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Fixational drift is driven by diffusive dynamics in
central neural circuitry

Nadav Ben-Shushan'4, Nimrod Shaham'24, Mati Joshua® 3° & Yoram Burak® "3°%

During fixation and between saccades, our eyes undergo diffusive random motion called
fixational drift. The role of fixational drift in visual coding and inference has been debated in
the past few decades, but the mechanisms that underlie this motion remained unknown. In
particular, it has been unclear whether fixational drift arises from peripheral sources, or from
central sources within the brain. Here we show that fixational drift is correlated with neural
activity, and identify its origin in central neural circuitry within the oculomotor system,
upstream to the ocular motoneurons (OMNs). We analyzed a large data set of OMN
recordings in the rhesus monkey, alongside precise measurements of eye position, and found
that most of the variance of fixational eye drifts must arise upstream of the OMNSs. The
diffusive statistics of the motion points to the oculomotor integrator, a memory circuit
responsible for holding the eyes still between saccades, as a likely source of the motion.
Theoretical modeling, constrained by the parameters of the primate oculomotor system,
supports this hypothesis by accounting for the amplitude as well as the statistics of the
motion. Thus, we propose that fixational ocular drift provides a direct observation of diffusive
dynamics in a neural circuit responsible for storage of continuous parameter memory in
persistent neural activity. The identification of a mechanistic origin for fixational drift is likely
to advance the understanding of its role in visual processing and inference.
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n order to explore the fine details of a visual scene, we

fixate our gaze on specific areas of interest!:2, Yet even during

fixation the eyes are not completely stationary. Over intervals
that typically last a few hundred milliseconds, the eyes
exhibit continuous motion called fixational drift, flanked by
microsaccades’~>. Eye trajectories during fixational drift are
smooth, but are highly variable and are characterized by the
statistics of a super-diffusive random walké=?. The role of this
irregular smooth motion in vision has been extensively studied
and debated in the past few decades. It was shown that both drifts
and microsaccades help prevent perceptual fading during
fixation!®11, Tn addition it has been proposed that fixational drift
increases the information carried by retinal spikes on the visual
stimulus, thereby aiding high acuity vision®12-16, On the other
hand, it has been argued that fixational drift poses a computa-
tional challenge for high acuity inference in the visual cortex,
since attempting to overcome retinal spiking noise by simple
temporal averaging would smear out fine visual features!>17:18,

While extensive effort has been devoted to understand the
functional role of fixational drift in vision, the mechanisms
responsible for this motion have remained unidentified. It is not
even known whether the origin of fixational drift is peripheral —
arising, e.g., from noisy dynamics of the ocular muscles!', or
whether fixational drift arises in central brain circuits in similarity
to saccades>7-20. Recent behavioral studies indicated that visual
feedback mechanisms, which likely involve central brain circuits
in the visuomotor pathway, can modulate the statistics of the
motion®1421-25 However, an active visuomotor response to a
stimulus is not required to elicit fixational drift, since it is
observed even in complete darkness26. The stochastic nature of
the motion, both in the presence and in the absence of visual
stimuli, suggests that it is primarily driven by noise which may
arise in various stages along the oculomotor pathway.

So far, direct evidence for the control of fixational eye drifts by
neural activity has been lacking?’. The main difficulty in seeking
such evidence arises from the small amplitude of fixational drifts
in comparison with other types of eye movement. In human
subjects it is highly challenging to measure the minute details of
this motion!, and measurements of single neuron activity are not
available. Therefore, we focus from here on non-human primates,
whose control of eye movements is highly similar to that of
humans both during saccades and pursuit®3, and during fixational
eye movements!.

During saccades and smooth pursuit, eye trajectories can be
predicted quite precisely from the spiking activity of single ocu-
lomotor neurons (OMNSs). Correspondence between eye move-
ments and neural activity has been established also during
microssacades?. However, a correspondence between the posi-
tion of the eye and single OMN activity has not been demon-
strated during fixational drift. It is highly challenging to test for
such a relationship, because the subtle changes that are expected
to occur in the firing rate of individual OMNs during fixational
drift are largely masked by their spiking noise.

Here we show that a systematic relationship does exist between
fixational eye motion and OMN activity. Furthermore, we show
that most of the variability in fixational eye drifts arises upstream
of the OMNSs. This result establishes that the main drive for
fixational drift lies in more central neural circuitry. Next, we point
to a likely source of this motion in the oculomotor integrator, a
memory circuit in the brainstem which is responsible for main-
tenance of a steady eye position between saccades. We propose
that fixational eye drifts are driven by random diffusion along a
line attractor that characterizes the dynamics of the oculomotor
integrator39-32, as predicted by theoretical works that examined
how noise influences the maintenance of continuous-parameter
working memory in persistent neural activity’3-3°. Using a

theoretical model, constrained by the parameters of the primate
oculomotor system, we show that this mechanism naturally
explains both the magnitude of the motion, and key features of its
statistics.

Results

To test for a systematic relationship between OMN activity and
fixational eye drifts, we analyzed a large data set of OMN
extracellular recordings in the rhesus monkey. These were col-
lected simultaneously with precise measurements of eye trajec-
tories using a search coil. Recordings were made while two
monkeys moved their eyes to track repeated presentations of a
target presented on a screen, initially at rest and then moving at
constant speed (Fig. 1a). First, we fitted a linear combination of
horizontal eye position, velocity and acceleration to predict the
firing rate of single OMNSs during large eye movements3° (n = 57
cells, Fig. 1b). Fitted parameters were in agreement with pre-
viously reported results3%37.

OMN:ss exhibit highly regular firing, with a typical coefficient of
variation (CV) of the interspike interval distribution of ~0.0738,
During fixational drift, however, the variability in the activity of a
single OMN is still far too large to identify a correspondence with
the small changes in firing rate predicted by eye motion over a
single trial (Fig. 1b, lower panel). Over the hundreds of trials
available from each cell, estimates of the correlation coefficients,
during fixation, between the spiking rate of single OMNSs and their
predictors based on the eye trajectory were noisy (Fig. 1c), but
significantly deviated from zero over the population of 57 cells
(Fig. 1d), providing us with initial evidence that neural activity,
upstream of the muscles, is correlated with fixational drift.

To facilitate subsequent analysis, we replaced the standard
approach discussed above, in which the firing rates of OMNs are
predicted from the eye trajectory by a complementary analysis, in
which the eye trajectory is predicted from the OMN spikes. This
allows us below to quantify shared neural variability directly in
terms of its contribution to the eye movements, instead of the
firing rates. We thus inverted the fit described above (Methods) to
obtain for each OMN a double exponential filter (Fig. 2a), whose
convolution with the OMN spikes constitutes an unbiased esti-
mator of the eye trajectory. Fitted time constants (Fig. 2b) were in
agreement with previous reports3®3%, As expected due to the
spiking noise in the activity of individual OMNSs, predicted
eye trajectories were highly variable compared to the actual eye
motion during fixational drift (Fig. 2c). Accordingly, correlation
coefficients between the predicted and actual eye position dif-
ferences across 350 ms fixational drift segments (denoted by R,
Fig. 2d) were small. Furthermore, due to the limited number of
trials available for each neuron, the estimates of the correlation
coefficients themselves were noisy (gray histogram in Fig. 2d).
Nevertheless, their average value (R) = 0.17 (angled brackets
represent an average over the OMN population) was statistically
different from zero (one sided ¢ test, p = 3.8 x 10712, Fig. 2d and
Extended Data Fig. 1). Overall, our results (Figs. 1 and 2) indi-
cated that fixational drift is correlated with neural activity.

