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Early prediction of preeclampsia in 
pregnancy with cell-free RNA

Mira N. Moufarrej1, Sevahn K. Vorperian2, Ronald J. Wong3, Ana A. Campos3, 
Cecele C. Quaintance3, Rene V. Sit4, Michelle Tan4, Angela M. Detweiler4, Honey Mekonen4, 
Norma F. Neff4, Courtney Baruch-Gravett5, James A. Litch5, Maurice L. Druzin6, 
Virginia D. Winn6, Gary M. Shaw3, David K. Stevenson3 & Stephen R. Quake1,4,7 ✉

Liquid biopsies that measure circulating cell-free RNA (cfRNA) offer an opportunity to 
study the development of pregnancy-related complications in a non-invasive manner 
and to bridge gaps in clinical care1–4. Here we used 404 blood samples from 199 
pregnant mothers to identify and validate cfRNA transcriptomic changes that are 
associated with preeclampsia, a multi-organ syndrome that is the second largest 
cause of maternal death globally5. We find that changes in cfRNA gene expression 
between normotensive and preeclamptic mothers are marked and stable early in 
gestation, well before the onset of symptoms. These changes are enriched for genes 
specific to neuromuscular, endothelial and immune cell types and tissues that reflect 
key aspects of preeclampsia physiology6–9, suggest new hypotheses for disease 
progression and correlate with maternal organ health. This enabled the identification 
and independent validation of a panel of 18 genes that when measured between 5 and 
16 weeks of gestation can form the basis of a liquid biopsy test that would identify 
mothers at risk of preeclampsia long before clinical symptoms manifest themselves. 
Tests based on these observations could help predict and manage who is at risk for 
preeclampsia—an important objective for obstetric care10,11.

Advances in obstetrics and neonatology have substantially miti-
gated many of the adverse pregnancy outcomes related to preterm 
birth and preeclampsia3. Nonetheless, the standard of care imple-
mented today focuses on how to treat a mother and child once a 
complication has been diagnosed, which proves both insufficient 
and costly1,2,4,12: Preeclampsia and related hypertensive disorders 
cause 14% of maternal deaths each year globally, second only to 
haemorrhage5, and cost nearly US$2 billion in care in the first year 
following delivery2. Worse, three out of five maternal deaths in the 
USA are preventable and often associated with a missed or delayed 
diagnosis13. Such outcomes highlight the need for tools that would 
aid in identifying which mothers are at risk for preeclampsia before 
clinical presentation10,11.

Formally defined as new-onset hypertension with proteinuria or 
other organ damage (for example, renal, liver or brain) occurring after 
20 weeks of gestation14, preeclampsia can clinically manifest anytime 
thereafter, including into the post-partum period15. So far, no recom-
mended test exists that can predict the future onset of preeclamp-
sia early in pregnancy10. Liquid biopsies that measure plasma cfRNA 
suggest a means to achieve this16; there have been promising results 
both in the confirmation of preeclampsia at clinical diagnosis17,18 and 
earlier in pregnancy19. The prediction of preeclampsia early in gesta-
tion, before symptoms present, could guide the prophylactic use of 
potential therapeutic agents10 such as low-dose aspirin11.

Preeclampsia is specific to humans6 and a few non-human primates7, 
and consequently, elucidating its pathogenesis has proven challenging. 
Broadly, it is accepted that preeclampsia occurs in two stages—abnor-
mal placentation early in pregnancy followed by systemic endothelial 
dysfunction6,8,9. Preeclampsia can present with a diversity of symptoms 
and efforts to subclassify the disease on the basis of the timing of onset20 
have had mixed success6,9,21,22. Separate efforts have focused on subtyp-
ing preeclampsia molecularly using placental gene expression and 
histology23,24. As cfRNA is derived from many tissues in the body25,26, 
liquid biopsies present a potential means to indirectly observe patho-
genesis in real time and to identify physiological changes associated 
with preeclampsia for proposed subtypes.

Here we report that cfRNA transcriptomic changes can distinguish 
between normotensive and preeclampsia pregnancies throughout 
the course of pregnancy, irrespective of preeclampsia subtype. The 
majority of these cfRNA changes are most marked early in pregnancy—
well before the onset of symptoms. Neuromuscular, endothelial and 
immune cell types and tissues contribute to these cfRNA changes, con-
sistent with important aspects of the pathogenesis of preeclampsia and 
also suggesting new approaches to stratify the disease. These observa-
tions enabled us to identify and independently validate a panel of 18 
genes that when measured between 5 and 16 weeks of gestation form 
a predictive signature of preeclampsia risk. cfRNA measurements also 
reflect the multifactorial nature of preeclampsia and provide a means 
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to monitor maternal organ health in a non-invasive manner. Together, 
these results show that cfRNA measurements can form the basis for 
clinically relevant tests that would predict preeclampsia months before 
presentation, manage who is at risk for specific organ damage and help 
to characterize the pathogenesis of preeclampsia in real time.

Clinical study design
To identify changes associated with preeclampsia well before tradi-
tional diagnosis, we designed a prospective study and recruited preg-
nant mothers at their first clinical visit to Stanford’s Lucile Packard 
Children’s Hospital. For each participant, we analysed cfRNA for sam-
ples collected before or at 12 weeks, between 13 and 20 weeks, at or after 
23 weeks of gestation and post-partum. We then split this larger group 
into discovery (n = 73, (49 normotensive, 24 with preeclampsia)) and 
validation 1 (n = 39, (32 normotensive, 7 with preeclampsia)) cohorts. 
We also obtained samples from an independent cohort of 87 mothers  
(validation 2); these samples were collected at several separate insti-
tutions before 16 weeks of gestation (61 normotensive, 26 with preec-
lampsia) (Fig. 1a).

All cohorts included individuals of diverse racial and ethnic back-
grounds in approximately matched proportions across normoten-
sive and preeclampsia groups (Extended Data Table 1). A pregnancy 
was considered to be normotensive if it was both uncomplicated and 
went to full-term (37 or more weeks), or as preeclampsia with or with-
out severe features on the basis of current guidelines (see Methods).  
For mothers who developed preeclampsia, all antenatal blood samples 
were collected before diagnosis. Our final analysis included a subset 
of those samples that passed predefined quality metrics (Extended 
Data Fig. 1, Supplementary Note 1, Supplementary Table 1, Methods).

Across gestational time points in all cohorts, we found no significant 
difference in sampling time between preeclampsia and normotensive 
groups (P ≥ 0.26, 0.11, 0.46) (values are reported as discovery, validation 1,  
validation 2; two-sided Mann–Whitney rank test unless otherwise 
specified). Known risk factors for preeclampsia, such as pre-pregnancy 
maternal body mass index (BMI), maternal age and gravidity followed 
expected trends. BMI was significantly different between preec-
lampsia and normotensive groups in the discovery cohort alone  
(P = 0.02, 0.45, not available), whereas maternal age and gravidity were 
not (P ≥ 0.29, 0.16, 0.2) (Fig. 1b, Extended Data Table 1). In validation 2, 
history of preterm birth and mode of delivery were significantly different 
between normotensive and preeclampsia groups. Other demographic 
factors such as race, ethnicity and nulliparity differed across cohorts 
but not between case groups within each cohort (P ≤ 0.05, two-sided 
chi-squared test for categorical or ANOVA for continuous variables with 
Bonferroni correction; Extended Data Table 1, Supplementary Table 2).

In mothers who later developed preeclampsia, we observed no 
significant difference (P = 0.14, 1.0, 0.4) in gestational age at onset 
between those who did not experience severe symptoms (n = 11, 4, 3*)  
and those who did experience severe symptoms (n = 13, 3, 13*) (*denotes 
incomplete data for the specified cohort) (Fig. 1c). Furthermore, 
21 mothers who developed preeclampsia also delivered preterm  
(n = 9, 1, 11) as compared with no mothers in the normotensive group; 
this was reflected by significantly different gestational ages at delivery 
(P = 10−7, 0.04, 10−9; one-sided Mann-Whitney rank test) (Fig. 1d) and 
lower fetal weight at delivery (Extended Data Table 1), which is consist-
ent with epidemiological evidence that preeclampsia increases the risk 
of spontaneous or indicated preterm delivery2,27.

Identifying preeclampsia-related cfRNA changes
A total of 544 differentially expressed genes (DEGs) were altered across 
gestation and post-partum between mothers who later developed 
preeclampsia with or without severe features and normotensive moth-
ers who did not experience complications (P ≤ 0.05; see Methods).  
Most DEGs were annotated as protein-coding and a small fraction (43; 8%)  
were other types, including 11 mitochondrial transfer RNAs, 6 long 
non-coding RNAs, 8 pseudogenes and 1 small nucleolar RNA (snoRNA). 
These changes in gene expression occurred most notably before  
20 weeks of gestation, as indicated by a clear bimodal distribution with 
two peaks centred around a log2-transformed fold change (log2(FC)) 
of +0.8 and −0.6 (Fig. 2a). Changes in gene expression were also most 
stable before 20 weeks of gestation, at which point over 50% of genes 
had a coefficient of variation (CV) < 1 as compared to 31% of genes 
at or after 23 weeks of gestation and 36% at post-partum (Extended 
Data Fig. 2a).

We then asked whether a subset of genes approximately proportional 
in number to the total sample number (n = 49, 49, 57, 46 for 12 weeks 
or less, 13–20 weeks, 23 weeks or more of gestation, and post-partum, 
respectively) was sufficient to segregate preeclampsia (n = 13, 16, 20, 17) 
and normotensive (n = 36, 33, 37, 29) samples across gestation. We found 
that 24–32 genes were sufficient to separate preeclampsia and normo-
tensive samples across gestation and at post-partum with good specific-
ity (86% [75–93%], 79% [66–88%], 97% [90–100%] and 90% [78–96%])  
and sensitivity (85% [64–95%], 88% [69–96%], 65% [47–80%] and 71% 
[51–86%]) (values in square brackets are 90% confidence intervals (CI); 
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Fig. 1 | Comparing sample, maternal and pregnancy characteristics for 
normotensive and preeclampsia groups across cohorts. a, Matched sample 
collection time both across gestation (left) and after delivery (right).  
b, Maternal characteristics (P = 0.02 comparing BMI in the discovery cohort).  
c, Matched gestational age at preeclampsia onset regardless of preeclampsia 
symptom severity. d, Gestational age at delivery (P = 6 × 10−7, 0.04, 8 × 10−9) for 
the discovery (n = 49 normotensive [37, 36, 39, 30]; n = 24 with preeclampsia  
[13, 17, 20, 17]), validation 1 (n = 32 normotensive [19, 27, 19, 19]; n = 7 with 
preeclampsia [3, 8, 6, 5]) and validation 2 (n = 61 normotensive [61]; 26 with 
preeclampsia [28]) cohorts. Square brackets indicate the sample number per 
collection group. For a, statistics were calculated by sample group. For  
b–d, statistics were calculated by cohort group (NS = not significant, *P < 0.05, 
**P ≤ 10−7; two-sided (a–c) and one-sided (d) Mann–Whitney rank test).
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Fig. 2b, Extended Data Fig. 2b). See also Extended Data Fig. 3, Supple-
mentary Table 3.

