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Summary

Background In Europe, the frequency, intensity, and geographic range of West Nile virus (WNV)-outbreaks have
increased over the past decade, with a 77.2-fold increase in 2018 compared to 2017, and a markedly expanded geo-
graphic area compared to 2010. The reasons for this increase and range expansion remain largely unknown due to
the complexity of the transmission pathways and underlying disease drivers. In a first, we use advanced artificial
intelligence to disentangle the contribution of eco-climatic drivers to WNV-outbreaks across Europe using decade-
long (2010-2019) data at high spatial resolution.

Methods We use a high-performance machine learning classifier, XGBoost (eXtreme gradient boosting) combined
with state-of-the-art XAI (eXplainable artificial intelligence) methodology to describe the predictive ability and contri-
bution of different drivers of the emergence and transmission of WNV-outbreaks in Europe, respectively.

Findings Our model, trained on 2010-2017 data achieved an AUC (area under the receiver operating characteristic
curve) score of 0.97 and 0.93 when tested with 2018 and 2019 data, respectively, showing a high discriminatory
power to classify a WNV-endemic area. Overall, positive summer/spring temperatures anomalies, lower water avail-
ability index (NDWI), and drier winter conditions were found to be the main determinants of WNV-outbreaks across
Europe. The climate trends of the preceding year in combination with eco-climatic predictors of the first half of the
year provided a robust predictive ability of the entire transmission season ahead of time. For the extraordinary 2018
outbreak year, relatively higher spring temperatures and the abundance of Culex mosquitoes were the strongest pre-
dictors, in addition to past climatic trends.

Interpretation Our Al-based framework can be deployed to trigger rapid and timely alerts for active surveillance and
vector control measures in order to intercept an imminent WNV-outbreak in Europe.

Funding The work was partially funded by the Swedish Research Council FORMAS for the project ARBOPREVENT
(grant agreement 2018-05973).
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Introduction

West Nile virus (WNV), a member of the family Flavivir-
idae, genus Flavivirus, is a re-emerging zoonotic patho-
gen and a significant threat to both human and animal
health. Female mosquitoes of the genus Culex are the
principal "bridge vectors " in transmitting WNV from
birds to humans and equines that serve as incidental
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and dead-end hosts." Whilst four-fifths of WNV cases
are asymptomatic, the severe cases with neurological
manifestations present with seizures, mobility
impairment, or loss of consciousness, and can be fatal.”

Intermittent WNV-outbreaks have occurred in
humans, equines, and avian hosts, with WNV-lineage
2 having overtaken lineage 1 in virulence, in recent
years.> ° In Europe, lineage 1 was replaced by lineage
2 in 2013 and currently dominates the transmission.®
Since the emergence of WNV lineage 2 in Europe in
2004,” there has been growing concern about its
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Research in context

Evidence before this study

West Nile virus (WNV) is a re-emerging zoonotic patho-
gen and a threat to both human and animal health. In
Europe, there has been a marked range expansion of
WNV-outbreaks over the past decades, causing large
outbreaks with over 2000 symptomatic cases in 2018
alone. However, the underlying reasons for the WNV re-
emergence in Europe remain elusive. We searched
PubMed, Web of Science, and Google scholar for pri-
mary research articles published between January 2000
and August 2021, to identify eco-climatic drivers and
other determinants of WNV outbreaks in Europe. We
used combinations of "West Nile", "West Nile virus" in
the title and filtered for continental and regional Euro-
pean studies. In a second step we then filtered these
articles to included: "risk", "model", "predictor", "esti-
mate", "determinant", "driver" “machine learning” “artifi-
cial intelligence”. We stratified the list into eight
categories based on class and source of data.

We found that of the regional-level studies only few
mentioned eco-climatic drivers at a shorter temporal
scale. Moreover, only a few studies applied advanced
machine learning algorithms. In effect, no study was
identified that used state-of-the-art machine learning
and explainable Al frameworks at the European scale
that comprehensively elucidates the underlying drivers
and determinants at high spatio-temporal resolution of
WNYV outbreaks.