Central source. We next sought to identify whether the weak
correlations with eye motion, observed in the noisy activity of
single OMN:S, are indicative of a dominant central contribution to
the motion, upstream of the OMNs. First, we examined the
squared correlation coefficient R? (Fig. 2d). This quantity repre-
sents the fraction of the motion variance (in 350 ms intervals)
that can be linearly predicted based on the OMN spikes, using the
estimator described above. Hence, it was of interest to estimate
the average of R? across the neural population, which we denote
by <R2>. To do so, we first evaluated the average of R across the
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Fig. 1 Eye variability during fixation is correlated with motoneuron activity. a Single recorded horizontal eye trajectory consisting of fixation followed by
smooth pursuit. Lower panel, fixational period expanded and smoothed with a Savitzky-golay filter of order 3 (21 ms window, data sampled at 1 KHz).

b Actual and predicted firing rate of a single OMN during the trajectory shown in (a). Lower panel, zoom in on fixational segment. Note that the actual firing
rate is much more variable than the predicted rate. The predicted firing rate based on the spikes was obtained by fitting the parameters k, r, m, Erin eq. (2) to
minimize a mean squared error loss function, eq. (3) (Methods). ¢ Predicted vs. actual firing rate of a single cell during fixation (mean rate subtracted in both
axes). Each point represent the firing rate at a single trial at specific time. Red line: result of linear regression analysis, correlation coefficient: R = 0.10.
d Distribution of correlation coefficients between actual and predicted rate, collected from 57 cells in two monkeys. One sided t test, p=3x10-5.

neural population ((R) =0.17+0.02, mean + SEM), using the
distribution shown in Fig. 2d (individual estimates of R for all
neurons are shown in Extended Data Fig. 1a, c). By noting that
<R2> > (R)? (since Var(R) = <R2> — (R)>20) it was possible to
deduce that (R%)>0.029: on average, at least ~2.9% of the
variability in eye motion during a 350 ms interval can be pre-
dicted based on the activity of a single OMN (see also SI Notes).
For comparison, consider a scenario in which the upstream drive
to OMNSs is completely static during fixational drift, and the
motion is driven by the intrinsic variability of the OMNs, which is
independent in the different neurons. Since there are thousands
of OMNs in the primate oculmotor system*%4l, a single OMN
would be expected to explain ~0.1% of the variability in the eye
motion, which is far smaller than the observed explanatory
power. We could thus infer that the activity of different OMNs
during fixational drift covaries (see also SI Notes). It is unlikely
that this shared variability among OMN:ss is generated intrinsically
within the abducens, from which we recorded the neural activity
(see Discussion). Hence, this result indicates that the eye motion

is driven, at least in part, by a common upstream input*? (see also
SI Notes).

The above analysis indicates that there is a common input to
OMNSs, but since typical values of R* were small compared to
unity, it was not clear whether the common input provides a
main drive for the motion. Importantly, the values of R? are small
because single OMN estimates of the eye motion are dominated
by the irregularity in the spiking of the OMNS, but the variability
arising from the spiking noise need not dominate the overall
motion. The central input could, in principle, be the dominant
drive for the motion because its contribution adds up coherently
downstream of the OMNS, in contrast to the contribution of the
spiking noise which is independent in different neurons.

To estimate the contribution of the central source to the
motion, we assumed that there are three types of sources that
linearly contribute to the measured eye motion: first, a central
signal that feeds into all the OMNSs. Second, noise in the activity
of individual OMNSs, which is independent in different units (see
Discussion). Third, noise downstream of the OMNs, which may
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Fig. 2 Predicting the eye trajectory from OMN spikes. a Double exponent kernel as fitted from the data, black and gray traces represent the mean and
SEM over all kernels optimized. b Fast (z_ ~ 5 ms) and slow (7, ~120 ms) time constants of the fitted kernels, shown for all analyzed OMNs (excluding
one cell with z_ =0.01s and 7, =0.79 s). ¢ Actual and predicted eye position during a single trial. Lower panel, zoom in on fixational segment. The
predicted eye position, based on the spikes, was obtained using egs. (4)-(7) (Methods). Note that the predicted eye position is much more variable than
the actual eye position. d Distribution across OMNs of correlation coefficients between actual and predicted eye position differences across 350 ms
fixational intervals (black). One sided t test, p=3.8 x 1012 (n =57 OMN cells. Number of fixational segments varied from cells to cell and was 302 on
average. Histogram shown in Extended Data Fig. 7¢). Gray, distribution of correlation coefficients obtained from each OMN after shuffling (see Methods).
e For each OMN of monkey | we estimated y from the data, which is the fraction of measured eye position variance that can be attributed to a central
source upstream of the OMNSs. Cells (N =26 shown) are sorted along the horizontal axis by the estimation error of y. Circles represent the estimates of y
(eq. (15). Error bars extend above and below the circles by Ay, where Ay is the standard error of the estimate, as described in Methods. The horizontal
black line is y = O for reference. Note that while y is expected to lie within the range [0, 1], our estimates for this quantity based on eq. (15) are noisy, due
to the OMN spiking noise and the limited number of trials for each cell. Therefore, these estimates can deviate from the expected range. For visual clarity,
two cells with y =73+ 37,44 + 41 are not shown. f Distribution of both y (horizontal-axis) and its estimated error (vertical-axis), from OMNs recorded in
the two monkeys. Black diamond: weighted average of the results from both monkeys (see also Methods) indicates that a large fraction in the variance is
attributed to a central source, (y) = 0.82+0.07 (weighted mean * weighted error).
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arise in the muscle or plant dynamics and includes also the noise
in the measurement of the eye position. In addition, we assumed
that the same linear relationship between OMN activity and eye
position holds during large eye motions and during fixational
drift. We thus used the estimator which was fit to predict large
eye motions, and evaluated the covariance between the motion
predicted by this estimator over 350 ms intervals of fixational
drift, and the actual eye motion. The second assumption above
implies that the central contribution to the output of the
estimator is scaled correctly in units of eye position (yet may be
swamped by the contribution of the intrinsic spiking noise). Thus,
the covariance between the predicted motion and the measured
eye motion extracts, from the overall variability in the measured
eye motion, the variance that originates in the central source (see
also Methods).