Nearly all 544 DEG changes showed strong agreement in both valida-
tion cohorts as compared to the discovery cohort across gestation but 
not post-partum. Specifically, more than 82% and 92% of genes across 
gestation had the same log2(FC) sign, with a Spearman correlation of at 
least 0.67 and 0.71 for validation 1 and validation 2 respectively (P < 10−15; 
two-sided t-test) as compared with 60% and 0.35 post-partum (Fig. 2c, 
Extended Data Fig. 2c). Finally, we asked whether symptom severity cor-
related with log2(FC) magnitude for these 544 DEGs common to both 
preeclampsia subtypes. We found that on average, symptom severity 
did not influence log2(FC) magnitude as reflected by a slope of nearly 
one across gestation (Extended Data Fig. 2e).

cfRNA changes reflect preeclampsia pathophysiology
The 544 identified DEGs could be well categorized into two longitu-
dinal trends (Fig. 2d, Extended Data Fig. 4a, c). Resembling a V shape, 
the first trend (group 1) described the longitudinal behaviour of  
216 genes (40%), for which measured levels were reduced in preec-
lampsia samples (−1.3× to −1.5×) across gestation with a minimum 
between 13 and 20 weeks. Peaking in early gestation before 20 weeks 
(1.75×), the second trend (group 2) described the behaviour of 328 genes 
(60%) that had significantly increased levels in preeclampsia samples 
before 20 weeks and to a lesser extent after 23 weeks of gestation (1.3×).  
For group 1 but not group 2, gene changes were far less evident 
post-partum and trended towards no difference between preeclampsia 
and normotensive, which may reflect a placental contribution. DEGs 
were also enriched for genes previously implicated in preeclampsia28 
broadly (30 gene overlap, P = 0.006; one-sided hypergeometric test) 
and more specifically through placental biopsies23,24 (two of nine previ-
ously identified genes overlap, PIK3CB, TAP1) (Extended Data Table 2).

Approximately 13% of DEGs were tissue- or cell-type-specific (Fig. 2e). 
Genes that were decreased in preeclampsia across gestation (group 1) 
were broadly enriched for the immune system, whereas those genes 
increased in preeclampsia across gestation (group 2) were enriched for 
nervous, muscular, endothelial and immune contributions as reflected 
by cell type and pathway enrichment (P ≤ 0.05; one-sided hyper-
geometric test with multiple hypothesis correction, see Methods)  
(Extended Data Fig. 2e, Extended Data Table 2, Supplementary Table 4).  
Consistent with the known pathogenesis of preeclampsia, we identi-
fied a strong endothelial-linked signal underscored by contributions 
from capillary aerocytes (P = 0.03), an endothelial cell type specific to 
the lungs29, platelets (P = 10−33) and several platelet-related pathways 
like platelet degranulation (P = 10−9) and platelet activation, signal-
ling and aggregation (P = 10−8) among others. We also identified a 
small, borderline-significant placental contribution (P = 0.16) from 
two genes (IGF2, TGM2) in group 1 with established roles in trophoblast 
development30,31.

We found increased nervous and muscular contributions for 
preeclampsia as emphasized by contributions from excitatory neu-
rons (P = 0.02), oligodendrocytes (P = 0.005) and smooth muscle 
(P = 0.0003), and terms like muscle contraction (P = 0.02) and dilated 
cardiomyopathy (P = 0.01). The immune system also contributes to 
both increased (for example, mesenchymal stem cells, total periph-
eral blood mononuclear cells) and decreased (granulocytes, T cells) 
changes across gestation. Genes in both groups were enriched for 
signalling pathways (that is, secretion by cell, integrin-mediated sig-
nalling pathway, regulation of IκB kinase, NF-κB signalling). Group  
2 was also enriched for cellular compartments such as the cell periph-
ery, cell junctions and extracellular space, consistent with reports 
that preeclampsia may be associated with signalling from the feto-
placental complex32.
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Risk prediction early in gestation
As gene expression changes associated with preeclampsia pathogen-
esis across gestation were readily detected irrespective of symptom 
severity, we sought to build a classifier that could identify mothers at 
risk of preeclampsia at or before 16 weeks of gestation (Extended Data 
Fig. 2e, Supplementary Note 2). We trained a logistic regression model 
on the discovery cohort (n = 61 normotensive, 24 with preeclampsia). 
After training, the final model performed well, with a near-perfect 
area under the receiver operating characteristic curve (AUROC)  
(0.99 [0.99–0.99]), good specificity (85% [77–91%]) and perfect sen-
sitivity (100% [92–100%]) (Fig. 3a, Extended Data Table 3). We then 
tested this model on validation 1 (n = 35 normotensive, 8 preeclampsia) 
and two other independent cohorts, which were collected at separate 
institutions: validation 2 (n = 61 normotensive, 28 preeclampsia) and 
the cohort used by Del Vecchio and colleagues19 (n = 8 normotensive, 
5 with preeclampsia, 7 with gestational diabetes, 2 with chronic hyper-
tension). Across these cohorts, the final model once again performed 
well, with consistent AUROC (0.71 [0.70–0.72], 0.72 [0.71–0.72], 0.74 
[0.73–0.75]), sensitivity (75% [46–92%], 56% [42–72%], 60% [26–87%]) 
and specificity (56% [43–70%], 69% [59–78%], 100% [89–100%])  
(all reported as validation 1, validation 2, Del Vecchio, value [90% CI]) 
(Fig. 3a, Extended Data Table 3).

Misclassified individuals did not predominantly belong to one racial 
or ethnic group; rather, the fraction of misclassified individuals for each 
race and ethnicity matched the cohort distribution as a whole. Notably, 
this holds true even for a group not included in the discovery cohort 
(American Indian or Alaskan Native) which made up 23% of both case 
and control for the validation 2 cohort. For false negatives in validation 
2 and Del Vecchio, we find a shift to later gestational ages at collection 
(13.5 ± 2, 12.5 ± 2 weeks) as compared to preeclampsia samples that were 
correctly classified (12 ± 2, 12 ± 0 weeks; mean ± s.d. for validation 2,  
Del Vecchio) (Extended Data Fig. 5a). This suggests that in practice, 
there may an optimal collection window to reduce false negatives. 
Indeed, if we only consider samples before 14 weeks of gestation, 
we observe a 9% and a 15% increase in sensitivity, with correspond-
ing AUROC values of 0.73 and 0.90 for validation 2 and Del Vecchio, 
respectively. There were no false positives from the Del Vecchio cohort, 
suggesting that the model can distinguish between preeclampsia and 
other risks like chronic hypertension or gestational diabetes. The model 
also proved well-calibrated, estimating a slightly increased probabil-
ity of preeclampsia for gestational diabetes (0.15 ± 0.08) and chronic 

hypertension (0.18 ± 0.13)—known preeclampsia risk factors33,34—as 
compared to the estimate for normotensive samples (0.1 ± 0.08) 
(mean ± s.d., Extended Data Fig. 5b). These increased probabilities 
for other risk factors affected the AUROC of the test (0.74 [0.73–0.75] 
as compared to 0.8 [0.79–0.81] for only preeclampsia versus normo-
tensive samples, Extended Data Table 3) (all reported as value [90% CI]).

Finally, we inspected the 18 genes (Fig. 3b, Extended Data Table 4) 
used by the model to yield probability estimates. Eight genes were 
annotated in the Human Protein Atlas (HPA, v.19)35 as enhanced or 
enriched in the placenta (TENT5A (also known as FAM46A) and MYLIP), 
neuromuscular (CAMK2G, NDUFV3, PI4KA and PRTFDC1) and immune 
system (RNF149 and TRIM21). Univariate analysis further confirmed 
that nine of the gene trends (that is, decreased or increased gene lev-
els in preeclampsia) observed in the discovery dataset are upheld in 
validation 2 (P ≤ 0.05; one-sided Mann–Whitney rank test with Benja-
mini–Hochberg correction) (Fig. 3b, Supplementary Table 5). We also 
found that most models trained using a subset of the 18 initial genes can 
predict future preeclampsia onset with varying performance. Notably, 
performance improved across all metrics (sensitivity, specificity and 
AUROC) as we increased the number of genes included for model train-
ing (Supplementary Table 6, Extended Data Fig. 5c).

Preeclampsia as a multifactorial disease
By comparing mothers who later developed preeclampsia with or 
without severe symptoms, we identified 503 DEGs (P ≤ 0.05). As there 
were no significant differences in symptom severity as related to the 
timing of preeclampsia onset (Fig. 1c), we believe that our observa-
tions contrasting preeclampsia with and without severe symptoms are 
not obscured by differences in preeclampsia-onset type. DEGs could 
be well categorized into four longitudinal trends (Fig. 4a, Extended 
Data Fig. 4b, d). Two groups (groups 1 and 3) described the temporal 
behaviour of 217 genes (44%), for which measured levels were either 
consistently increased (group 1) or reduced (group 3) in preeclampsia 
with as compared to without severe symptoms (±1.8×) across gesta-
tion and trended towards no change post-partum. By contrast, groups 
2 and 4 (286 genes, 56%) changed signs in mid-gestation, beginning 
as slightly increased (group 2, 1.2×) or decreased (group 4, −1.2×) in 
severe preeclampsia and then moving to decreased (group 2, −1.4×) 
or unchanged (Group 4, 1×) at 23 weeks or more of gestation.

