM-
fortified milk positively correlated with the neurobehavioral
development of infants with low birth weight. However,
to assess the impact of SM on long-term development, a
detailed study is required. In addition, the cognitive score
was higher in the MFGM-supplemented experimental infant
milk formula group than in the standard infant milk formula
group at 12 mo old but was not significantly different from
that of the breastfed infant group (89). Moreover, beneficial
effects on behavioral and emotional regulation were reported
in preschool children consuming MFGM concentrate in milk
for 4 mo (90). However, whether MFGM supplementation
benefits from the action of SM or other PLs or a combination
of bioactive components is not yet known (91–93).

Only a few studies have examined the SM function in
intestinal tract maturation in infants. Motouri et al. (51)
used artificially raised mice as a model for intestinal tract
maturation in breastfeeding infants to assess the effect of SM.
Their study suggested that cow-milk SM played an important
role in the intestinal tract maturation of infants during the
suckling period. The daily SM consumption estimated to be
50–150 mg in breastfeeding infants could promote digestion
in the intestinal tract. Nejrup et al. (94) found that long-chain
nonesterified FAs with 10% Sph can increase the relative
abundance of bifidobacteria, which are the most abundant
bacteria in the gut of breastfed infants in fecal content,
according to a 24-h in vitro fermentation study in the feces
of healthy infants. The effect on bifidobacteria may mainly
rely on the competitive advantage caused by an antagonistic
effect of polar lipids on competing species. Sph, a hydrolytic
SM product, displays bactericidal activity in vitro among
rodent studies. Moreover, Sph has been shown to induce
ultrastructural damage to bacteria (e.g., Escherichia coli and
Staphylococcus aureus). Sphingoid bases can insert into the
outer layers of bacteria and disrupt the normal function of

their cytoplasmic membranes or accumulate inside the cells
and interfere with normal metabolism (95). This suggests
that bovine milk SLs and their metabolic products may
potentially exert changes in the intestinal microbiota if
regularly consumed (96, 97). Thus, the role of SM in the
intestinal tract maturation of infants is still currently an
ongoing discussion because several of the studies cited
have multiple nutritional interventions (e.g., whey-derived
MFGM, cream-derived MFGM, nutrient mixture, and other
SM sources).

Intestinal lipid metabolism and obesity complications.
Several studies concluded that SM could inhibit the intestinal
absorption of dietary lipids (e.g., cholesterol, fat, and other
lipids) (98, 99). Moreover, supplementing SM results in
decreased development of hepatic steatosis and adipose
tissue inflammation in a mouse model (100, 101), and supple-
menting SM may have the potential to prevent atherosclerosis
and protect against diet-induced adiposity by suppressing
adipogenesis and promoting brown-like transformation in
white adipose tissue (102, 103). Thus, dietary SM mitigates
the metabolic complications related to diet-induced obesity.
Obesity is characterized by increased LCFA intake and
damaged lipid metabolism in hepatocytes (104). In addition,
SM has a higher affinity for cholesterol than PC (105).
Cholesterol was reported to have a greater affinity for PLs
containing SFA chains. Therefore, milk SM is a more potent
inhibitor of cholesterol than egg SM, which may be due
to milk SM comprising a higher saturation degree and
longer chain length of its fatty acyl groups than those in
egg SM (79). These could have an effect on emulsification
that allowed the SM acyl chains and cholesterol to pack
more tightly, slowing the release of micellar lipids to the
enterocyte (95). It may inhibit lumen lipolysis, micellar
dissolution, and the transfer of micellar lipids to the intestinal
cell. SM is incompletely ingested and can act as a long-
term inhibitor of cholesterol absorption (106). Furthermore,
dietary supplementation with milk polar lipids inhibits the
development of obesity without impacting caloric intake but
is associated with changes in gut microbiota populations
(107).

In addition, researchers demonstrated that milk SM
improves lipid metabolism and modulates the intestinal
microbiota of mice fed a high-fat diet, suggesting that dietary
SLs can modulate the intestinal tract microbiota and lipid
absorption (81, 107, 108).

Milk SM, one of the major polar lipids in MFGM,
inhibited intestinal lipid absorption and reduced serum and
liver lipid concentrations in obese/diabetic KK-Ay mice
(109). Milk SM also improved lipid metabolism by reducing
hepatic TGs and inducing gene expression associated with
cholesterol biosynthesis in high-fat-diet–fed mice (81).