Added value of this study

Eco-climatic drivers and other determinants of WNV,
identified in the literature review, were incorporated
into a multivariate model at a high spatial resolution,
spanning a decade (2010-2019). Using a high-perfor-
mance machine learning algorithm, we trained a model
to discriminate between regions with and without WNV
in the time period between 2010-2017. The explainable
artificial intelligence (Al) framework could differentiate
and rank the most important eco-climatic parameters of
WNV outbreaks in Europe on a regional scale. Using test
data from 2018 and 2019, this framework performed
with high predictive ability to identify regions at risk for
WNV-outbreaks. The explainable Al framework could
even identify with high accuracy regions at risk during
explosive outbreaks, such as 2018, and those at risk dur-
ing more moderate outbreaks, such as 2019. Most
importantly, the Al framework had an ability to even
forecast a WNV-outbreak for the entire transmission
season ahead of time. We used eco-climatic drivers of
the preceding year, and of the first half of the current
year, to predict WNV-outbreaks in advance for the latter
half of the year.

Authors should describe here how their findings add value
to the existing evidence

Our study identifies and validates the role of eco-cli-
matic parameters in the emergence and dispersion of

WNV in Europe. Our findings point towards the role of
climate in the geographic range expansion of WNV-out-
breaks in previously naive regions of Europe. The results
of our analysis also underpin the prospect for develop-
ing an Al-driven, WNV early-warning system (EWS)
based on eco-climatic precursors of WNV. Such an WNV
EWS can be deployed to trigger rapid and timely alerts
to initiate active surveillance and vector control meas-
ures in order to intercept an imminent WNV-outbreak.
Operationalizing such an Al-driven EWS for WNV out-
breaks in Europe for public health purposes can reduce
the disease burden from WNV outbreaks and lessen the
associated human and economic costs.

extensive expansion in several countries including
Greece, Romania, and Italy.® ™

The geographic occurrence of WNV-outbreaks
increased over the past decades, with a 7.2-fold increase in
cases in 2018 compared to 201y, and markedly expanded
geographic range even when compared to the most exten-
sive outbreak at the time in 2010 (Figure 1)." ™ Specifi-
cally, since 2010 ever-expanding areas in Europe have
experienced recurrent outbreaks. In 2018, the number of
affected NUTS3 (Nomenclature of Territorial Units for Sta-
tistics 3) regions increased markedly (Figure 1, B). That
year, southern and central Europe witnessed the largest
WNV-outbreak ever recorded, with 2083 locally acquired
reported human cases and 181 fatalities among them from
West Nile neuroinvasive disease (WNND).” The case fatal-
ity ratio among these infections was 9%." Moreover, dur-
ing the summer months of 2018, greater-than-normal
WNV prevalence in mosquito and avian populations were
detected.” " In the subsequent year, a higher prevalence
of WNV in birds and equines were observed in Germany,
prior to discovering WNV cases in humans in 2019."%*°
For the first time, WNV infection was also detected in a
bird in the Netherlands, which foreshadowed the detection
of the first human cases in the summer of 2020.*

Several abiotic and biotic factors are considered to be
the determinants of WNV epidemiology.** Abiotic fac-
tors are physical features of the environment, including
weather conditions such as temperature, precipitations,
landscape features, and land-use, with temperature
playing a key role in modulating WNV activity in
Europe. The biotic factors are the ones that include host
birds of the WNV virus. Bird species population may
vary in their susceptibility to WNV infection.** The con-
tribution of factors like climate variability,** >® environ-
mental variables,”*** WNV vector abundance,**'
and host migratory birds,>*** have been examined. Sev-
eral other factors such as economic conditions,***> and
sociodemographic characteristics,**’ are also consid-
ered to be important in the WNV epidemiology. A WNV
enzootic cycle drives transmission between mosquitoes
and birds that act as vectors and amplifying hosts,
respectively.’® WNV infected humans and equids are
the dead-end hosts since they do not contribute to virus
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Figure 1. (A) Annual frequency of WNV affected NUTS3 regions and the total human infections cases in Europe, 2010-2019.
NUTS3 regions from 28 countries within the EU/EEA were included in this study.
Annual count of NUTS3 regions affected by WNV transmission, in Europe (blue bars, left y-axis). The right y-axis shows the annual

WNV cases (black curve).