Using this approach, we estimated the fraction of the variability
in eye motion which is driven by the common input in 350 ms
intervals (denoted below by y), separately for each OMN. If we
were to evaluate the covariance between the predicted and actual
eye motion precisely, we would expect to obtain values of y in the
range [0, 1]. However, our estimates of the covariance were noisy
since both the measured and predicted eye trajectories are
influenced by sources of noise other than the common input
(Methods) and the number of trials was limited. Hence, empirical
values of y obtained from individual OMNs could lie outside of
the range [0, 1] (as corroberated also in simulated data, discussed
below).

The estimates, from one monkey, are presented in Fig. 2e with
their standard errors, and results from all OMNs (both monkeys)
are shown in Fig. 2f. In Fig. 2f each symbol corresponds to one
OMN, and the horizontal and vertical axes represent the estimate
of y and its standard error, correspondingly. An average of all
these estimates for y, which takes into account the standard
errors, produced a much tighter estimate than obtained from
single OMNSs: a fraction y=0.82+0.07 (weighted mean+
weighted error, Fig. 2f and Extended Data Fig. 1) of the variance
in eye motion during 350 ms intervals is driven by the common
input to the OMNs. This central result of our work establishes
that most of the eye motion during fixational drift originates in
central neural circuits.

Mean square displacement curves. Even though our analysis
above points to a central source for the motion upstream of the
OMNSs, we sought additional evidence that the correlations
between eye motion and OMN activity are not simply a result of
the spiking noise in the activity of single OMNs. Such evidence
could be obtained by examining how the mean squared dis-
placement (MSD) of the horizontal eye motion varies as a
function of the time lag. In Fig. 3a we plot the MSD curve from
the horizontal eye motion measurements of monkey P, calculated
over all measured eye trajectories during fixation (black trace, see
Methods). The MSD approaches a constant at zero time lag
(Fig. 3a and Extended Data Fig. 2a) which is indicative of mea-
surement noise with a variance of order 10~ deg?, in agreement
with independent estimates of the measurement noise variance
(Extended Data Fig. 2a, inset). The variance arising from the
measurement noise was subtracted from the MSD measurements
(see Methods and Extended Data Fig. 2) to obtain the MSD of the
actual eye motion (blue symbols in Fig. 3a, b). The MSD curves
measured in both monkeys (Fig. 3b) demonstrated super-
diffusive statistics over the entire range of time lags that we
examined: on logarithmic axes, the MSD increased steadily with a
slope 1<a<2 (a slope a =1 characterizes Brownian motion,
whereas a slope o = 2 characterizes motion at constant velocity).
In addition, the logarithmic slope decreased as a function of the

time lag. Both observations are in agreement with measurements
in human subjects®.

We next estimated the MSD curve of the eye motion that
would arise from independent spiking variability of OMNs (see
Discussion), driving the occular muscles (Methods). The
estimated MSD was too small to account for the experimentally
observed variability across all time lags (Fig. 3b), and at time
lags exceeding ~0.1 s the predicted MSD was negligible compared
to the experimentally observed MSD, in agreement with our
previous conclusion that motion is driven upstream of
the OMNs.

Furthermore, the predicted logarithmic slope of the MSD
curve, generated by the OMN spiking noise, was small at all time
lags compared to the measurements, and beyond a few hundred
ms the predicted curve saturated, whereas the experimentally
measured MSD curve continued to increase steadily (Fig. 3b).
Similar saturation is expected to arise from any form of
temporally uncorrelated noise which is fed into the muscle
dynamics, at time lags exceeding the characteristic time scale of
the muscle response (~180 ms, see Methods) . Thus, even if our
estimates of the single OMN variability are incorrect, or if there
is noise correlation between OMNs (which is unlikely, see
Discussion), the outcome would be a vertical upward shift of the
logarithmic MSD curve relative to the black trace (broken gray
line, Fig. 3b), which cannot match the shape of the empirical
curve. In conclusion, the steep logarithmic slope of the
experimental MSD and its non-saturating behavior indicate that
the input to the OMNs must itself be characterized by diffusive
statistics, with a MSD curve that increases steadily as a function of
the time lag, at least up to time lags of order 1 s. This conclusion
provides an important insight into the possible underlying
mechanism.

Stochastic diffusion in a memory circuit. OMNSs receive their
input from the oculomotor integrator, a memory network which
is capable of holding the eyes still between saccades by providing
steady input to the ocular muscles®. Since the horizontal eye
position is a continuous variable, the oculomotor integrator
maintaining horizontal gaze is commonly modeled as a con-
tinuous attractor neural network30-3243, whose dynamics are
characterized by a one-dimensional manifold of semi-stable
steady states. The different activity patterns of the network along
the attractor are mapped, through the synaptic outputs to the
OMN:S, to different horizontal eye positions.

It has long been argued on theoretical grounds that in
continuous attractor networks, neural noise can drive diffusive
motion along the attractor, which gradually degrades the stored
memory33-3>44 Fig. 4a schematically illustrates how the diffusive
motion is generated: neural noise continuously perturbs the state
of the network. While perturbations that shift the neural
population activity away from the attractor decay rapidly,
perturbations along the attractor do not decay since all positions
along the attractor correspond to semi-stable states of the
dynamics. These non-decaying perturbations cause random
displacement in the position of the network along the attractor
that accumulate over time with a variance that increases linearly
with the time lag, giving rise to diffusive motion with simple
random walk statistics along the attractor manifold33-3>. Successes
in directly observing this diffusive motion, and especially in
relating it to neural mechanisms in specific brain circuits have
been scarce and incomplete?>46, Diffusive dynamics in the output
of the oculomotor integrator has the potential to drive ocular
motion with a nonsaturating MSD curve. For this reason, we
hypothesized that fixational drift is driven by diffusion within the
oculomotor integrator. To put this hypothesis to quantitative test
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Fig. 3 Motoneuron variability can't explain the mean squared displacement at large time lags. a Mean squared displacement (MSD) curve, measured for
monkey P with measurement noise (black trace). Dashed horizontal line: estimate of the contribution arising from measurement noise (Methods). Blue
circles: MSD after subtraction of the measurement noise contribution. Inset: zoom in over the area marked by the yellow rectangle. Note that the black
trace doesn't approach zero at zero time lag, which is indicative of contamination by temporally uncorrelated measurement errors. b Mean squared
displacement (MSD) curves from both monkeys (blue and red traces), using logarithmic scales in both axes, after subtraction of the measurement noise
contribution. Black trace: MSD obtained by simulation of the contribution arising from the spiking variability of OMNSs, filtered by the response dynamics of
the muscles and mechanics of the eye (assuming 2000 heterogeneous OMNSs, see Methods). The black trace flattens at time lags exceeding ~1s and can
only account for ~1% of the total variance at a time lag of ~900 ms. Dashed gray trace: translated copy of the black trace along the logarithmic vertical axis
demonstrates that the slope of the MSD curve generated by the OMN variability cannot match the slope of the measured MSD curve. The yellow marked
rectangle represents the same range of time lags and MSDs as the yellow rectangle in (a), on the logarithmic axes.

we adapted a model of the goldfish oculomotor integrator3! in
two ways: first, we replaced the rate model by a spiking model in
which single neuron activity is variable. Second, we adapted the
model to the parameters of the primate visual system (see
Methods). Specifically, key parameters that affect the diffusivity>3
such as the number of neurons, their tuning curves, and their
spiking variability, were set based on experimental estimates in
Macaque (Methods). With these parameters, the output of the
network exhibited random diffusion (example trajectories shown
in Fig. 4¢), with a slope of the MSD curve (using logarithmic axes)
close to unity (Fig. 4d). The mean square displacement over a
time lag of 350 ms was in the order of 0.1 deg?, comparable to the
typical range of fixational drift.