Analysis of the enriched cell types and tissues of origin for each 
of these groups revealed that increased gene differences in severe 
preeclampsia were driven by contributions from endothelial cells and 
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Fig. 3 | A subset of cfRNA changes can predict risk of preeclampsia early in 
gestation. a, Classifier performance as quantified by receiver operator 
characteristic curve (ROC) for samples collected in early gestation between  
5 and 16 weeks, with AUROC and corresponding 90% CI noted per cohort.  
b, Prediction of preeclampsia incorporates cfRNA levels for 18 genes for  
which normalized centred log2(FC) trends hold across the discovery (n = 61 
normotensive, 24 preeclampsia), validation 1 (n = 35 normotensive,  
8 preeclampsia), validation 2 (n = 61 normotensive, 28 preeclampsia) and Del 

Vecchio (n = 17 normotensive or other complication, 5 preeclampsia) cohorts 
as confirmed using univariate analysis (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.005; 
one-sided Mann–Whitney rank test with Benjamini–Hochberg correction).  
See Supplementary Table 5 for exact P values. For box plots, centre line, box 
limits, whiskers and outliers represent the median, upper and lower quartiles, 
1.5× interquartile range and any outliers outside that distribution, respectively. 
Plot limits are −8 to 4 to better visualize the main distribution. log2(CPM), 
log2-transformed counts per million reads.
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the adaptive immune system (bone marrow). By contrast, genes that 
changed signs over gestation were enriched for innate immune cell 
types (for example, granulocytes and neutrophils for group 2, thymus 
for group 4) (Extended Data Table 5). Quantifying the total cfRNA signal 
confirmed an increased bone marrow signal for only severe preec-
lampsia across gestation and a decreased granulocyte signal for only 
preeclampsia without severe features at 12 weeks or less of gestation 
(Fig. 4b). Functional enrichment analysis further revealed pathways 
specific to genes that were only decreased for severe preeclampsia in 
early gestation (group 4); for example, axon guidance, nervous devel-
opment and metabolism of RNA (P < 0.05; one-sided hypergeometric 
test with multiple hypothesis correction; see Methods).

cfRNA reflects maternal organ health
We then investigated the possibility of monitoring organ health in a 
non-invasive manner. We focused on eight organ systems (Fig. 4b) rele-
vant to preeclampsia presentation with consequences such as proteinu-
ria, impaired liver function, renal insufficiency and epilepsy. We found 
substantial shifts in total contributions for all systems. We observed an 
increased astrocyte signal before 20 weeks of gestation and decreased 
oligodendrocytes and excitatory neurons at 23 or more weeks of gesta-
tion for all preeclampsia relative to normotensive (Fig. 4b). Although 
placental contributions increased over pregnancy with a peak in late 
gestation as expected, placental tissue and syncytiotrophoblast contri-
butions were reduced for preeclampsia pregnancies before 20 weeks of 
gestation. Finally, we observed a decreased signal in hepatocyte, kidney, 
endothelial cell and smooth muscle signatures across gestation and an 
increased platelet signal before 12 weeks of gestation for preeclampsia. 
These tissue- and cell-type-specific changes are consistent both with 
common preeclampsia pathogenesis and with the specific, prominent 
diagnoses in our cohort (for example, thrombocytopenia, proteinuria, 
impaired liver function and renal insufficiency).

Discussion
Our findings provide molecular evidence that supports the present 
physiological understanding of preeclampsia pathogenesis: early 
abnormal placentation and systemic endothelial dysfunction6. Early 
in gestation, we observe a reduced placental signal for preeclampsia, 
regardless of onset type or symptom severity. Concurrently, platelets 
and endothelial cells drive changes in cfRNA in preeclampsia sam-
ples regardless of symptom severity as compared to normotensive 

samples and between individuals with preeclampsia with and without 
severe symptoms, especially before 20 weeks of gestation. Increases 
in cell-type-specific cfRNA may occur in part through signalling and 
secretion by cells, as underscored by functional enrichment analysis.  
The innate and adaptive immune system also heavily contribute to cfRNA 
changes in preeclampsia, with marked shifts related to bone marrow, 
T cells, B cells, granulocytes and neutrophils—consistent with previous 
studies on the maternal–placental interface and preeclampsia6,36–38,39.

Given the diversity of clinical presentations in preeclampsia,  
we propose a non-invasive means of monitoring a mother’s risk of spe-
cific organ damage. The cfRNA changes that we characterized here 
reflect dysfunction in at least five organ systems (brain, liver, kidney, 
muscle and bone marrow), and can in some cases further distinguish 
between preeclampsia with and without severe symptoms. As a molecu-
lar lens into maternal health, liquid biopsies present an opportunity 
both as a research and clinical tool to learn about the pathogenesis of a 
human disease in humans and as a predictor of maternal health. Here we 
have shown proof of principle that cfRNA measurements can form the 
basis for a robust liquid biopsy test, which predicts preeclampsia very 
early in gestation. If validated in controlled clinical studies of suitably 
large, racially and ethnically diverse populations, such tests could help 
to discover and manage individuals who are at risk for preeclampsia, 
complementing recent efforts based on clinical and laboratory data40. 
We have also shown here that cfRNA measurements reflect who is at 
risk for specific organ damage. Together, these results form the basis 
for a series of clinical tests that can be used to help to characterize and 
stratify the pathogenesis of preeclampsia in real time, and thereby to 
meet key objectives for obstetric care.
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Methods

Clinical study design
The discovery and validation 1 cohorts were collected as part of a lon-
gitudinal, prospective study. We enrolled pregnant mothers (aged 18 
years or older) receiving routine antenatal care on or before 12 weeks of 
gestation at Lucile Packard Children’s Hospital at Stanford University, 
following study review and approval by the Institutional Review Board 
(IRB) at Stanford University (21956). All individuals signed informed 
consent before enrolment. Whole-blood samples for plasma isolation 
were then collected at three distinct time points during their pregnancy 
course and once (or twice for two individuals) post-partum. To split 
the larger Stanford cohort into Discovery and Validation 1, we first 
allocated samples using sequencing batches of which there were three. 
We allocated the sequencing batch with the most preeclampsia samples 
to Discovery to ensure sufficient statistical power and the second most 
preeclampsia samples to Validation 1. Sequencing batches themselves 
contained randomly allocated samples based on the individual such 
that all samples from the same individual were in the same batch.  
For the final sequencing batch, we randomly allocated individuals 
to either Discovery or Validation 1 such that all samples from 1 indi-
vidual were part of the same group (either Discovery or Validation 1) 
and we maintained at least a 1–2 case to control ratio in both groups.

The validation 2 cohort was collected as part of the Global Alliance to 
Prevent Prematurity and Stillbirth (GAPPS) Pregnancy Biorepository 
at Yakima Valley Memorial Hospital, Swedish Medical Center and the 
University of Washington Medical Center under review and approval 
by Advarra IRB (CR00195799). Samples were processed and sequenced 
at Stanford under the same IRB as above (21956). All individuals signed 
informed consent before enrolment. Whole-blood samples for plasma 
isolation were collected at a single time point (or two time points in 
the case of two individuals with preeclampsia) before or at 16 weeks 
of gestation.

For all three cohorts, we chose a case to control ratio of approximately 
1–2 to increase statistical power. We also ensured that case and control 
groups were matched for race and ethnicity, and that all included indi-
viduals did not have chronic hypertension or gestational diabetes.  
No other matching or exclusion criterion were used; we performed no 
further sample selection prior to sample processing. Mothers were 
defined as having preeclampsia on the basis of current American Col-
lege of Obstetrics and Gynecology (ACOG) guidelines (see below). 
Mothers were defined as controls if they had uncomplicated term preg-
nancies and either normal spontaneous vaginal or caesarean deliver-
ies. For mothers who developed preeclampsia, all antenatal samples 
included in this study were collected before clinical diagnosis.

We processed samples from 88 individuals (60 normotensive, 28 with 
preeclampsia) in the discovery cohort, 43 individuals (34 normoten-
sive, 9 with preeclampsia) in the validation 1 cohort and 87 individuals 
(61 normotensive, 26 with preeclampsia) in the validation 2 cohort. 
For some cohorts, only a subset of these individuals was included in 
the final analysis after filtering samples on the basis of pre-defined 
quality metrics (see ‘Sample quality filtering’, Supplementary Note 1, 
Supplementary Table 1)

We tested for within-cohort (normotensive versus preeclampsia) and 
across-cohort differences in demographic variables using a two-sided 
chi-squared test and ANOVA for categorical and continuous variables. 
respectively. We then applied Bonferroni correction and reported 
any differences as significant if adjusted P ≤ 0.05. Investigators were 
blinded during data collection as pregnancy outcomes were not known 
yet. Investigators were not blinded during data analysis as analysis 
methods required knowledge of outcome (that is, supervised learning).

Definition of preeclampsia
Preeclampsia was defined per the ACOG guidelines27 on the basis of two 
diagnostic criteria: (1) new-onset hypertension developing on or after 

20 weeks of gestation; and (2) new-onset proteinuria or in its absence, 
thrombocytopenia, impaired liver function, renal insufficiency, pul-
monary oedema or cerebral or visual disturbances.

New-onset hypertension was defined when the systolic and/or dias-
tolic blood were at least 140 or 90 mmHg, respectively, on at least two 
separate occasions between four hours and one week apart. Proteinuria 
was defined when either 300 mg protein was present within a 24-h urine 
collection or an individual urine sample contained a protein/creatinine 
ratio of 0.3 mg dl−1, or if these were not available, a random urine speci-
men had more than 1 mg protein as measured by dipstick. Thrombocy-
topenia, impaired liver function and renal insufficiency were defined 
as a platelet count of less than 100,000 per µl, liver transaminase levels 
two or more times higher than normal and serum creatinine level of 
higher than 1.1 mg dl−1, respectively.

Symptoms were defined as severe per the ACOG guidelines.  
Specifically, preeclampsia was defined as severe if any of the following 
symptoms were present and diagnosed as described above: new-onset 
hypertension with systolic and/or diastolic blood pressure of at least 
160 and/or 110 mmHg, respectively, thrombocytopenia, impaired liver 
function, renal insufficiency, pulmonary oedema, new-onset headache 
unresponsive to medication and unaccounted for otherwise or visual 
disturbances.

Finally, a pregnant mother was considered to have early-onset preec-
lampsia if onset occurred before 34 weeks of gestation and late onset 
thereafter.

Sample preparation
Plasma processing. At Lucile Packard Children’s Hospital, blood sam-
ples were collected in either EDTA-coated (368661, Becton-Dickinson) 
or Streck cfRNA BCT (218976, Streck) tubes at ≤12, 13–20 and ≥23 weeks 
of gestation, and post-partum for each participant. Within 30 min, 
tubes were then centrifuged at 1,600g for 30 min at room temperature. 
Plasma was transferred to 2-ml microfuge tubes and centrifuged at 
13,000g for another 10 min in a microfuge. One-millilitre aliquots were 
then transferred to 2-ml Sarstedt screw cap microtubes (50809242, 
Thermo Fisher Scientific) and stored at −80 °C until analysis.

At GAPPS, blood samples were collected in EDTA-coated tubes at 
≤16 weeks of gestation from a network of collection sites. Per standard 
operating procedure, tubes were then centrifuged within 2 h of collec-
tion at 2,500 rpm for 10 min at room temperature in a swinging bucket 
rotor. Plasma was transferred to 2-ml cryovials in at most 1-ml aliquots 
and stored at −80 °C until analysis. Sample volume was also recorded.

cfRNA isolation. In 96-sample batches, cfRNA from 1-ml plasma sam-
ples was extracted in a semi-automated manner using the Opentrons 
1.0 system and Norgen Plasma/Serum Circulating and Exosomal RNA 
Purification 96-Well Kit (Slurry Format) (29500, Norgen). Samples 
were subsequently treated with Baseline-ZERO DNAse (DB0715K,  
Lucigen) for 20 min at 37 °C. DNAse-treated cfRNA was then cleaned and 
concentrated into 12 µl using Zymo RNA Clean and Concentrator-96 
kits (R1080).

After cfRNA extraction from plasma samples, isolated RNA concen-
trations were estimated for a randomly selected 11 samples per batch 
using the Bioanalyzer RNA 6000 Pico Kit (5067-1513, Agilent) per the 
manufacturer’s instructions.