(B) Comparison of WNV transmission by NUTS3, 2010-2017 and 2018.
B1 represents the cumulative number of years of NUTS3 regions with WNV transmission, 2010-2017, and B2 for 2018.

transmission. The WNV transmission pathway is very
intricate and involves many multifaceted factors; thus,
the empirical predictive ability of WNV models is not
well refined.

Mechanistically, it is understood that ambient tem-
perature plays a significant role in increasing the vecto-
rial capacity of Culex mosquitoes,’®*° thereby
accelerating their transmission cycle through the extrin-
sic incubation period (EIP), the biting rate, and the
transmission probability, which in turn results in
outbreaks.'®394'~43 Temperatures as low as 14.0-17.9°C
have been observed to reduce the EIP of WNV in Culex
pipiens mosquitoes, necessitating increased transmis-
sion levels to trigger infection.*?** A critical factor in
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the transmission is the ability of the vector to diapause
during the winter.*> The above studies draw on experi-
mental results integrated into process-based mathemati-
cal conceptual models that can be used to predict
transmission dynamics, it is currently less well under-
stood how much each of the climatic, ecological and
sociodemographic, vector, and birds factors contribute
to the virus transmission when taken together in a
modelling framework.

While mechanistic models have been successfully
used to reproduce and predict infectious disease trans-
mission, they are often difficult to parameterize and
tend to rest, in part, on assumptions of these modelling
parameters. In contrast, statistical models fitted to
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spatio-temporal surveillance data can circumvent such
assumptions by estimating all model parameters from
data.*#*47 These models are favorable due to their
lower complexity and higher interpretability of what
empirically drives outbreaks.

Recently, high-performance machine learning mod-
els have been deployed in infectious disease modelling
for this purpose.*® 5> However, in the context of WNV,
only a few regional-level studies with limited explana-
tory power have employed such methods.*9"% A limi-
tation of these high-performance machine learning
models is their high complexity but low interpretability
(i-e., black-box type of models) making it difficult to
infer public health practice from these models. How-
ever, recent advancements in artificial intelligence (AI)
have led to the development of explanatory frameworks
for uncovering and interpreting the black-box models,
often referred to as eXplainable AI (XAI). XAI can thus
help us to interpret how highly intricate biological, envi-
ronmental, and social processes affect disease such as
WNV, which, otherwise, would be almost impossible to
decipher.>

The predictive ability and prospects of developing
early warning systems (EWS) to better manage infec-
tious disease outbreaks are of interest to public health
practice. In light of current environmental and climatic
change, predicting disease outbreaks with eco-climatic
drivers is key to preparedness and response. Thus,
insights from this analysis, can parameterize EWS with
eco-climatic precursors of WNV-outbreaks in Europe
and is therefore relevant for the European Climate and
Health Observatory, created as part of the European
Green Deal>*® the EU Adaptation Strategy and
EUg4Health.’* Specifically, the Observatory aims to
support Europe in preparing for and adapting to climate
change impacts through EWS, information systems,
indicators, and tools. This WNV indicator, developed
with the help of Al, can support the Observatory in its
mandate, as proposed under the European Green Deal.