Im et al. (110) recently found that SM concentration
positively correlated with cholesteryl esters and waist-to-hip
ratio and that SM concentrations were higher in prediabetic
men with abdominal obesity. However, dietary milk polar
lipids may have limited beneficial effects on gut barrier
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integrity, systemic inflammation, and lipid metabolism in
severe obesity contexts (111).

Conversely, polar lipids and milk SM were also found
to have little effect on cholesterol absorption and lower
the lipid concentration in other studies. Ramprasath et al.
(112) reported that no change was noted in the human
blood profile upon daily consumption of 1 g of SM in
a small-scale human crossover study. Dietary SM did not
affect the absorption, synthesis, or intracavitary dissolution
of cholesterol compared with the control group. However,
dietary SM enhanced the concentration of HDL cholesterol.

Furthermore, a study by Ohlsson et al. (113) did not
demonstrate the lipid-lowering effect of polar lipids in the
milk fat that was rich in SLs. In follow-up studies, persons
(mean age: 38.2 y; range: 22–50 y) who had undergone
a colectomy because of severe ulcerative colitis (no ileal
resection) ≥6 mo before the experiment were considered
to have well-functioning ileostomies. Similarly, Ohlsson et
al. (61) did not observe any changes in the total cholesterol
content of ileostomy outputs of subjects consuming different
amounts of milk SM (50–200 mg) within a test meal.
Although short-term human studies with limited sample
sizes showed no effect, more studies should be conducted in
humans examining the effects of milk SM on lipid absorption
because it is likely that a higher SM dose is required than
in mice because alk-SMase is also present in human bile
(95).

The effects of SM on cholesterol absorption and obesity
differ from the experimental population. The effects were
inhibitory in in vivo models (114) and most mouse or rat
models, whereas few effects were found in most human
models. Existing evidence is far from sufficient to explain
the effects of SM on cholesterol absorption and obesity.
In addition, a growing concern was noted that laboratory
mice may not reflect relevant aspects of the human immune
system, which may fail to translate disease treatments from
laboratory studies to clinical application (115–118). Labo-
ratory mice live in abnormally hygienic specific pathogen-
free barrier facilities. Altering the living conditions of
mice greatly impacts the cellular composition of the innate
and adaptive immune systems (119). Thus, future studies
must be designed considering proper experimental models,
including co-ingestion with other components (120), health
conditions, sex, and age, to define the precise role of SM in
obesity (121, 122).

Colon tumor prevention and suppression.
Cell proliferation normalization and cell apoptosis rate other
than induced differentiation seem to be the key mechanisms
for tumor genesis inhibition by dietary SM. Biologically
active products generated through SM digestion regulate cell
growth, differentiation, and apoptosis involved in colorectal
cancer (3). The number of aberrant colon crypt foci (early
markers of colon cancer development) was reduced by 70%,
and the number of aberrant crypts at each focus was reduced
by 30% in mice fed a diet containing SM (0.1% SM purified
from milk) (59). Similarly, dietary SM supplementation

decreases colonic inflammation and inflammation-driven
colorectal cancer (123, 124). Interestingly, alk-SMase, a key
enzyme involved in SM digestion, was found to play a role in
colon tumor prevention and suppression. Clinical evidence
has shown that the activity of alk-SMase is decreased by 25%
and 75% in chronic colitis and colon cancer, respectively
(125). The upregulation of colonic alk-SMase plays a positive
effect on colon carcinogenesis (126, 127).

However, the effect of dietary SM on colon inflammation
remains controversial because several studies observed the
exacerbation of colitis in mice fed egg SM (128). More
animal or clinical studies are needed before using SM or SLs
as a substitute for conventional drugs in cancer-prevention
or -treatment strategies. Similarly, conclusions should be
drawn conservatively and with rigorous consideration of
the evidence when translating disease treatments from
laboratory studies to clinical applications.

Conclusions
The current review suggests that milk and dairy products
are rich SM sources, especially human milk. SM digestion
occurs throughout the small intestine, mainly in the middle
sections, which is slow and incomplete. In adults, a large SM
proportion is retained in the intestine and would probably be
co-excreted with cholesterol to reduce intestinal cholesterol
absorption. The SM potential in colon tumor prevention
and suppression has been demonstrated in animal studies,
whereas it is necessary to thoroughly explore the effect
in clinical trials. With regard to newborns and children,
SM may promote neural development before childhood.
Nevertheless, to evaluate the long-term SM effect on cog-
nitive development, further studies are needed. Only a few
studies have focused on the metabolic SM pathway during
the digestion of newborns, which still must be studied.
Meanwhile, SM biological effects differ from experimental
object models. Conclusions should be drawn conservatively
and with rigorous consideration of the evidence when trans-
lating disease treatments from laboratory studies to clinical
applications. In addition, whether MFGM supplementation
benefits from the action of SM or other PLs or a combination
of bioactive components is not well reported. Thus, more
work is required to explore the effects of dietary SM,
especially on newborns.
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63. Nyberg L, Nilsson Å, Lundgren P, Duan RD. Localization and capacity
of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem
1997;8(3):112–8.
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113. Ohlsson L, Burling H, Nilsson Å. Long term effects on human plasma
lipoproteins of a formulation enriched in butter milk polar lipid. Lipids
Health Dis 2009;8(1):44.