To relate this result more quantitatively to the statistics of
fixational drift, we constructed a mathematical model of central
and peripheral contributions to the eye dynamics: the stochastic
dynamics of the oculomotor integrator, OMNs, muscles and the
ocular plant. We also incorporated in the model a visual feedback
mechanism, which can partly correct for the motion of the target
due to drift but involves a relatively long delay due to the likely
involvement of the cortical or sub-cortical areas®2147 (Fig. 5a,
schematic of the model). The output of the integrator was used as
an input to a diverse population of OMNs innervating different
extra-ocular muscle fibers, with intrinsic spiking noise*® and with
dynamic impact on the muscles which was modeled based on3” to
determine the horizontal eye position.

Numerical simulations of the model using biologically plausible
parameters (Methods) generated eye motion that resembles
measured eye trajectories (Fig. 5b). The relationship between
the output signal of the oculomotor integrator and the actual eye
position is demonstrated in Fig. 5c¢: the oculomotor integrator
output is noisy due to the spiking variability of oculomotor
integrator neurons, whereas the actual eye trajectory is smoother,
due to the mechanics of the muscles and the eye ball. When
examined at a coarse scale of hundreds of milliseconds, the
eye position follows the output of the oculomotor integrator,

indicating that the diffusive dynamics within the integrator
dominates the statistics of the final eye position at this scale.
Importantly, the simulated MSD curve of the eye position (black
trace, Fig. 5d) increases steadily as a function of the time lag at
time scales exceeding ~100 ms due to the diffusive dynamics of
the oculomotor integrator output, and explains well the MSD
statistics which were measured from the data, both in terms of its
slope and amplitude (magnitude of the variance).

Since the motion is primarily driven by the output of the
oculomotor integrator, its amplitude is determined mostly by the
parameters of the oculomotor integrator network. As shown
above, the oculomotor integrator output follows approximately
the statistics of a simple random walk, which can be characterized
by a a single parameter, the diffusion coefficient D. It can be
shown33 that D scales with the parameters of network as

D o (CV)’N~'A Tk 22 1)

where N is the number of neurons in the oculomotor integrator
network, CV is their spiking coefficient of variation, 7, is the
synaptic time constant, and ko, Ay are the typical values of the
position sensitivity and discharge rate within the population of
oculomotor integrator neurons. Since several of the parameters in
eq. (1) are not known precisely, there is some freedom in
adjusting the diffusion coefficient to match the experimental data
by tuning the model parameters, and there is no unique way to
achieve a good match. Nevertheless, it is noteworthy that the
model accounts well for the amplitude of fixational drift, with
parameters whose order of magnitude is correct.

While there is some freedom in shifting the predicted MSD
curve along the vertical axis (in logarithmic scales) by adjusting
D, there is much less freedom in adjusting the MSD curve in
other ways. The logarithmic slope of the MSD curve is primarily
determined by the muscle response dynamics, whose modeling
is firmly based on experimental data. The muscle response
dynamics, acting on the diffusive input from the oculomotor
integrator, results in superdiffusive motion with a logarithmic
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Fig. 4 Effect of intrinsic noise in a continuous attractor neural network. a
Schematic illustration of a continuous attractor manifold. Steady states of
the dynamics can be conceptualized as minima of an energy function
defined in the neural state space30. For visualization purposes, two
dimensions of the neural state space are depicted in the plane, and the
vertical dimension represents the energy. Each point along the curved
valley (dashed line) maps to a specific horizontal eye position. During
fixation the state of the network is set initially to represent a particular eye
position (yellow circle). Noise in the activity of neurons within the network
dynamically perturbs the state of the network. Such perturbations generally
decay (black arrows), but perturbations along the flat direction (dashed
yellow arrows) do not decay, causing motion along the valley that builds up
over time in the form of diffusive motion33. The state of the network at two
time points after initialization is depicted by the blue and red balls. The
projection on the dashed line determines the horizontal eye position (b).
b The horizontal eye trajectory resulting from the noise-driven diffusive
motion. ¢ Examples of two fixational eye trajectories that emerge from the
simulation of the oculomotor integrator model network, with neural noise.
d The MSD statistics of 100 eye trajectories as in (¢). At sufficiently large
time lags the motion follows the statistics of simple diffusion, with a
logarithmic slope equal to 1 (red line).

slope that decreases with increase of the time lag, and the
predicted dependence of the logarithmic slope on the time lag
matches the data very well. Thus, key features of the statistics are
explained well by the model, independently of fitting parameters.

The main consequence of the visual feedback mechanism in
the model is to decrease the logarithmic slope of the MSD curve
at large time scales, which is otherwise a bit too steep compared to
the experimental measurements (Extended Data Fig. 3a, b. See
also SI Notes). On the other hand, the visual feedback mechanism
has little influence on the slope of the logarithmic MSD curve at
shorter time scales (Extended Data Fig. 3c), and is unlikely to
affect this feature due to the synaptic delays involved. Therefore,
we propose that the reason for the super-diffusive statistics of
fixational eye drifts lies in the diffusive dynamics within the
oculomotor integrator (combined with the muscle dynamics),
and is largely independent of visual feedback mechanisms. On the

other hand, visual feedback can modulate the statistics of the
motion, especially over long time lags, in accordance with the
observations that these statistics are influenced by the visual
tagk®14,21-25

In summary, with a few parameters — most of which were
chosen based on known features of the primate oculomotor
system (Methods), the model produces simulated MSD curves
that match experimental observations very well, both in
magnitude and in shape (Fig. 5d and Extended Data Fig. 5).

Finally, the availability of a generative model of fixational drift
and the accompanying neural activity, offered an opportunity to
test the methodology that was used in Fig. 2e, f to identify the
central contribution to the motion. We generated a data set of
simulated eye trajectories and OMN spikes, and analyzed this
data using the methodology that we previously applied to the
experimental data. The numbers of analyzed OMNs and trials
were similar to the experiment (Methods). Estimates for x
(Fig. 5e) were highly variable across the simulated OMN
population, in similarity to the results obtained in Fig. 2f, yet
their weighted average pointed to the existence of a central source
to the motion. In an alternative model, in which the motion was
fully driven by independent noise in the OMNSs, the same
methodology pointed correctly to the lack of a central contribu-
tion to the motion (Extended Data Fig. 4). The simulated data
produced also a similar distribution of correlation coefficients
between eye motion and its prediction based on single OMN
spikes, as in the analysis of the experimental data (Fig. 5f).