In this study, we examined the predictive ability of
eco-climatic drivers of WNV outbreaks in Europe for the
years 2010-2017 using XAI and estimated to what extent
the models have the skill to predict the spatio-temporal
pattern of the 2018 and 2019 WNV-outbreaks in
Europe. As such, this analysis is unique, in its ability to
elucidate the underlying drivers of WNV epidemiology
in Europe; specifically, it relies on longitudinal predictor
data that span a decade. Moreover, a wide range of eco-
climatic and other predictors were incorporated into the
model, at high spatial resolution (i.e., NUTS3-level)
which required high-level computing power and
machine learning, to disentangle the determinants of
WNV transmission. Advanced Al and XAI methodolo-
gies were employed to accomplish these tasks, which
has not been attempted before.

We developed a prediction framework using a high-
performance machine learning model, XGBoost, for

making predictions and the SHAP framework from
XAI to rank and uncover the most influential WNV driv-
ers. We then disentangled important drivers of the large
2018-outbreak and further explored the predictive ability
of climatic conditions to forecast a WNV-outbreak for
the entire transmission season ahead of time. By identi-
fying the key eco-climatic drivers, we lay the foundation
for a European-wide Al-based WNV EWS that can help
manage climate change induced risk of WNV in
Europe.

Methods

Data collection

Human WNV cases and eight spatio-temporal predic-
tive feature classes were obtained from the sources
described in Table 1. The feature classes with their
respective subset of features are also listed in Table 1.
Specifically, annual human WNV case count records
were obtained from the European Center for Disease Pre-
vention and Control (ECDC), aggregated by NUTS3
regions.”® Symptomatic human WNV cases, including
neuroinvasive WNV disease, were included in the analy-
sis. Infections with unknown aetiology or year of diag-
nosis were excluded.

The climate data were acquired from the Copernicus
Climate Change Service (C3S) database in Europe.”® All
climatic variables were averaged into four quarters. To
provide covariates for the complex interactions between
WNV vector species and climate, a set of 19 bioclimatic
features (bio1-bio19) were derived from temperature and
precipitation data.®® The quarterly data of environmen-
tal features, Normalized Difference Water Index
(NDWI), and Normalized Difference Vegetation Index
(NDVI) were included in the analysis. NDWI data were
derived from Google Earth Engine using the R package
'rgee’.®’ The NDVI data were derived from the C3S data-
base.’® Since both Culex pipiens and Culex modestus spe-
cies are competent vectors of WNV and are well
established in southern Europe,®” their yearly presence
and abundance data were obtained from ECDC.* To
assess WNV notification associated with population
demographic, age-and sex-stratified data were also
incorporated as potential covariates. Similarly, annual
regional income data were included to assess the associ-
ation of socio-economic status with WNV transmission
by region. The annual trading data was also used as
potential covariates. All these features were extracted
from R's Eurostat package.®® The local passeriform host
birds data obtained from European Environment Agency
(EEA),°* were also incorporated at the regional level.

Model selection
After the geocoded spatio-temporal data of explanatory
features were prepared for each NUTS3 region, the final
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Spatial Range Temporal Span Feature Class

Features category /
Data Level (unit)

Features names as in model
(= Features Description)

EU/EEA NUTS3  2010-2019 Climate °°

Bioclimatic **°°

Environmental®®®"’

Demographic **

Economic **

Trade ©*

Vectors *°

Birds **
WNV cases *®

Temperature / quarter (°C)

Precipitation / quarter (mm)
Temperature-related bioclimatic features
bio1-bio11/ year (°C)

Precipitation-related bioclimatic

features bio12-bio19/ year (mm)

Vegetation index/quarter ([-1,1])
Water availability Index/ quarter ([-1,1])

Male age -structured Population / year

Female age-structured

population / year

Income / year (Million Euros)

Goods trading /year (Tons)

Culex pipiens / year

Culex modestus / year

Passeriformes order / year

Response feature (binary)