114. Eckhardt ERM, Wang DQH, Donovan JM, Carey MC. Dietary
sphingomyelin suppresses intestinal cholesterol absorption by
decreasing thermodynamic activity of cholesterol monomers.
Gastroenterology 2002;122(4):948–56.

115. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV,
Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy
L, et al. Genomic responses in mouse models poorly mimic
human inflammatory diseases. Proc Natl Acad Sci 2013;110(9):
3507–12.

116. Shay T, Jojic V, Zuk O, Rothamel K, Puyraimond-Zemmour D, Feng
T, Wakamatsu E, Benoist C, Koller D, Regev A, et al. Conservation and
divergence in the transcriptional programs of the human and mouse
immune systems. Proc Natl Acad Sci 2013;110(8):2946–51.

117. Takao K, Miyakawa T. Genomic responses in mouse models
greatly mimic human inflammatory diseases. Proc Natl Acad Sci
2015;112(4):1167–72.

118. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and
clinical trials in cancer treatment. Am J Transl Res 2014;6(2):114–8.

119. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey
KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A, et al.
Normalizing the environment recapitulates adult human immune
traits in laboratory mice. Nature 2016;532(7600):512–6.

120. Morifuji M, Higashi S, Oba C, Ichikawa S, Kawahata K, Yamaji T,
Itoh H, Manabe Y, Sugawara T. Milk phospholipids enhance lymphatic
absorption of dietary sphingomyelin in lymph-cannulated rats. Lipids
2015;50(10):987–96.

121. Torretta E, Barbacini P, Al-Daghri NM, Gelfi C. Sphingolipids in
obesity and correlated co-morbidities: the contribution of gender, age
and environment. Int J Mol Sci 2019;20(23):5901.

122. Breij LM, Abrahamse-Berkeveld M, Vandenplas Y, Jespers SNJ, de Mol
AC, Khoo PC, Kalenga M, Peeters S, van Beek RHT, Norbruis OF, et al.
An infant formula with large, milk phospholipid-coated lipid droplets
containing a mixture of dairy and vegetable lipids supports adequate
growth and is well tolerated in healthy, term infants. Am J Clin Nutr
2019;109(3):586–96.

123. Mazzei JC, Zhou H, Brayfield BP, Hontecillas R, Bassaganya-
Riera J, Schmelz EM. Suppression of intestinal inflammation and
inflammation-driven colon cancer in mice by dietary sphingomyelin:
importance of peroxisome proliferator-activated receptor gamma
expression. J Nutr Biochem 2011;22(12):1160–71.

124. Wang X, Kong X, Qin Y, Zhu X, Liu W, Han J. Milk phospholipids
ameliorate mouse colitis associated with colonic goblet cell depletion
via the Notch pathway. Food Funct 2019;10(8):4608–19.

125. Hertervig E, Nilsson Å, Nyberg L, Duan RD. Alkaline
sphingomyelinase activity is decreased in human colorectal carcinoma.
Cancer 1997;79(3):448–53.

126. Zhang P, Li B, Gao S, Duan RD. Dietary sphingomyelin
inhibits colonic tumorigenesis with an up-regulation of alkaline
sphingomyelinase expression in ICR mice. Anticancer Res
2008;28(6A):3631–5.

127. Guerin J, Burgain J, Gomand F, Scher J, Gaiani C. Milk fat globule
membrane glycoproteins: valuable ingredients for lactic acid bacteria
encapsulation? Crit Rev Food Sci Nutr 2019;59(4):639–51.

128. Leucht K, Fischbeck A, Caj M, Liebisch G, Hartlieb E, Benes P,
Fried M, Humpf HU, Rogler G, Hausmann M. Sphingomyelin and
phosphatidylcholine contrarily affect the induction of apoptosis
in intestinal epithelial cells. Mol Nutr Food Res 2014;58(4):
782–98.

Sphingomyelin and gut and cognitive development 491