Discussion

We showed for the first time that fixational drift is correlated with
neural activity in the oculomotor control circuitry of the brainstem,
and identified the main source of the motion in central neural
circuitry upstream of the OMNs. The statistics of the motion
provided an important clue on the identity of the upstream drive,
pointing to noise-driven diffusion in the oculomotor integrator as a
likely source of the motion. Theoretical modeling, constrained by
the physiology of the primate oculomotor system, provided further
support to this hypothesis since it accounted for the magnitude and
detailed statistics of the motion. Taking the view that the oculo-
motor integrator is a short-term memory network3%-32, we thus
propose that fixational drift offers direct observation of diffusive
dynamics in continuous attractor networks, and an arena for
probing mechanistically how noise affects the storage of continuous
parameter memory in neural circuits.

Both in our analysis of the OMN recordings and in our the-
oretical modeling of contributions to the MSD curves, we evoked
the assumption that the intrinsic spiking is independent in dif-
ferent OMNSs. This assumption is based on the anatomy of the
oculomotor nuclei that control the horizontal position of the eye,
and on stimulation studies: anatomical tracing studies did not
find axon collaterals originating from OMNSs in the abducens
nucleus (from which we recorded)?®0, indicating that these
neurons only innervate the lateral rectus muscle. In the medial
rectus axon collaterals do not terminate within the nucleus!-%3,
indicating that there are no local recurrent connections, and in
both areas stimulation studies did not find evidence for recurrent
excitation of inhibition between OMNSs>4. Therefore, it is unlikely
that intrinsic spiking noise is spatially correlated among different
OMN:Ss. Furthermore, the temporal time course of eye motion in
response to stimulation of OMNs matches the time course of the
muscle response®>°, which excludes the existence of additional
reverberation arising from recurrent connectivity within the
oculomotor nucleus.

Both intrinsic variability and noisy inputs can drive stochastic
diffusion in continuous attractor networks. We assumed that the
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Fig. 5 The model. a Schematic illustration of the model: an internal representation of the eye position, Eq, is maintained by the oculomotor integrator and
transmitted to the OMNs. OMNSs activate the extraocular muscles, resulting in the actual eye position, E. The actual eye position serves as a delayed visual
feedback to the oculomotor integrator. b Example of simulated and measured fixational eye trajectories. The model generates eye trajectories which are
qualitatively similar to the recordings (digitization applied to the simulated trajectory to facilitate the comparison). ¢ Simulated trajectories of Ep,, the
internal eye representation (blue), and of E, the corresponding actual eye position (red). d Mean squared displacement (MSD) curves, shown using
logarithmic axes, as measured from the eye trajectory recordings (blue and red traces) and from simulation of the computational model in (@) (black).
Panels (e-f), Application of similar methodology as in Fig. 2 to simulated data generated by the model. The number of OMNs (57) and trial numbers per
OMN (100) were set in similarity to the experimental data. e Distribution of estimates for y and their standard errors (similar to Fig. 2f). Estimates for y are
highly variable, in similarity to those obtained from the experimental data, due to the single OMN noise. Consequently, individual estimates for y can be
negative or exceed unity. The weighted estimate of y from all OMNSs, 0.82 £ 0.07, (black diamonds) indicates that the variance of the motion is dominated
by the central drive. In an alternative model, where the dominant contribution to the motion is peripheral, the estimate of y obtained using the same
method is close to zero (Extended Data Fig. 4). f Distribution of correlation coefficients between eye displacement over 350 ms intervals, and their
estimates based on the spikes of individual OMNSs, with and without shuffling (similar to Fig. 2d). The mean value of the distribution, (R) =0.17 £ 0.02,
significantly deviates from zero (one sided t test, p=10"14, shuffled distribution shown in gray).
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noise is intrinsic to neurons within the oculomotor integrator
network, and this assumption accounted well for the amplitude of
the motion. However, we only have approximate estimates for
some parameters that influence the diffusion coefficient D of the
oculomotor integrator output, such as the number of neurons in
the network. Hence, we cannot rule out that the diffusive
dynamics in the state of the oculomotor integrator is driven in
part by noisy premotor inputs to this network, such as those
arising from vestibular, optokinetic, and vergence signals.

Our focus on noise in the occulomotor integrator as a drive of
diffusive input into the OMNs does not imply that fixational drift
is unaffected by additional mechanisms, acting within the visual-
motor pathway, such as fatigue®”>® and feedback mechanisms.
The incorporation of a visual feedback mechanism in our model
demonstrates, indeed, that a visual feedback loop can modulate
the statistics of the motion at time lags exceeding ~100 ms - but
is unlikely to influence the slope of the MSD curve at shorter time
scales, due to the synaptic processing delays involved, of order
60-80 ms*21:°, We note also that the strength and dynamics of
modulation by visual feedback are likely affected by the salience
and structure of the visual stimulus, in accordance with the
observations that the detailed statistics, but not the superdiffusive
nature, of fixational drift is influenced by the visual
task®10,14.21-25 Tt hag been recently argued?’ that the superior
colliculus (SC) may play a key role in the modulation of fixational
drift in response to visual inputs, for several reasons: first, neural
responses to fixational eye drifts, which likely arise from sensory
inputs, were observed in superficial layers of the SC®0. Second, the
SC is involved in control of eye motion during large eye
motions®! and microsaccades?®. Finally, neural activity in the SC
has been shown to represent a desired eye position during smooth
eye motions®2.

Finally, fixational drift is highly consequential for visual per-
ception in the fovea, even though its amplitude is tiny compared
to saccades®1%12-1>17.18 " Detailed understanding of the
mechanisms underlying fixational drift is likely to advance the
research on its functional consequences, by opening up the pos-
sibility to examine whether specific parameters of the oculomotor
pathway, such as the variability of neural activity within the
oculomotor integrator and the dynamics of the muscle response,
are tuned to optimize visual function.

Methods

Behavioral task and recordings. We have reanalyzed data reported in published
studies38:63-64, Data were collected from two male rhesus macaque monkeys
(Macaca mulatta). All procedures had been approved in advance by the Institu-
tional Animal Care and Use Committee at UCSF, where the experiments were
performed. Procedures were in strict compliance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals. To instrument monkeys
for experiments we implanted a coil of wire on one eye® and hardware to allow us
to restrain the monkey’s head. After monkeys had recovered from surgery, we
trained them to sit in a primate chair with the head restrained, and to fixate and
track spots of light that moved across a video monitor placed in front of them. In a
later surgery, we used a trephine to make a hole in the skull, and secured a
recording cylinder aimed at the brainstem®. During experiments, we lowered
glass-coated platinum-iridium electrodes into the brainstem to record from neu-
rons in the abducens nucleus. The abducens nucleus was distinguished by the
characteristic singing activity associated with ipsiversive eye movements. We
identified OMN:Ss, as opposed to internuclear neurons (INNs) based on the criteria
used in’, Extended Data Fig. 6. Voltage waveforms from the electrodes were
amplified and bandpass filtered, usually between 500 Hz and 5 kHz. We sampled
the voltage waveforms from the electrode continuously at 25 kHz to allow off-line
spike sorting (Plexon and custom software). Our analysis requires exquisite sorting
as we are looking for correlation between small modulations in rate and low
amplitude eye movements. We therefore corrected for errors in sorting by looking
for discontinuities in the firing rate of the neurons. The high regularity of the
abducens neuron makes is possible to detect potential missed or erroneously added
spikes. We then inspected the corresponding recorded waveform and corrected if
necessary. Visual stimuli appeared on a monitor at a distance of 30 cm from the
monkey’s eye. Targets were bright 0.6° circles on a dark background. We recorded
neural activity during pursuit of step-ramp target motions®®. At the start of each

trial, the monkeys had a second to acquire fixation on a stationary target. They
were then required to fixate for an additional 500-700 ms within a 2°-3° square
window. The target then displaced to a location eccentric to the position of gaze
(step), and immediately began moving toward the fixation point (ramp). The size
of the displacement was chosen to minimize the presence of initial saccades and
hence, varied slightly between monkeys, recording days and target speeds.