Sequencing library preparation. cfRNA sequencing libraries were 
prepared with the SMARTer Stranded Total RNAseq Kit v2 - Pico Input 
Mammalian Components (634419, Takara) from 4 µl of eluted cfRNA 
according to the manufacturer’s instructions. Samples were barcoded 
using the SMARTer RNA Unique Dual Index Kit – 96U Set A (634452, 
Takara), and then pooled in an equimolar manner and sequenced on 
Illumina’s NovaSeq platform (2 × 75 bp) to a mean depth of 54, 33 and 
38 million reads per sample for discovery, validation 1, and validation 
2 cohorts, respectively. Some samples (12, 61 and 0 for discovery, 
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validation 1 and validation 2 cohorts) were not sequenced owing to 
failed library preparation.

Bioinformatic processing
For each sample, raw sequencing reads were trimmed using Trimmo-
matic (v.0.36) and then mapped to the human reference genome (hg38) 
with STAR (v.2.7.3a). Duplicate reads were then removed by GATK’s 
(v.4.1.1) MarkDuplicates tool. Finally, mapped reads were sorted and 
quantified using htseq-count (v.0.11.1) generating a counts table (genes 
× samples). Read statistics were estimated using FastQC (v.0.11.8).

Across samples, the bioinformatic pipeline was managed using 
Snakemake (v.5.8.1). Read and tool performance statistics were aggre-
gated across samples and steps using MultiQC (v.1.7). After sample qual-
ity and gene filtering, all gene counts were adjusted to log2-transformed 
counts per million reads (CPM) with trimmed mean of M values (TMM) 
normalization41.

Sample quality filtering
For every sequenced sample, we estimated three quality parameters as 
previously described42,43. To estimate RNA degradation in each sample, 
we first counted the number of reads per exon and then annotated 
each exon with its corresponding gene ID and exon number using 
htseq-count. Using these annotations, we measured the frequency of 
genes for which all reads mapped exclusively to the 3′-most exon as 
compared to the total number of genes detected. RNA degradation 
for a given sample can then be approximated as the fraction of genes 
in which all reads mapped to the 3′-most exon. To estimate the number 
of reads that mapped to genes, we summed counts for all genes per 
sample using the counts table generated from bioinformatic processing 
above. To estimate DNA contamination, we quantified the ratio of reads 
that mapped to intronic as compared to exonic regions of the genome.

After measuring these metrics across nearly 700 samples, we empiri-
cally estimated RNA degradation and DNA contamination’s 95th per-
centile bound. We considered any given sample an outlier, low-quality 
sample if its value for at least one of these metrics was greater than or 
equal to the 95th percentile bound or if no reads were assigned to genes.

Once values for each metric were estimated across the entire dataset, 
we visualized: (1) whether low-quality samples clustered separately 
using hierarchical clustering (average linkage, Euclidean distance 
metric); and (2) whether sample quality drove variance in gene meas-
urements using principal component analysis (PCA). These analyses 
were performed in Python (v.3.6) using Scikit-learn for PCA (v.0.23.2), 
Scipy for hierarchical clustering (v.1.5.1) and nheatmap for heat map 
and clustering visualization (v.0.1.4).

After confirming sample quality, 404 samples from 199 mothers 
(142 normotensive, 57 with preeclampsia) were included in the final 
analysis (Supplementary Table 1). Specifically, 209, 106 and 89 samples 
from 73, 39 and 87 participants (49, 32 and 61 normotensive; 24, 7 and 
26 with preeclampsia) were included in discovery, validation 1 and 
validation 2, respectively.

Gene filtering
We performed filtering to identify well-detected genes across the entire 
cohort. Specifically, we used a basic cut-off that required a given gene 
be detected at a level of at least 0.5 CPM in at least 75% of discovery 
samples after removing outlier samples. Following this step, we retain 
7,160 genes for differential expression analysis.

Differential expression analysis
Differential expression analysis was performed in R using Limma 
(v.3.38.3). To identify gene changes associated with preeclampsia 
across gestation and post-partum, we used a mixed-effects model. 
We performed differential expression analysis using two design matri-
ces: (1) examine the interaction between time to preeclampsia onset 
or delivery for normotensive and preeclampsia symptoms (that is, 

preeclampsia with or without severe symptoms); and (2) examine the 
interaction between time to preeclampsia onset or delivery for normo-
tensive and preeclampsia broadly. In both design matrices, we included 
time to preeclampsia onset or delivery for normotensive (continuous 
variable), whether a sample was collected post-partum (binary vari-
able), the interaction between time and preeclampsia symptoms for 
(1) or preeclampsia for (2), the interaction between whether a sample 
is post-partum and preeclampsia symptoms for (1) and preeclampsia 
for (2), and 7–8 confounding factors.

In (1), we defined preeclampsia symptoms categorially using three 
levels—normotensive, preeclampsia without severe symptoms, preec-
lampsia with severe symptoms. In (2), we defined whether a sample 
was preeclampsia using a binary, indicator variable (0 = normoten-
sive, 1 = preeclampsia). The 7–8 confounding variables included were 
maternal race (categorical variable), maternal ethnicity (binary vari-
able), fetal sex (binary variable), maternal pre-pregnancy BMI group 
(categorical variable), maternal age (continuous variable, only included 
in design 1), and sequencing batch (categorical variable). We defined 
time to preeclampsia onset or delivery as the difference between ges-
tational age at onset or delivery and gestational age at sample collec-
tion. We defined BMI group as follows: obese (BMI ≥ 30), overweight 
(25 ≤ BMI < 30), healthy (18.5 ≤ BMI < 25), underweight (BMI < 18.5). We 
chose to model time to preeclampsia onset or delivery as a continuous 
variable, specifically a natural cubic spline with four degrees of freedom 
to account for the range across which samples were collected (one 
to three months per collection period). We also blocked for partici-
pant identity (categorical variable), modelling it as a random effect to 
account for auto-correlation between samples from the same person.

Per the Limma-Voom guide, to account for sample auto-correlation 
over time, we ran the function voomWithQualityWeights twice. We first 
ran it without any blocking on participant identity, and used this base 
estimation to approximate sample auto-correlation on the basis of partic-
ipant identity using the function duplicateCorrelation. After estimating 
correlation, voomWithQualityWeights was run again, this time blocking 
for participant identity and including the estimated auto-correlation 
level. A linear model was then fit for each gene using lmFit and differential 
expression statistics were approximated using Empirical Bayes (eBayes) 
methods. For comparing preeclampsia with versus without severe symp-
toms, we contrasted the relevant coefficients (makeContrasts) and then 
applied Empirical Bayes as opposed to directly after lmFit.

DEGs were then identified using the relevant design matrix coef-
ficients with Benjamini–Hochberg multiple hypothesis correction at 
a significance level of 0.05. For design 1, we identified DEGs related to 
three comparisons: preeclampsia without severe symptoms versus 
normotensive (1,759 DEGs); severe preeclampsia versus normotensive 
(1,198 DEGs); and preeclampsia with versus without severe symptoms 
(503 DEGs). We find 544 genes in common for preeclampsia without and 
with severe symptoms versus normotensive. These 544 DEGs are exam-
ined in Fig. 2 and the related main text. For design 2, we identified DEGs 
related to preeclampsia versus normotensive alone (330 DEGs), which 
we used as the initial gene set for building a logistic regression model 
(see Supplementary Note 2). Finally, we removed the effect of sequenc-
ing batch on estimated logCPM values with TMM normalization for the 
discovery cohort using the limma-voom function, removeBatchEffect.

log2-transformed fold change and CV estimation
We define log2-transformed fold-change (log2(FC)) as the difference 
between the median gene level (logCPM; see ‘Bioinformatic process-
ing’) between preeclampsia and normotensive samples for a given 
sample collection period (that is, ≤12, 13–20 and ≥23 weeks of gesta-
tion, or post-partum). In the case in which a given person had multiple 
samples included into a specific collection period, we only used the 
values associated with the first collected sample to avoid artificially 
reducing within-group (preeclampsia or normotensive) variance due 
to auto-correlation among samples from the same person.



We then quantified the relative dispersion around the estimated 
log2(FC) for each gene using an approximation for CV. Specifically,  
we consider CV to be the ratio between an error bound, ∂, and the 
estimated log2(FC). We defined the error bound, ∂, as the one-sided 
error bound associated with the lower (or upper in the case of negative 
log2(FC) values) 95% CI as estimated by bootstrapping. This definition of 
∂ as a one-sided bound that approaches 0 (equivalent to no FC) allowed 
us to explore how confident we could be in an estimated log2(FC).  
For instance, a CV = 1 would indicate that at the boundary of proposed 
values, the log2(FC) for a given gene becomes effectively 0. Similarly, 
a CV > 1 would indicate even less confidence in a proposed average 
log2(FC) and indicate that at the boundary, the estimated log2(FC) 
changes signs (that is, a negative log2(FC) becomes a positive one or 
vice versa).

Hierarchical clustering analysis
For each sample collection period, hierarchical clustering was per-
formed using DEGs with an |log2(FC)| ≥ 1 and CV < 0.5 or 0.4 in the 
case of the 13–20 weeks of gestation time point so that the number of 
genes used did not exceed the number of samples. For each gene that 
passed these thresholds, we calculated a z-score across all samples (at 
most 1 per individual, the earliest collected sample in a given group) 
in each sample collection period using the function StandardScaler 
in Scikit-learn (v.0.23.2), Average linkage hierarchical clustering with 
a Euclidean distance metric was then performed for both rows (gene 
z-scores) and columns (samples in same collection group) for a given 
matrix in Python using Scipy (v.1.5.1). Clustering and corresponding 
heat maps were visualized using nheatmap (v.0.1.4).

Longitudinal dynamics analysis
To group gene changes by longitudinal behaviour, we performed 
k-means clustering on a matrix in which each row was a DEG and each 
column was the estimated log2(FC) for a given sample collection period 
(N genes × 4 time points). We measured the sum of squared distances 
for every ‘k’ between 1 and 16 (42), in which 16 represents the maxi-
mum possible k (4 time points with 2 possibilities each, log2(FC) > 0 
or log2(FC) < 0). We then identified the optimal k clusters by using the 
well-established elbow method to identify the smallest ‘k’ that best 
explained the data, visually described as the elbow (or knee) of a con-
vex plot like that for the sum of squared distances versus k (Extended 
Data Fig. 4a, c). To do so, we either visually inspected and identified 
the elbow (Fig. 2d) or used the function KneeLocator as implemented 
in the package Kneed (v.0.7.0) (Fig. 4a). We used visual inspection for 
Fig. 2d as we observed that given two k-values (for example, k = 2, 3) 
with a similar sum of squared distances, KneeLocator would choose 
the larger value, whereas we preferred a simpler model. Having identi-
fied the optimal number of clusters, k, we labelled every DEG with its 
assigned cluster and visualized average behaviour (median) and the 
95% CI (bootstrapped using 1,000 iterations) per cluster using Seaborn 
line plot (v.0.10.0).

To confirm that the identified patterns were not spurious (that is, an 
artifact of the k-means clustering algorithm), we permuted the data 
columns (log2(FC) per time point) for each gene thereby scrambling 
any time-related structure while preserving its overall distribution.  
We then visualized the result using Seaborn line plot as described above. 
After permutation, we observed no longitudinal patterns, which were 
instead replaced by nearly flat, uninformative trends (Extended Data 
Fig. 4b, d).