*min_temp_i = Minimum temperature

*mean_temp_i = Mean temperature

*max_temp_i = Maximum temperature

*prec_i = Total precipitation per quarter

bio1 = Mean annual temperature

bio2 = Mean diurnal range

bio3= Isothermality -(bio2/bio7) x 100

bio4 = Temperature seasonality*

bio5 = Maximum temperature of warmest month

bio6= Minimum temperature of coldest month

bio7 =Temperature annual range (bio5- bio6)

bio8= Mean temperature of the wettest quarter

bio9 = Mean temperature of driest quarter

bio10 = Mean temperature of warmest quarter

bio11 = Mean temperature of coldest quarter

bio12 = Total annual precipitation

bio13 = Precipitation of wettest month

bio14 = Precipitation of driest month

bio15 = Precipitation seasonality

bio16 = Precipitation of wettest quarter

bio17 = Precipitation of driest quarter

bio18 = Precipitation of warmest quarter

bio19 = Precipitation of coldest quarter

*ndvi_i = Normalized difference vegetation index

*mndwi_gi = Normalized difference water index

M_TOTAL=Total Males,

M_Y_LT15=Males <15 years

M_Y15-64 = Males 15-64 years

M_Y_GE65= Males > 65 years

F_TOTAL = Total Females

F_Y_LT15 = Female s<15 years

F_Y15-64 = Females 15-64 years

F_Y_GE65 = Females > 65 years

MIO_EUR = Annual mean regional income

|_TOTAL = Annual trading loading

unl_TOTAL = Annual trading unloading

dist_Culex.pipiens = abundance of Culex pipiens

dist_Culex.modestus= abundance of Culex
modestus

local birds of Passeriformes order **

wnv_case = NUTS3 region with (1) and without (0)

reported human WNV cases

#* Please see ref®* for details.

Table 1: Spatio-temporal explanatory and response features for the training and test data sets of the WNV model, Europe, 2010-2019.
Note: *In these feature names, ‘i’ has is replaced by 01,02,03,04, representing the respective quarter of the year

monthly temperature.®®

+ The amount of temperature variation over a given period is based on the ratio of the standard deviation of the monthly mean temperatures to the mean

data set was split into training and test sets. The 2010-
2017 data were used for training the model while 2018
and 2019 data were chosen for testing. The influence of
the determinants was presented by dividing regions
into two groups based on transmission activity in a
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specific year. Then, the supervised machine learning
task used a model to learn highly complex features
interactions in the data during the training period to
classify whether a region had a WNV presence. Once
trained, the model would then predict the WNV-
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outbreaks of the year 2018 and 2019, respectively. The
goal was to assess the model's predictive ability for both
contained (2019) and more expansive (2018) outbreaks.

We used the XGBoost machine learning algorithm, a
high-performance gradient boosting ensemble of deci-
sion trees widely used for classification and regression
tasks.”> The algorithm uses splits, i.e., it iteratively
selects the features that best separate the data into two
groups. Requiring the least data preprocessing and fea-
ture engineering and many tuning hyperparameters to
optimize make XGBoost an ideal candidate for highly
complex, nonlinear, sparse, and imbalanced classifica-
tion data such as ours (Appendix; Machine learning
algorithm and model selection).

However, the results of XGBoost are often not
straightforward to interpret. Also, its internal feature
importance metrics cannot quantify a single observa-
tion-level feature influence on the overall model predic-
tions. We, therefore, post-processed the model results
with SHAP (SHaply Additive Explanation), a game-the-
oretic,°® XAI framework, developed recently.®” SHAP
ranks feature importance by comparing what a model
predicts with and without the feature for all possible
combinations of features at every single observation.
The features are then ranked according to their contri-
bution for each observation and averaged across obser-
vations. The SHAP method enables us to identify
drivers of WNV transmission by the NUTS3 region.”%°

Furthermore, to inspect the impact of the preceding
year's climate trends and to make within-year WNV-out-
break predictions, we applied and analyzed the XGBoost
to four separate data sets (Q1-Q4). In the following text,
XGBoost combined with these data sets are called
model-Q1, model-Q2, etc. These models differed con-
cerning their feature space and the data selection pro-
cess. Specifically, for the model-Q1, we used only the
first quarter (January-March) data of a year for the cli-
mate and environmental features. For features classes
with yearly data (see Table 1), the preceding year's data
was assigned to their corresponding features. The biocli-
matic features in the model represented the recent past
(or preceding year's climate trends).