OMN firing rate estimators. We obtained estimators f‘ (t) of the OMN firing rates
based on the eye trajectory as follows. The estimators were expressed as a linear
combination of the eye position, velocity, and acceleration3¢:69-71;

J() = K[E(t + Af) — Ey] + rE(t + At) + mE(t + Ar) )

where the parameters k, 7, m, At, and Er were chosen to fit simultaneous mea-
surements of the OMN firing rate during the full extent of each trial, including the
fixational and smooth pursuit components. The firing rate f(t) was extracted from
the spike train as the inverse of the inter spike interval®, and was thus taken to be
constant between successive spikes. We discarded trials in which the measured
firing rate went below 20 Hz%7, since eq. (2) only holds above the OMN threshold.
The parameters were chosen to minimize the loss function

TA
L= X
i=11=0

. 2
£t) = fltykyrom, AL Ep)| ®)
where T; is the duration of the i-th trial, t€ [0, TJ are discrete time samples
within a trial, and N is the total number of trials. To generate an estimate to the
local eye acceleration we smoothed the velocity signal using a Savitzky-Golay filter
of order 3 and 21 ms length”? and performed a two-sided numerical differentiation.
To generate a firing rate prediction for each of the hundreds of trials per cell we
followed a “leave one out” scheme: we fitted the cell parameters to all but one trial,
and used these parameters to generate the firing rate prediction for the left out trial.

Extracting the fixational segments. Microsaccade onsets and endings were
detected using the eye motion in 2d (horizontal and vertical components), by
applying a combination of thresholds for the magnitude of the velocity (10 deg/sec)
and the magnitude of the acceleration (1000 deg/sec?). The horizontal eye position
fixation segments used for further analysis started 30 ms after termination and
ended 30 ms before initiation of the microsaccades. Finally we verified manually
that the fixational segments didn’t contain any microsaccades. A histogram of the
fixational segment durations is shown in Extended Data Fig. 7.

Firing rate correlation coefficients. Correlation coefficients in the firing rate
representation (Fig. 1) were calculated by generating two vectors of the actual and
predicted firing rates from all trials available per cell. Each vector was generated as
follows: for each fixational segment we calculated the firing rate, either actual or
predicted, and substracted from it the mean firing rate during that fixation. Finally
we concatenated contributions from all fixational segments and calculated the
Pearson correlation between the predicted and actual firing rate vectors.

Model inversion. Eye position was predicted from the spiking activity by causal
filtering:

E(t) = Er + (h % §)(1) )
Here, (1) is the spike train emitted by the cell:
HOE ; ot —t) (5)

where ¢; is the timing of the i-th spike and h(t) is the kernel of the linear filter that
represents the inverse of the relationship in eq. (2):

ot —At) 1,71
h(t) — ( - )T +7; {e—(t—m)/nr _e—(t—At)/r,} (6)
+ _

T =2 L
F m-

and O is the Heaviside step function.

where

o) 0

Eye position correlation coefficients. Correlation coefficients between the mea-
sured eye position and its prediction based on single OMN spike trains (Fig. 2d)
were evaluated as follows. First, eq. (4) was used to generate a prediction E(t) of eye
position. We discarded fixational segments shorter than 350 ms and broke longer
segments into non overlapping 350 ms fixational segments. For each fixational
segment we calculated the difference in the measured eye position, E = E(t =
350 ms) — E(t = 0 ms), across the fixational segment, and the corresponding pre-
diction 8F = E(t = 350 ms) — E(t = 0 ms). Finally, we calculated the Pearson
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correlation coefficient between all predicted and measured eye position differences

Cov(dE, OE)

T (®)
\/ Var(8E)Var(3E)

In addition we calculated the Spearman rank correlation between these two sets of
eye differences which also demonstrated significant correlation (p = 2.5 x 10712,
Extended Data Fig. 8).

In Fig. 2d the shuffled distribution (gray) was obtained by randomly associating,
for each cell, the measurements of OE and of 8 from different fixational segments.
Note that in the shuffled data set there is no underlying correlation between dE and
OE. Accordingly, the distribution of correlation coefficients is centered around zero,
yet its width is similar to the histogram that was obtained without shuffling, in
agreement with the interpretation that the variability in measurements of R
(reflected in the width of the distribution) is due to the estimation error of R.

R=

Standard error of the estimates for the covariance and R. The standard error of
the covariance estimate (used to calculate the errors in Fig. 2e, Extended Data
Fig. 1) is given”3 by

n—2
n—1

(ACov(E. E))’ = - [d(fi, E)+ - VarB)Var(B) - "2 Cov*(E, E)]
n n—1 )

d(E.E) = ([(E— (ENE - B)]°)

where # is the number of fixational segments used to evaluate the covariance.
The standard error of the estimate for R, eq. (8) was evaluated as follows:

<ACov(f5, E))2 N (AVar(E))Z . (AVar(E)>2
Cov(E, E) Var(E) Var(E)
where AVar(E) and AVar(E) are the standard errors of the estimates for Var(E) and
Var(E), obtained using expressions similar to eq. (9).

(AR)* = R?

(10)

Estimated contribution of central source to measured eye position. To esti-
mate the contribution of a central source to the measured eye position, we evoke
the following assumptions. We assume that the measured eye position E can be
written as:

E=E.+1 (11)

where E is a contribution arising from sources upstream of the OMNs, and #
represents contributions arising from the OMNSs as well as other sources of noise
downstream of the OMNs. We assume that # and E¢ are uncorrelated.

Similarly, we assume that the estimate of eye position E, obtained from the spike
train of a single OMN can be written as

E=E.+e¢ (12)

where ¢ represents the error of the estimator and is assumed to be uncorrelated
with Ec. Thus, we assume that the estimator, which was fitted to measurements
obtained during large eye motions, remains unbiased during fixational intervals.
Note that during fixation the variance of ¢ is large compared to that of E¢, which is
the main reason why the correlation coefficient between E and Ec is small
compared to unity.