Correlation analysis
To verify DEGs identified in the discovery cohort, we compared log2(FC) 
values for the discovery cohort as compared to both validation 1 and 
validation 2 cohorts. We calculated the percentage of genes for which 
the log2(FC) had the same sign across cohorts (that is, both positive or 
both negative) and the Spearman correlation using the function scipy.

stats.spearmanr. We did not calculate log2(FC) values for DEGs at ≤12 
weeks of gestation in validation 1 because of small sample numbers  
(3 preeclampsia samples before 12 weeks).

We also sought to compare whether symptom severity (without or 
with severe preeclampsia) correlated with log2(FC) magnitude for 544 
DEGs identified as common to all preeclampsia in design 1. To do so, 
we calculated the slope of a best-fit line in which x and y were defined 
as log2(FC) values for preeclampsia without (x) and with (y) severe 
features versus normotensive. We would expect a slope > 1 and < 1 if 
log2(FC) magnitudes for preeclampsia with as compared to without 
severe symptoms were larger or smaller on average, respectively. Simi-
larly, a slope = 1 would reflect that symptom severity did not correlate 
with log2(FC) magnitude for the 544 DEGs tested.

Finally, to confirm that the identified correlations were significant, 
we permuted the data columns (log2(FC) per cohort) for each gene, 
thereby scrambling any structure while preserving its overall distri-
bution. We then calculated the same statistics. After permutation, we 
observe about 50–55% log2(FC) agreement, as expected at random, a 
Spearman correlation of 0 and a slope of 0.

Defining cell-type- and tissue-specific gene profiles
Cell-type gene profiles were identified as previously described26 and 
briefly summarized below. We also briefly describe an adapted, similar 
method to derive tissue gene profiles.

On the tissue level, for genes and tissues (and some blood and 
immune cell types) measured in the HPA (v.19)35, we calculated a Gini 
coefficient per gene as a measure of tissue specificity. As a measure 
of inequality, Gini coefficient values closer to 1 represent genes that 
are tissue-specific. We defined a given gene Y as specific to tissue X 
included in the HPA if Gini(Y) ≥ 0.6 and max expression for Y is in tissue X.  
The aforementioned method can identify genes that are expressed 
in several tissues (for example, group-enriched) as opposed to only 
one. Specifically, it is possible to have a gene Y where Gini(Y) ≥ 0.6 and 
the gene is expressed in more than 1 tissue (for example, enrichment 
in placenta and muscle). To this end, when tracking a single cell type 
or tissue’s trajectory over gestation (for example, Fig. 4b), where the 
specificity of a given gene profile is especially important, we imposed 
a further constraint to ensure that any gene signal only reflects the 
named tissue (for example, any gene named placenta-specific is spe-
cific to the placenta alone). Specifically, we required that genes be 
annotated by HPA as ‘Tissue-enriched’ or ‘Tissue-enhanced’ and term 
this reference ‘HPA strict’.

On the cell-type level, we identified cell-type-specific gene pro-
files using both Tabula Sapiens v.1.0 (TSP) and individual cell atlases.  
We used individual cell atlases to identify gene profiles for cell types 
from missing tissues in TSP (for example, placenta, brain) or tissues 
that are known to be important in preeclampsia with additional annota-
tions in individual single-cell atlases (for example, liver, kidney). First, 
for genes and cell types measured in TSP, we defined a given gene Y as 
specific to cell type X included in TSP if Gini(Y) ≥ 0.8 and max mean 
expression for Y is in cell type X. We combined subtype annotations 
for neutrophil and endothelial cells into single parent categories called 
‘neutrophil’ and ‘endothelial cell’ respectively; as subtype annota-
tions were based on manifold clustering, it was unclear whether they 
were truly distinct enough to be distinguished at a whole-body level 
for our purposes. Next, for genes and cell types described in individ-
ual tissue single-cell atlases, we required that a gene be differentially 
expressed in the specific single-cell atlases and tissue-specific per the 
HPA (Gini ≥ 0.6). The following single-cell atlases were used for each 
organ: (1) placenta44,45; (2) liver46; (3) kidney47; (4) heart48; and (5) brain49.

We then created an augmented reference, which we term TSP+.  
For TSP+, we took the union of TSP and individual atlas gene annota-
tions. A small number of genes had conflicting double annotations 
in TSP as compared to at most one individual tissue single-cell atlas.  
In these rare instances, which most often occurred for genes related 
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to cell types missing in TSP (for example, placental or brain cell types), 
we used the individual single-cell atlas label.

Determining cell type and tissue of origin
We determined whether a given cell type or tissue was enriched in preec-
lampsia by comparing preeclampsia DEGs with cell-type and tissue gene 
profiles using a one-sided hypergeometric test. For every tissue (HPA) 
or cell type (TSP+) with at least two DEGs specific to it, we performed 
the following. First, we defined a hypergeometric distribution (scipy.
stats.hypergeom, (v.1.5.1)) with the following parameters, where cat-
egory refers to tissue when using HPA and cell type when using TSP+: 
M = number of genes specific to any category; n = number of genes 
specific to this category; N = number of DEGs in this k-means longi-
tudinal cluster specific to this category. Next, we estimated a P value 
using the survival function (1 − cumulative distribution function (CDF)) 
for the specified distribution. Specifically, a P value is defined as the 
cumulative probability, P(X > (n_DEGs_specific_to_this_category − 1)), 
that the distribution takes a value greater than the number of DEGs 
specific to this category − 1. Finally, once we estimated a P value for 
every cell type (TSP+) or tissue (HPA) identified in each DEG k-means 
longitudinal cluster, we adjusted for multiple hypotheses using Ben-
jamini–Hochberg with a significance threshold of 0.05.

Defining relative signature score per cell type or tissue
We define a signature score as the sum of logCPM values over all genes 
in a given tissue or cell-type gene profile26. We required that a cell-type 
or tissue gene profile have at least five specified genes to be considered 
for signature scoring in cfRNA. Genes were defined as specific to a 
given tissue on the basis of the reference HPA strict, and to a given cell 
type on the basis of the reference TSP+ (see ‘Defining cell-type- and 
tissue-specific gene profiles’ for details).

To account for our previous observation that baseline cfRNA levels 
vary between individuals—the consequence of biological and technical 
(for example, sample processing) factors, we chose to calculate relative 
as opposed to absolute signature scores. For each individual whose 
post-partum sample passed sample quality control (QC) (see ‘Sample 
quality filtering’ for details), we estimated a relative signature score, 
which was defined as the difference between the signature score at a 
given gestational time point and the post-partum sample. For both 
the discovery cohort and the validation 1 cohort, 49 normotensive 
individuals and 24 individuals with preeclampsia had a post-partum 
sample that survived sample QC. After normalization, all samples at 
post-partum had a similar baseline (0). We note that one can define a 
relative signature score based on any sampled time point for a given 
person. We chose the post-partum sample because we were interested 
in tracking maternal organ health over gestation.

Finally, we scaled (that is, z-score) the relative signature scores for a 
given cell type or tissue by dividing by the interquartile range, a robust 
alternative to standard deviation, using the sklearn.preprocessing 
class, RobustScaler. This accounted for differing gene profile lengths 
and gene expression levels, and allowed us to compare both different 
cell-type and tissue contributions and case groups per cell type or 
tissue.

Having defined a relative signature score per cell type and tissue, we 
visualized average behaviour (median) and the 75% CI, a non-parametric 
estimation of standard deviation, (bootstrapped relative signature 
score per case group and time point using 1,000 iterations) using 
Seaborn line plot (v.0.10.0).

Functional enrichment analysis
Functional enrichment analysis was performed using the tool GProfiler 
(v.1.0.0) for the following data sources: Gene Ontology: biological 
processes and cellular compartments (GO:BP, GO:CC, released 1 May 
2021, 2021-05-01), Reactome (REAC, released 7 May 2021, 2021-05-07) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG FTP, released 3 

May 2021, 2021-05-03). To identify GO terms, we excluded electronic 
GO annotations (IEA) and used a custom background of only the 7,160 
genes that were included in the differential expression analysis. We then 
performed the recommended multiple hypothesis correction (g:SCS) 
with an experiment-wide significance threshold of a = 0.05 (ref. 50).

Logistic regression feature selection and training
To build a robust classifier that can identify mothers at risk of preec-
lampsia at or before 16 weeks of gestation, we first pre-selected fea-
tures using the set of 330 DEGs when contrasting preeclampsia versus 
normotensive (see design 2 in ‘Differential expression analysis’ and 
Supplementary Note 2) as a starting point.

We normalized gene measurements using a series of steps. First, to 
correct for batch effect, in which we define batch as a set of samples 
processed at the same time by a distinct group (for example, discovery 
cohort = batch, Del Vecchio cohort = batch), we centred the data by 
subtracting the median logCPM per gene for a given cohort. Next, we 
scaled gene values for each cohort using its corresponding interquartile 
range in the discovery cohort. Finally, to account for sampling differ-
ences across samples, we used an approach similar to when analysing 
quantitative PCR with reverse transcription (RT–qPCR) data, and nor-
malized data using multiple internal control (that is, housekeeping) 
genes. On a per-sample basis, we subtracted the median, normalized 
logCPM value (centred and scaled) for all internal control genes, which 
we define as 66 genes for which the measured value did not change 
across preeclampsia versus normotensive comparisons (all genes with 
adjusted P > 0.99 for preeclampsia versus normotensive; design 2).  
When calculating the median value for all internal control genes, we 
excluded any 0 logCPM values as these are likely to have been the con-
sequence of technical dropout.

Model training then used the discovery cohort alone split into 80% for 
hyperparameter tuning and 20% for model selection and consisted of 
two stages—further feature pre-selection based on two metrics followed 
by the construction of a logistic regression model with an elastic net 
penalty. Using a split discovery cohort for training mitigated overfitting 
even though all discovery samples were used for differential expression, 
which defined the initial feature set.

For feature pre-selection, we calculated logFC values using the 80% 
discovery split for all 330 genes for preeclampsia versus normotensive.  
We focused on 2 practical metrics measured across the 80% split of dis-
covery samples collected on or before 16 weeks of gestation: gene change 
size (|log2(FC)|) and gene change stability (CV). All model hyperparam-
eters were then tuned using AUROC as the outcome metric and fivefold 
cross validation. Next, we selected the best model including tuned feature 
pre-selection cut-offs again using AUROC. Specifically, we calculated an 
AUROC score for both the 80% and the 20% discovery splits separately, 
and the selected model achieved the best score on both splits.

Finally, we tuned the probability threshold, P, at which a sample is 
labelled as at risk of preeclampsia if P(PE) ≥ P using the entire discovery 
cohort. To do so, we constructed a receiver operator characteristic 
curve (ROC) and calculated the false positive rate (FPR) and true posi-
tive rate (TPR) at different thresholds, P_i. We identified the thresh-
old, P_i, at which FPR = 10%, and round to the nearest 5 (for example, 
0.37 would become 0.35). This yielded a tuned threshold of P = 0.35.  
All classifications as negative or positive were then made based on 
this threshold.