Our goal is to estimate what fraction of the variance in the measured eye
position, E, is due to the central source, Ec, over a fixational segment (in our
analysis we took segments of duration 350 ms):

_ Var(6E.)
A= Var(GE)
where 8x represent the difference between the value of a variable x at the end of the

interval and its value at the start of the interval. Under the assumption that the
noise terms 7 and ¢ are uncorrelated,

(13)

Cov(8E, 8E) = Var(SE.) (14)

In fact, there is a very weak correlation between # and e which arises from the fact
that # includes the noise contributions from all the OMNs, and e represents the
contribution of noise to the estimate error from a single OMN. This correlation
however, is of order 1/N,, where N,, is the number of OMNs, and we can safely
neglect it, as corroborated also from our separate estimate of the OMN
contribution to fixational drift (Fig. 3). Therefore, our estimate of y is given by

__ Cov(dE, OE)
= Var( SE)

The standard error in our estimate of this quantity is dominated by our ability to
measure the covariance from a limited number of trials. The estimated errors in
Fig. 2d were thus calculated as

, _ (ACov(3E, 8E)\”
@p N( Var(oE) >

(15)

(16)

Note that ideally in eq. (16) we would like to include in the denominator the
variance of the true eye position and not the measured eye position. However over
intervals of duration 350 ms the measurement error of the change in the eye
position is negligible compared to the actual motion, and is inconsequential for our
estimate of the relative contribution of the central source to the motion.

Assuming that the errors in our estimates of y are normally distributed, we
calculated a weighted mean of this quantity across all cells from both monkeys as
follows

; 25~ Xi

X= % e

11!
2 — _
%= [E AX?]

where y; and Ay; are the estimated value and the estimated standard error of y from
the i’th cell. We used a weighted mean, and not a simple average over all cells,

because of the large variation in Ay across cells, which was due to differences in
various factors such as the number of trials and the structure of the tuning curves.

17)

Empirical MSD curves

Calculation of empirical MSD. The horizontal MSD, as presented in Figs. 3 and 5d,
was calculated from the data in the following way: first we extracted all the inter-
saccade eye trajectories as described above (Extended Data Fig. 4). Since each of the
inter-saccade trajectories is of different length, we calculated the MSD separately in
each fixational interval. In the second step we averaged, for each time lag, over all
the available MSD measurements that correspond to this time lag, in all of the
fixational intervals. Since the temporal resolution of the sampled eye trajectories is
1ms, the time lags at which the MSD is evaluated are integer multiples of 1 ms.

Removal of measurement noise. The measurements of the eye position from the
search coil are corrupted by a measurement error of variance ~10~3 deg?. This is
evident when plotting the MSD curve of the eye movements, where the mea-
surement error gives rise to a flat MSD curve (when using logarithmic axes) up to
time scales in which the diffusion becomes dominant. A similar estimate for the
measurement noise was obtained by recording from a coil fixed in space (Extended
Data Fig. 2, inset). Therefore, in Figs. 3, 5d and Extended Data Fig. 5 we subtracted
the variance of the measurement noise to recover the MSD statistics of the eyes
themselves. The MSD curve prior to noise subtraction is shown in Fig. 3a, and
Extended Data Fig. 2. Mathematically if we denote by E(f), #,,,(t), the horizontal eye
position and the measurement noise accordingly, then under the assumption that
the measurement noise is white, the empirical MSD is given by

(B + A0+ 1, (¢ + 8) = EO) = 1,0 ) = (1B + A — EOF)

(18)
+ ([ + 5 =1, 0]°)

= ([E(t + At) — E@F) + 2Var(y,,)) (19)

therefore eq. (19) justifies that the estimated MSD curve, as shown in Figs. 3b, 5d
and Extended Data Fig. 5, are a good approximation for the underlying MSD curve
of the true eye position.

MSD curve of low-pass filtered white noise. Here we briefly discuss why any source
of white noise injected to the OMNs will result in a saturating MSD curve, over
time lags greater than the typical time scale of the filter. For simplicity assume that
the eye position is given by white noise &, convolved with a low-pass filter h(t). We
assume that the white noise has zero mean and variance

(EMEE)) = Ad(t — ) (20)
The MSD is then given by
([E(t + At) — E(0)]) = 2Var(E(0)) — 2(E(t + AtE(t)) (21)
where
(E(t+ ADE(t)) = A / ~ h(t)h(t + At)dt (22)
0

Hence, the second term on the right hand side of eq. (21) decays to zero (and
consequently the MSD saturates) when At is large compared with the characteristic
time scale over which the filter h decays. For examples if h(t) = exp(—t/7)0(t), we
will get (E(t + At)E(t)) ~ exp(—|At|/T).

Model of fixational drift. Our model of fixational drift (Fig. 5a) consists of three
stages. First, an internal signal of the desired eye position is generated and held in
the memory network of the oculomotor integrator. In the second stage this signal is
conveyed to a population of spiking OMNSs. The synaptic output of each OMN is
translated into an actual eye position using eq. (2). Finally, The actual eye position
is taken to be an average over all OMNs.

Oculomotor integrator network. The oculomotor integrator network model is based
on the model proposed in3! for the neural network that determines the horizontal
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eye position in goldfish, adapted to the parameters of the primate oculomotor
system. Briefly, the network consists of two populations, of which one is more
active when the eye is directed to the left and the other is more active when the eye
is directed to the right. Each population forms excitatory synaptic connections to
itself and inhibitory synaptic connections to the other population. The connectivity
is tuned such that there is a continuum of steady states, representing a continuum
of stable eye locations, and such that the firing rates of the single neurons fit the
experimentally observed tuning curves across the full range of eye positions.

We adapted the model of3! in the following ways. First, we introduced noise by
using spiking neurons, with a CV of the inter spike intervals of ~0.223874 as
described below. The oculomotor integrator network dynamics are thus described
in our model by the following egs.

M) = [(REq() + A + (FF@)] (23)
d R R R
ACERMORRS (24)
Eoi(t) = 2o, [S{(®) = S; (1) (25)
H0)
R _ i
X0=1 0 (26)

In eq. (23) A¥ is the firing rate of neuron i from the right population, and

[x], = max(x,0). In eqs. (24), (25) S is the synaptic output generated by neuron i
of the right population. We similarly denote by A and S' the firing rate and the
synaptic output of neuron i from the left population (see below). The spike train of
neuron i from the right population is denoted in eq. (26) by Ef(t), and 7 in eq. (24)
represents the characteristic time scale of post-synaptic currents. As in®!, the
influence of spikes on the synaptic current is nonlinear, through the relationship
between E? and Xf, eq. (26), where A, is a characteristic firing rate, in our case
A= 60 Hz. Note that if £ is replaced in eq. (26) by A, the dynamical egs. become
identical to those of*!. In eq. (23) F(t) represents a visual feedback signal, which is
determined as described below.

The variable Eq(t) appearing in eq. (23) represents an internal readout of the
eye position from the neural activity, which is a linear function of the synaptic
activities with weights #;. This quantity also serves as the eye position readout from
the network. The slope of the tuning curve of neuron i from the right population is
denoted by ( ? and is positive, and A{ is an offset. In those neurons that are above
threshold at central gaze (i.e. eye position zero), ! is equal to the firing rate at
central gaze.