To understand the importance of each gene feature, we trained a 
separate logistic regression model for a subset of all possible feature 
subsets (307 combinations out of a total of 262,143 for 1–17 genes).  
No feature pre-selection was performed for this sub-analysis. All model 
hyperparameters were tuned as previously described. We defined a 
gene subset as weakly predictive if the model yielded an AUROC > 0.5 
on the test set (validation 2).

In all cases, performance metrics were assessed as described below 
(see next section) and used Scikit-learn (v.0.23.2).



Performance metric analysis
Model performance was assessed using several statistics including sen-
sitivity, specificity, positive predictive value (PPV), negative predictive 
value (NPV) and AUROC. Given a 2 × 2 confusion matrix in which rows 
1and 2 represent true negatives and positives and columns 1 and 2 repre-
sent negative and positive predictions, respectively, we can define the 
values in row 1, column 1 as true negatives (TN), row 1, column 2 as false 
positives (FP), row 2, column 1 as false negatives (FN), and row 2, column 
2 as true positives (TP). We can then define the following proportions: 
(1) sensitivity = TP/(TP + FN); (2) specificity = TN/(TN + FP); (3) PPV = TP/
(TP + FP); (4) NPV = TN/(TN + FN). For each proportion, we calculated 
90% CIs using Jeffrey’s interval51 and the function, proportion_confint, 
from statsmodels.stats.proportion. We also approximated AUC and its 
corresponding 90% CI using the Scikit-learn function, roc_auc_score, 
and the binormal approximation, respectively.

Statistical analyses
All P values reported herein were calculated using the non-parametric 
Mann–Whitney rank test unless otherwise stated. One-sided tests were 
performed where required based on the hypothesis tested.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw and processed sequencing data (BioProject PRJNA792450) are 
available through the Sequence Read Archive (SRA, SRP352519) and 
the Gene Expression Omnibus (GEO, GSE192902), respectively. Data 
were mapped using the human reference genome (hg38) and annotated 
using ENSEMBL v.82. We used publicly available data from the HPA (v.19; 
https://v19.proteinatlas.org/); TSP (v.1.0; https://tabula-sapiens-portal.
ds.czbiohub.org/); Gene Ontology: biological processes and cellular 
compartments (GO:BP, GO:CC, released 1 May 2021, 2021-05-01); Reac-
tome (REAC, released 7 May 2021, 2021-05-07); Kyoto Encyclopedia 
of Genes and Genomes (KEGG, released 3 May 2021, 2021-05-03); and 
several previous publications44–49.

Code availability
All computational analyses were performed using Python 3.6 or R 3.5, 
and are available on Github at https://github.com/miramou/pe_cfrna.
 
41.	 Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression 

analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

42.	 Pan, W. Development of Diagnostic Methods Using Cell-free Nucleic Acids (Stanford 
University, 2016).

43.	 Moufarrej, M. N., Wong, R. J., Shaw, G. M., Stevenson, D. K. & Quake, S. R. Investigating 
pregnancy and its complications using circulating cell-free RNA in women’s blood during 
gestation. Front. Pediatr. 8, 605219 (2020).

44.	 Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal–fetal interface in 
humans. Nature 563, 347–353 (2018).

45.	 Suryawanshi, H. et al. A single-cell survey of the human first-trimester placenta and 
decidua. Sci. Adv.4, eaau4788 (2018).

46.	 Aizarani, N. et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. 
Nature 572, 199–204 (2019).

47.	 Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 
1461–1466 (2019).

48.	 Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).
49.	 Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 

332–337 (2019).
50.	 Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and 

conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).
51.	 Brown, L. D., Cai, T. T. & DasGupta, A. Interval estimation for a binomial proportion. Stat. 

Sci. 16, 101–133 (2001).

Acknowledgements We thank N. Aghaeepour and I. Maric for discussions and data analysis 
suggestions; the many researchers and clinicians affiliated with the March of Dimes 
Prematurity Research Center at Stanford University for feedback after oral presentations; the 
Hess Research Fund for financial support; and the participants in this study for their 
contribution. This research was conducted using specimens and data collected and stored on 
behalf of the GAPPS repository. The schematics in Fig. 4b were created with BioRender. This 
work was supported by the Chan Zuckerberg Biohub, GAPPS and the March of Dimes 
Foundation. M.N.M. is supported by the Stanford Bio-X Bowes Fellowship; S.K.V. is supported 
by a NSF Graduate Research Fellowship (grant no. DGE 1656518), the Benchmark Stanford 
Graduate Fellowship, and the Stanford ChEM-H Chemistry Biology Interface (CBI) training 
program; and V.D.W. is supported by the H&H Evergreen Fund.

Author contributions M.N.M., G.M.S., D.K.S. and S.R.Q. conceptualized and designed the 
study. M.L.D., V.D.W., G.M.S. and D.K.S. designed the cohort study at Lucile Packard Children’s 
Hospital. R.J.W., A.A.C. and C.C.Q. collected and processed whole-blood samples and 
corresponding sample and participant metadata. C.B.-G. and J.A.L. oversaw whole-blood 
sample and corresponding sample and participant metadata collection at GAPPS. M.N.M. 
developed experimental protocols for cfRNA extraction and data generation and processed all 
samples from cfRNA extraction up to and including library generation for RNA sequencing. 
R.V.S., M.T., A.M.D., H.M. and N.F.N. developed and executed experimental protocols for RNA 
sequencing and computational protocols for raw sequencing data transfer. S.K.V. developed 
computational methods to define genes as cell-type- and tissue-specific in the context of the 
whole body. M.N.M. and S.K.V. designed the analyses to characterize tissue and cell-type 
contributions. M.N.M. conceptualized and developed computational analyses, analysed the 
data and wrote the initial manuscript draft in collaboration with S.R.Q. All authors contributed 
to writing and editing the manuscript.

Competing interests M.N.M., S.K.V., G.M.S., D.K.S. and S.R.Q. are inventors on a patent 
application submitted by the Chan Zuckerberg Biohub and Stanford University that covers 
non-invasive early prediction of preeclampsia and monitoring maternal organ health over 
pregnancy (USPTO application number 63/159,400 filed on 10 March 2021 and 63/276,467 
filed on 5 November 2021). S.R.Q. is a founder, consultant and shareholder of Mirvie. M.N.M.  
is also a shareholder of Mirvie.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-022-04410-z.
Correspondence and requests for materials should be addressed to Stephen R. Quake.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://v19.proteinatlas.org/
https://tabula-sapiens-portal.ds.czbiohub.org/
https://tabula-sapiens-portal.ds.czbiohub.org/
https://github.com/miramou/pe_cfrna
https://doi.org/10.1038/s41586-022-04410-z
http://www.nature.com/reprints


Article

D
is

co
ve

ry
Va

lid
at

io
n 

1
Va

lid
at

io
n 

2

Discovery
0

2

4

cf
R

N
A

 e
xt

ra
ct

ed
 (n

g)

Validation
1

0

1

2

Validation
2

0

20

Discovery Validation
1

Validation
2

20

40

60

80

U
ni

qu
el

y 
m

ap
pe

d 
to

hu
m

an
 g

en
om

e 
(%

)

a

Sample outlier

DNA
contamination

RNA
degradation

N reads
assigned
to genes

0

20

40

z-
sc

or
e

−200 0 200 400

0

200

PC
2

All samples

0 200
PC1

−100

0

100

Samples that pass QC

−50 0 50 100

−40

0

40

Samples and genes
that pass QC

Sample outlier

DNA
contamination

RNA
degradation

N reads
assigned
to genes

z-
sc

or
e

0

10

20

0 200 400

0

100

200

PC
2

All samples

−100 0 100
PC1

−50

0

50

100

Samples that pass QC

0 100

−40

0

40

80

Samples and genes
that pass QC

Sample outlier

DNA
contamination

RNA
degradation

N reads
assigned
to genes

0

10

20

z-
sc

or
e

0 500 1000

−100

0

100

PC
2

All samples

0 100 200
PC1

−50

0

50

100

Samples that pass QC

−50 0 50

−40

0

40

Samples and genes
that pass QC

Sample outlier
False
True
NC

b

c

d e

Extended Data Fig. 1 | Samples with outlier values for at least one QC metric 
cluster separately from most non-outlier samples. a–c, For discovery  
(a), validation 1 (b), and validation 2 (c), hierarchical clustering (left) and PCA 
(right) reveals that most outlier samples cluster with negative control (NC) 
samples and separately from non-outlier samples. d, e, Visualization of other 
QC metrics like the amount of cfRNA extracted (d) and the percent of reads that 
align uniquely to the human genome (e) (n = 209, 106, 89 samples for discovery, 
validation 1, and validation 2, respectively). For PCA in a–c, sample outliers and 
poorly detected genes drive PCA and serve as leverage points. The top two 

principal components are visualized when performed using all samples and all 
genes (leftmost PCA) or only samples that pass QC metrics (middle PCA) 
reveals that certain samples can act as leverage points. Once sample outliers 
and lowly detected genes are removed from the cfRNA gene matrix (rightmost 
PCA), the top two principal components reflect natural variance in the data and 
are no longer driven by a few leverage points. For box plots, centre line, box 
limits, whiskers and outliers represent the median, upper and lower quartiles, 
1.5× interquartile range and any outliers outside that distribution, respectively.
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Extended Data Fig. 2 | Across gestation before diagnosis, changes in the 
cfRNA transcriptome segregate preeclampsia and normotensive samples 
and reflect known preeclampsia biology. a, Distribution of CVs with dashed 
line at CV = 1 for all DEGs (n = 544) between preeclampsia as compared to 
normotensive samples across gestation. b, At ≥23 weeks of gestation and 
post-partum, a subset of DEGs can separate preeclampsia (n = 20, 17) and 
normotensive (n = 37, 29) samples despite differences in symptom severity, 
preeclampsia onset subtype, and GA at delivery. c, Comparison of log2(FC) for 
DEGs for preeclampsia as compared to normotensive between discovery and 
validation 1 reveals good agreement across gestation but not post-partum.  
d, The genes in each longitudinal trend group reflect known preeclampsia 

aetiology as highlighted across four databases (GO biological processes, 
KEGG, the reactome, and GO cellular compartment). Some preeclampsia 
associated terms are emphasized in bold, coloured text that corresponds to 
group colour from Fig. 2d (Dark blue and orange indicate decreased and 
increased in preeclampsia versus normotensive, respectively) (p ≤ 0.05; 
one-sided hypergeometric test with multiple hypothesis correction, 
see Methods). e, Comparison of log2(FC) for DEGs for preeclampsia without 
severe features versus normotensive and preeclampsia with severe features 
versus normotensive in the discovery cohort reveals good agreement along the 
y=x axis with a slope of 0.93, 1.03, 0.77, and 0.86 at ≤12 weeks, 13–20, ≥23 weeks, 
and post-partum, respectively.
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Extended Data Fig. 3 | Across gestation and before diagnosis, changes in 
the cfRNA transcriptome identified at one time point can moderately 
segregate preeclampsia and normotensive samples at other time points. 
DEGs with |log2(FC)| ≥ 1 and CV < 0.5 or 0.4 for the 13–20 week time point were 
identified at each time point across gestation. Each row visualizes how well a 
specific DEG subset from a given sample collection period can separate 
preeclampsia (n = 13, 16, 20, 17) and normotensive (n = 36, 33, 37, 29) samples  
in all other collection periods (≤12, 13–20, ≥23 weeks of gestation and 
post-partum respectively). The number of genes identified per sample 
collection period is highlighted along the main diagonal.
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Extended Data Fig. 4 | k-means clustering reveals meaningful longitudinal 
patterns. a, c, The chosen k clusters (dashed line) comparing a performance 
metric, the sum of squared distances, and values of k for clustering of DEGs for 
preeclampsia versus normotensive related to Fig. 2d (a) and DEGs for 
preeclampsia with versus without severe features related to Fig. 4a (c).  
b, d, Following permutation of the data matrix prior to k-means clustering, 
longitudinal changes over gestation are replaced by 2 flat lines for clustering of 
log2(FC) for preeclampsia versus normotensive (b) and 4 uninformative lines for 
clustering of log2(FC) for preeclampsia with versus without severe features (d). 
For b, d, points indicate median per trend and shaded region indicates 95% CI.
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Extended Data Fig. 5 | Examining the logistic regression model used to 
predict risk of preeclampsia early in gestation. a, Comparison of gestational 
age at sample collection (weeks) for incorrectly predicted (yellow) or correctly 
predicted (green) samples across normotensive and preeclampsia groups in 
the discovery, validation 1, validation 2 and Del Vecchio cohorts shows that 
incorrectly predicted preeclampsia samples (false negatives) are collected at 
later gestational ages. b, Estimated probability of preeclampsia as outputted 
by logistic regression for both preeclampsia and normotensive samples shows 
that the model is well-calibrated across most predictions. Dashed line at 0.35 
indicates classifier cut-off where P(PE) ≥ 0.35 constitutes a sample predicted as 
preeclampsia. c, Logistic regression models trained on subsets of 1–18 genes of 
the initial 18 genes can moderately predict future preeclampsia onset in the 
validation 2 cohort with improving performance as subset size increases and as 
characterized by PPV, NPV, sensitivity, specificity and AUROC (left to right).



Extended Data Table 1 | Participant, pregnancy and preeclampsia characteristics across both discovery and validation 
cohorts

Maternal pre -pregnancy characteristics 
  Age, 

years 
BMI, 
kg/m2  

Nulliparous, 
% (n) * 

Smoker, 
% (n) 

History of PTB, 
% (n) * 

History of PE, 
% (n) 

        
Discovery NT 32 ± 5 23 ± 3 †, ‡ 31 (15) 2 (1) 16 (8) 2 (1) 

PE  31 ± 6 30 ± 8 † 38 (9) 0 (0) 25 (6) 17 (4) 
        

Validation 1 NT 31 ± 5 25 ± 6 ‡ 28 (9) 3 (1) 12 (4) 9 (3) 
PE  34 ± 5 26 ± 4 29 (2) 0 (0) 29 (2) 29 (2) 

        
Validation 2 NT 30 ± 5 NA 0 (0) 5 (3) 0 (0) † 0 (0) 

PE  32 ± 6 NA 0 (0) 0 (0) 50 (13) † 12 (3) 
        

Maternal ethnicity/race 
  Ethnicity, % (n)* Race, % (n) * 

  Hispanic White AI/AN Black Asian  Other Unknown  
         

Discovery NT 22 (11)  73 (36) 0 (0) 4 (2) 20 (10) 2 (1) 0 (0) 
PE  42 (10) 50 (12) 0 (0) 4 (1) 25 (6) 0 (0) 21 (5) 

         
Validation 1 NT 34 (11) 72 (23) 0 (0) 6 (2) 16 (5) 6 (2) 0 (0) 

PE  57 (4) 71 (5) 0 (0) 0 (0) 14 (1) 0 (0) 14 (1) 
         

Validation 2 NT 8 (5) 59 (36) 23 (14) 5 (3) 8 (5) 0 (0) 5 (3) 
PE  4 (1) 62 (16) 23 (6) 4 (1) 4 (1) 0 (0) 4 (1) 

         
Pregnancy characteristics 

  GA at delivery, 
weeks * 

Mode of delivery  
% vaginal (n) * 

Multi-gestation,  
% (n) 

PTB,  
% (n) * 

Fetal sex,  
% male (n) 

Fetal weight, 
kg * 

SGA,  
% (n) 

         
Discovery NT 39 ± 1 † 76 (37) 0 (0) 0 † 53 (26) 3.4 ± 0.4 † 0 (0) 

PE  36 ± 3 † 46 (11) 12 (3) 38 (9) † 54 (13) 2.8 ± 0.7 † 4 (1) 
         

Validation 1 NT 39 ± 1 56 (18) 3 (1) 0 (0) 53 (17) 3.4 ± 0.5 ‡ 0 (0) 
PE  38 ± 1 57 (4) 0 (0) 14 (1) 71 (5) 3.4 ± 0.3 0 (0) 

         
Validation 2 NT 39 ± 1 † 75 (46) † 0 (0) 0 (0) † 46 (28) 3.4 ± 0.4 † 0 (0) 

PE  37 ± 2 † 35 (9) † 8 (2) 42 (11) † 54 (14) 2.9 ± 0.7 † 8 (2) 
         

PE characteristics 
  GA at onset, 

weeks 
Onset type, 
% early (n) 

Symptom severity,  
% severe (n) 

     
Discovery PE  36 ± 4 25 (6) 54 (13) 

     
Validation 1 PE  38 ± 2 0 (0) 43 (3) 

     
Validation 2 PE  38 ± 2 ‡ 12 (3) ‡ 50 (13) ‡ 

     

Maternal age and BMI, gestational age (GA) at delivery, fetal weight and GA at preeclampsia onset are reported as mean ± s.d. All other values are reported as percentages with the correspond-
ing count in parentheses. Small for GA (SGA) was defined as an infant with a birthweight below the 10th centile for their GA at delivery. Pre-pregnancy BMI was not available for individuals in the 
validation 2 cohort. See Supplementary Table 2 for exact P values. AI/AN, American Indians and Alaska Natives. 
*P ≤ 0.05, two-sided chi-squared (categorical) or ANOVA (continuous) test comparing all cohorts with Bonferroni correction. 
†P ≤ 0.05, two-sided chi-squared (categorical) or ANOVA (continuous) test comparing preeclampsia and normotensive within each cohort with Bonferroni correction. 
‡ denotes that missing values were omitted from reported values for a given feature.
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Extended Data Table 2 | Tissue, cell types, and genes previously implicated in preeclampsia enriched in 544 DEGs identified 
when comparing preeclampsia with or without severe features and normotensive pregnancies

K-means cluster  Specific to  Reference  Adjusted p -value  DEGs specific to cell-type or tissue  

     
1, Decreased in PE granulocytes HPA 0.00026 ICAM3, PTPN6, SNX20, VNN2, LIMD2  

lymph node HPA 0.013 CYTIP, CD48  

T-cells HPA 0.02 TBC1D10C, TRAF3IP3  

     
2, Increased in PE platelet TSP+ 2.5x10-33  GP9, SEPT5, AQP10, TREML1, CMTM5, GRAP2, RP11 -

142C4.6, BMP6, TUBB1, PTGS1, GP1BA,  C6orf25, ITGA2B, 
PTCRA, ITGB3, RP3 -370M22.8, BEND2, SEC14L5, ALOX12, 
F13A1,GP6, SLA2  

    
smooth muscle HPA 0.00026 MYL9, PTGS1, MYLK, SYNM, FLNA  

total PBMC HPA 0.00077 GP9, TREML1, TUBB1  

oligodendrocytes TSP+ 0.005 PCSK6, SH3TC2  

granulocytes HPA 0.02 BIN2, GFI1B, ITGA2B, MTRNR2L12, NFE2  

excitatory neurons TSP+ 0.02 MTURN, NRGN 

mesenchymal stem cell TSP+ 0.03 COL6A3, NID1 

capillary aerocyte TSP+ 0.03 CLDN5, ESAM 

 PE  dbPEC 0.006 CLU, ICAM3, TGFB1, IGF2, ADIPOR2, CDKN1A, GPX1, 
TGFBR1, RXRA, IFNGR2, JUN, PTGS1, F2R, NFKB1, GAPDH, 
SELP, NFKB2, ILK, GP9, ITGB3, CLDN5, ITGB1, ATP2A3, 
PDGFA, EGLN1, EGLN2, GP1BA, AC TB, VDR, CASP8  
 

For every significantly enriched tissue or cell type (P ≤ 0.05; one-sided hypergeometric test with Benjamini–Hochberg correction), assigned k-means cluster (Fig. 2d), reference and adjusted  
P values are reported from left to right. The rightmost column lists the gene names for all DEGs that were labelled as specific to a given cell type or tissue. The last row lists gene set enrichment 
with dbPEC, a preeclampsia-specific database of genes.



Extended Data Table 3 | Preeclampsia prediction performance metrics for samples collected early in gestation (5–16 weeks)

Control and case sample numbers are reported as the total sample number and, in parentheses, the number of samples misclassified. All other statistics including sensitivity specificity, PPV, 
NPV and AUROC are reported as the estimated percentage followed by the 90% CI in square brackets. In Del Vecchio1, the control group is defined as samples from any pregnant mother who 
did not develop preeclampsia, including those with other underlying or pregnancy-related complications such as chronic hypertension or gestational diabetes, respectively. In Del Vecchio2, 
the control group is defined as samples strictly from normotensive pregnant mothers who did not experience complications.
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Extended Data Table 4 | Preeclampsia prediction relies on the cfRNA levels of 18 genes

Gene ENSEMBL  Name Odds 
ratio  

Biological process [GO]  Molecular function [GO]  

CAMK2G ENSG00000148660 calcium/calmodulin 
dependent protein 
kinase II gamma 

0.65 nervous system development, protein 
phosphorylation, regulation of neuron 
projection development, regulation of 
skeletal muscle adaptation 

calcium-dependent protein 
serine/threonine phosphatase 
activity, identical protein binding, 
protein homodimerization activity  

      
DERA ENSG00000023697 deoxyribose-

phosphate aldolase 
1.07 pentose-phosphate shunt, deoxyribose 

phosphate catabolic process 
deoxyribose-phosphate aldolase 
activity, protein binding 

      
FAM46A ENSG00000112773 terminal 

nucleotidyltransferase 
5A 

0.91 mRNA stabilization, response to bacterium RNA adenylyltransferase activity, 
protein binding, RNA binding 

      
KIAA1109 ENSG00000138688 KIAA1109 0.89 synaptic vesicle endocytosis, regulation of 

epithelial cell differentiation, endosomal 
transport 

protein binding 

      
LRRC58 ENSG00000163428 leucine rich repeat 

containing 58 
0.79 

  