For the left population, eqgs. analogous to (23), (24), and (26), are obtained by
replacing the superscripts R and L. We assumed that for each neuron in the right
population there is a matching neuron in the left population whose tuning curve is
identical up to reversal of sign of the eye position. Hence, the slopes of the tuning
curves in the left population are set as (¥ = —(¥.

The tuning curves were chosen based on’>, where the position sensitivity of
nucleus prepositus hypoglossi of the macaque were measured. Specifically we
sampled the tuning curves randomly from

spks
2) Ep+4.044¢ 27)

(= (0.032 B
sec x deg

where the coefficients of the linear relationship are set based on’%, and ¢! is a zero-
mean, normally distributed random variable whose variance was set to obtain the
same dispersion as experimentally observed in”>, and the measured correlation
coefficient in”> was 0.61. The weights 7; were determined by an optimization
process as in3!, ensuring that the system has an approximate continuum of fixed
points in which the eye position variable Eo(f) spans the range of —50" to 50°
degrees. The precise values of (;, A?, and #; are listed in SI Data. 1.

OMN activity and actual eye position. The internal eye representation generates
activity of the OMNSs according to the following dynamics

MW = {ki (EOl(t) - ET])} . (28)

| =

Ty 7S = =5+ 5?4 29

QU

t

where 1Y, the firing rate of OMN i, is assumed to be determined linearly and
instantaneously from the synaptic readout E(t) of the oculomotor integrator
network. We incorporate noise in activity of the OMNs by generating a stochastic
spike train & with rate AM and with a CV of ~0.07 as described below. Each OMN
generates a synaptic output s} which is determined by eq. (29).

Each OMN is assumed to innervate an extraocular muscle fiber and to
contribute a signal E; to the actual eye position, which can be expressed as a
convolution of s™ with a double-exponential kernel or, equivalently, as the solution

of the differential equation

M = k(B — By, ) + i+ mik, (30)
with parameters k;, r;, and m;. Note that egs. ((28)-(30)) are set up such that when
the eyes are still E; = Eq;y up to stochastic fluctuations (sM is equal at steady state to
A‘iw, up to stochastic fluctuations, due to eq. (29)).

Finally, the position of the eye is taken to be an average over all the OMN
contributions:

1 Ny
E(t) = — L E(1) (31)
N, i=1
When the eyes are still and at steady state the actual eye position E matches the
internal representation of the oculmotor integrator Eo,/%77.

The parameters k;, r;, m;, and ET, of the OMN’s were set as follows. First, the eye
position threshold E; was sampled uniformly in the range (—45°)-(—5°), with
mean eye threshold of —25°, similar to3°, we discarded neurons with eye thresholds
above —5° since their contribution to eye position during straight ahead gaze is
negligible. Second, we assumed an approximate linear relationship between k, r and
Er, as observed in®7. Thus, k; and r; were set as

k
k= <0.18 LSZ> E;+8.07+¢ (32)
sec x deg
spks .
ri={00225 B +123+¢ (33)
deg

where the coefficients of the linear relationships were set based on%’, and where e¥
and €] are zero-mean, normally distributed random variables whose variance was
chosen to obtain the same dispertion as experimentally observed in3’ (correlation
coefficients R = 0.81 for k and R=0.67 for r). In addition we imposed hard
constraints k > 1.1, r > 0.25 according to®°. The typical values for k, and r obtained
from this procedure matched the values reported in3°. For the acceleration
coefficient, m, we randomly sampled values according to typical values reported
in3¢ while verifying that m < r2/(4k). The precise parameters values of 7, k, and m
are given in SI Data. 2 and illustrated in Extended Data Fig. 9.

Our simulation included N = 30,000 neurons in the oculomotor integrator,
N,, = 1000 OMNs, synaptic time constants of 7, =20 ms, and visual feedback
amplitude A = 0.015 (see below). We used a set of parameters that is biologically
plausible, but note that other combinations of parameters can produce similar
results. Specifically, several key parameters determine together the amplitude of the
MSD curve: the number of neurons in the oculomotor integrator, their synaptic
time constant, firing rate, non-linearity, and variability as stated in eq. (1)33.

Visual feedback. We assume that the visual feedback during fixational drift is based
on motion of the target on the retina, rather than an attempt to fix the absolute
position of the target?%. Therefore, the visual feedback signal F(t) in eq. (23) is
proportional to an estimate of the target angular velocity relative to the eye
direction in the recent history. The estimate of velocity is generated using a signal
that arrives to the oculomotor integrator with a delay 7~ 70 ms®:

F(t) = A[E(t — 75) — Egy(1)]

where E(t) is the actual gaze direction established as described above.

(34

Sub-Poisson spike trains. Both oculomotor neurons and motoneurons are sub-
Poisson with CV of the inter-spike interval <1. In order to take this into account in
our model we used spike thinning by first generating Poisson spikes at a rate equal
to the desired firing rate, multiplied by a factor M. From the resultant spike train
we then used every M’th spike. This procedure keeps the average firing unchanged,
but reduces the CV by a factor 1/+/M. When the firing rate is constant, this
procedure is equivalent to sampling inter-spike intervals from a Gamma dis-
tribution. For oculomotor neurons we assumed CV ~ 0.22, for the OMNs we
assumed the CV is linear with the mean inter-spike interval, (ISI) in similarity to
the observed values in*3

CV =10"2x {6.34 + (0.17 é) IS+ eCV] (35)
where the ISI is measured in ms, and ecy is a zero-mean, normally distributed
random variable whose variance was chosen to obtain the same dispersion as
experimentally observed in*8. Note that these values are based on the empirical
distribution of inter-spike intervals during fixational intervals and could therefore
be influenced, in principle, by the small motion of the eye during fixational drift.
However, we show in SI Notes (Contribution of oculomotor state to the CV of
OMNs) that this influence is negligible. In addition we demonstrate that spiking
noise affects the MSD curve only at relatively short time lags (up to ~10 ms, see
Extended Data Fig. 10).

Statistics. No statistical method was used to predetermine sample size. Cells in
which we were unable to consistently detect and isolate spikes due to low signal-to-
noise ratio of the recordings were excluded from the analysis. In addition, trials in
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which cells were not active for any fraction of the trial were excluded from the
analysis. Error bars in Fig. 2e, f and in Extended Data Fig. 1 were calculated as
described above (Standard error of the estimates for the covariance and R and
Estimated contribution of central source to measured eye position).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. The raw data in this study, that includes
recorded eye positions along OMN spike times have been deposited in the Zenodo
database at 10.5281/zenodo.6076911. The data in this study was reported in published
studies?®6364, Source data are provided with this paper.

Code availability

The code for the computational model is publicly available in github. (see https://
github.com/The-Burak-lab/Fixational-drift-is-driven-by-diffusive-dynamics-in-central-
neuralcircuitry)
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