      
MYLIP ENSG00000007944 myosin regulatory light 

chain interacting 
protein 

0.94 nervous system development, regulation of 
low-density lipoprotein particle receptor 
catabolic process 

ubiquitin protein ligase activity, 
cytoskeletal protein binding, 
protein binding, metal ion binding 

      
NDUFV3 ENSG00000160194 NADH:ubiquinone 

oxidoreductase 
subunit V3 

0.66 mitochondrial electron transport, NADH to 
ubiquinone  

NADH dehydrogenase 
(ubiquinone) activity, protein 
binding, RNA binding 

      
NMRK1 ENSG00000106733 nicotinamide riboside 

kinase 1 
1.42 NAD metabolic process, phosphorylation, 

NAD biosynthetic process 
ribosylnicotinamide kinase activity 

      
PI4KA ENSG00000241973 phosphatidylinositol 4-

kinase alpha 
0.9 multi-organism membrane organization, 

phosphorylation, viral replication complex 
formation and maintenance 

kinase activity, 
phosphatidylinositol kinase 
activity, protein binding 

      
PRTFDC1  ENSG00000099256 phosphoribosyl 

transferase domain 
containing 1 

1.32 guanine salvage, GMP catabolic process, 
purine ribonucleoside salvage 

protein homodimerization activity, 
hypoxanthine phosphoribo-
syltransferase activity 

      
PYGO2 ENSG00000163348 pygopus family PHD 

finger 2 
0.95 positive regulation of chromatin binding, 

developmental growth, regulation of histone 
H3-K4 methylation, mammary gland 
development 

chromatin binding, protein 
binding, metal ion binding, histone 
acetyltransferase regulator 
activity, histone binding 

      
RNF149  ENSG00000163162 ring finger protein 149 0.82 ubiquitin-dependent protein catabolic 

process, regulation of protein stability, 
protein ubiquitination 

ubiquitin protein ligase activity, 
metal ion binding 

      
TFIP11  ENSG00000100109 tuftelin interacting 

protein 11 
0.9 biomineral tissue development, negative 

regulation of protein binding, spliceosomal 
complex disassembly  

protein binding, nucleic acid 
binding 

      
TRIM21 ENSG00000132109 tripartite motif 

containing 21 
0.88 negative regulation of protein 

deubiquitination, regulation of protein 
localization, regulation of gene expression  

zinc ion binding, transcription 
coactivator activity, identical 
protein binding 

      
USB1 ENSG00000103005 U6 snRNA biogenesis 

phosphodiesterase 1 
0.85 U6 snRNA 3'-end processing, RNA splicing  poly(U)-specific exoribonuclease 

activity 
      
Y_RNA  ENSG00000201412 Y RNA 1.85 

  

      
Y_RNA  ENSG00000238912 Y RNA 1.08 

  

      
YWHAQP5  ENSG00000236564 YWHAQ pseudogene 

5 
1.09 

  

For every gene, symbol, ENSEMBL ID, full name, odds ratio (OR) based on the logistic regression coefficient and, if available, a subset of GO biological processes and molecular functions  
(if available) are reported from left to right.



Extended Data Table 5 | Tissue and cell types enriched in 503 DEGs identified when comparing preeclampsia with as 
compared to without severe features

K-means cluster  Specific to  Reference  Adjusted  
p-value  

DEGs specific to cell-type or tissue  

     
1, Increased across gestation for 

severe PE 
naive b cell TSP+ 0.0002 TCL1A, TNFRSF13C  

B-cells HPA 0.002 FCMR, TCL1A  

neutrophil TSP+ 0.002 PADI4, MEFV, DOK3 

bone marrow HPA 0.01 PADI4, DOK3 

endothelial cell TSP+ 0.04 PDE2A, VWF  

     
2, Increased and then decreased in 
early and late gestation respectively 

for severe PE 

granulocytes HPA 0.0007 SELL, HK3, MXD1, ALPL  

neutrophil TSP+ 0.02 FCN1, HK3 

     
4, Decreased across gestation for 

severe PE 
thymus HPA 0.01 CARMIL2, ARHGAP15  

For every significantly enriched tissue or cell type (P ≤ 0.05; one-sided hypergeometric test with Benjamini–Hochberg correction), assigned k-means cluster (Fig. 4a), reference and adjusted  
P values are reported from left to right. The rightmost column lists the gene names for all DEGs that were labelled as specific to a given cell type or tissue.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used.

Data analysis Bioinformatic processing: For each sample, raw sequencing reads were trimmed using Trimmomatic (v 0.36) and then mapped to the human 
reference genome (hg38) with STAR (v 2.7.3a). Duplicate reads were then removed by GATK’s (v 4.1.1) MarkDuplicates tool. Finally, mapped 
reads were sorted and quantified using htseq-count (v 0.11.1) generating a counts table (genes x samples). Read statistics were estimated 
using FastQC (v 0.11.8). Across samples, the bioinformatic pipeline was managed using Snakemake (v 5.8.1). Read and tool performance 
statistics were aggregated across samples and steps using MultiQC (v 1.7). 
Data analysis: Analyses were performed in Python (v 3.6) or R (v 3.5). In python, we used Scikit-learn (v 0.23.2), Scipy (v 1.5.1), nheatmap (v 
0.1.4), Kneed (v 0.7.0), Seaborn (v 0.10.0), and GProfiler (v1.0.0). In R, we used Limma (v 3.38.3). 
All code are available on Github at https://github.com/miramou/pe_cfrna.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw and processed sequencing data (BioProject PRJNA792450) are available via the SRA (SRP352519) and GEO (GSE192902), respectively. Data were mapped using 
the human reference genome (hg38) and annotated using ENSEMBL version 82. We used publicly available data from the HPA (v19, https://v19.proteinatlas.org/), 
TSP (v1.0, https://tabula-sapiens-portal.ds.czbiohub.org/), Gene ontology: biological processes and cellular compartments (GO:BP, GO:CC, released 2021-05-01), 
Reactome (REAC, released 2021-05-07), and Kyoto Encyclopedia of Genes and Genomes (KEGG, released 2021-05-03), and publications 43-48. 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size To identify changes associated with PE well before traditional diagnosis, we designed a prospective study and recruited pregnant mothers at 
their first clinical visit to Stanford’s Lucile Packard Children’s Hospital, between 5–12 weeks of gestation, of which 131 were included in this 
study (94 NT, 37 with PE) prior to sample QC. For each participant, we analyzed cfRNA for samples collected at multiple time points. We also 
obtained samples from an independent cohort collected at several independent institutions (Validation 2), which consisted of 89 samples 
collected prior to 16 weeks of gestation from 87 mothers (61 NT, 26 PE).  
For Discovery and Validation 1, we included all enrolled mothers who developed PE and had at least 1 mL banked blood plasma sample 
remaining. For Validation 2, we included all enrolled mothers who developed PE and had at least 1 mL banked blood plasma sample collected 
at ≤16 weeks of gestation remaining. In all cases, we chose a case:control ratio of approximately 1:2 to increase statistical power. We also 
ensured that case and control groups were matched for race and ethnicity. No other matching or exclusion criterion were used, and we 
performed no further sample selection prior to sample processing. 

Data exclusions Our final analysis included a subset of the available samples that passed pre-defined quality metrics as discussed in the Supplement (Supp. 
Note 1, Methods, Extended Data Fig. 1). Quality control was performed on a per sample as opposed to per subject basis and so subjects had a 
variable number of samples that passed QC (Supplementary Table 1).

Replication To verify our results, we split our larger Stanford cohort into two groups (Discovery, Validation 1)  and further replicated any reported findings 
using 2 independent cohorts (Validation 2, Del Vecchio). The larger Stanford cohort was split into Discovery (n = 88, [60 NT, 28 with PE]) and 
Validation 1 (n = 43, [34 NT, 9 with PE]) cohorts. We also further replicated our results using 2 independent cohorts: Validation 2 (n = 87, [61 
NT, 26 with PE]) and Del Vecchio (n = 22, [8 NT, 5 with PE, 7 with gestational diabetes, 2 with chronic hypertension]), a previously published 
cohort processed by a completely separate team (Del Vecchio et al. 2020). In all cases, we successfully replicated our initial findings. 

Randomization To allocate samples to the control group (normotensive) or case group (preeclamptic), we relied on current clinical guidelines. Specifically, we 
defined a pregnancy as normotensive if it was both uncomplicated and went to full-term (≥ 37 weeks) and as preeclamptic based on current 
clinical guidelines (see Methods). We also explicitly tested for covariate differences between both groups and describe this both in the main 
text (see section titled Clinical study design, Fig. 1) and extended data (see Methods, Extended Data Table 1). 
To split our larger Stanford cohort into Discovery and Validation 1, we first allocated samples using sequencing batch of which there were 3. 
We allocated the sequencing batch with the most PE samples to Discovery to ensure sufficient statistical power and the second most PE 
samples to Validation 1. Sequencing batches themselves contained randomly allocated samples based on subject ID such that all samples 
from the same subject were in the same batch.  For the final sequencing batch, we randomly allocated subjects to either Discovery or 
Validation 1 such that all samples from 1 subject were part of the same group (either Discovery or Validation 1) and we maintained at least a 
1:2 case to control ratio in both groups.

Blinding Investigators were blinded during data collection as pregnancy outcomes were not known yet. Investigators were not blinded during data 
analysis as analysis methods required knowledge of outcome (i.e., supervised learning).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The cohorts described herein are composed of pregnant mothers (aged 18 years or older) of varied ethnicity, race, age, and 
BMI among other pre-pregnancy and pregnancy characteristics (Results "Clinical study design", Fig. 1, Extended Data Table 1).

Recruitment Discovery and Validation 1 were collected as part of a longitudinal, prospective study at Stanford University. We enrolled 
pregnant mothers (aged 18 years or older) receiving routine antenatal care on or prior to 12 weeks of gestation at Lucile 
Packard Children’s Hospital at Stanford University, following study review and approval by the Institutional Review Board 
(IRB) at Stanford University (21956). All signed informed consent prior to enrollment. Mothers who agreed to participate in 
the study after enrollment at their first clinical visit were asked to complete a questionnaire available in multiple languages. 
Samples were then collected at routine care visits.  
Validation 2 was collected as part of the Global Alliance to Prevent Preterm and Stillbirth (GAPPS) Pregnancy Biorepository at 
Yakima Valley Memorial Hospital, Swedish Medical Center, and the University of Washington Medical Center under review 
and approval by Advarra IRB (CR00195799). Mothers were enrolled during routine clinical care visit and then asked to fill out 
three questionnaires. Samples were drawn during routine care visits, and stored appropriately. Samples were processed and 
sequenced at Stanford under the same IRB as above (21956). All signed informed consent prior to enrollment. 
In all cohorts, we recruited mothers who came in for routine care. Consequently, participant characteristics in the study 
reflect the socioeconomic, racial, and ethnic makeup of the larger area around the recruitment site. This presents a possible 
bias, which we focused on mitigating by reproducing our results using blood samples collected at different institutions 
(Validation 1, Validation 2, and Del Vecchio) with correspondingly distinct patient populations. 

Ethics oversight Institutional Review Board at Advarra (CR00195799) and Stanford University (21956)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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