Similarly, for model-Q2, the data for the quarterly
feature classes consisted of both the first and second
quarters (January-June) features of the same year and
the previous years for the rest of the features. A similar
process was repeated for the model-Q3. Ultimately, for
model-Q4, all the same year's data with the entire fea-
ture space was considered in the model.

Cross-validation and hyperparameter tuning

Machine learning models can be trained with different
training and validation strategies like hold-out, k-fold
cross-validation (CV), and nested cross-validation. We
opted for a more computationally expensive yet robust
k-fold cross-validation approach to avoid any overfitting/

underfitting and to determine if the model generalizes
well to the data. This was done for the training data sets
of each model using a 5-fold cross-validation approach.
The XGBoost randomly partitions the training data into
k-folds (subsets) of equal size. The performance of a
model is evaluated from the average score it achieves on
each of the created folds.

The performance of machine learning algorithms
can be sensitive to their hyperparameters. The tree-
based XGBoost comes with a variety of hyperpara-
meters, and the model performance can be improved
by tuning and optimizing these parameters. While
few parameters are general and depend on the
nature of machine learning, others control the per-
formance of the booster algorithm.®> Some of these
hyperparameters of importance while doing cross-val-
idation are nrounds — which represent the number of
trees to grow for the classification tasks and should
be tuned. While eta controls the model’s learning
rate from the data patterns, gamma controls the reg-
ularization part of the cost-function and is critical in
preventing the model overfitting. The hyperpara-
meter min_child_weight is important to block any
potential feature interactions causing overfitting.
Another crucial parameter for the imbalanced data
sets is the scale_pos_weight- the ratio of positive clas-
ses to the negative classes to handle the class imbal-
ance (Appendix; Imputation of the incomplete
dataset using XGBoost). Similarly, lambda is tuned
during cross-validation and controls the L2 regulari-
zation on weights. The hyperparameter max_depth,
controls the depth of the tree and is important to
tune. Lastly, max_delta_step helps in binary classifica-
tion problems with extreme class imbalance.®®

In our analyses, these hyperparameters were
tuned for every model separately during the cross-
validation process by creating a random search for
the best combination of parameters. The perfor-
mance of all models was evaluated and compared
using the logloss score both for cross-fold training
and validation sets as well as for out-of-sample test
data sets. Logloss represents how close the prediction
probability is to the corresponding actual value (o or
1, here). The closer the predicted probability to the
actual value, the lower is the logloss score. The tuned
set of hyperparameters of each of the four models is
listed in Table A2 of the Appendix.

Besides logloss, models were evaluated using an AUC
score to assess how well they distinguish between two
classes irrespective of the classification threshold
(Appendix; Table A3). Additionally, various threshold-
dependent classification metrics were also computed
and compared at thresholds o.1,0.2, and o.5 (Appendix;
Table A3). A comprehensive analysis for the data set
with missing observations was also performed (Appen-
dix; Imputation of the incomplete dataset using
XGBoost).
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Role of the funding source

The funder had no influence in the study design, data
collection, data analysis, interpretations, and writing of
the report.

Results

Selecting the best model

We evaluated the performance of all the models
using the XGBoost algorithm using logloss for model
selection. While all the models performed identically
on training data, results showed that model-Q2 per-
formed best on both test data sets (Figure 2, A). The
logloss score for model-Q2, i.e., the model with cli-
mate conditions up to quarter 2 from the same year,
remained more consistent for both the test sets. The
AUC score - the probability that a randomly selected
positive outbreak event will be assigned a higher
probability - indicates how well the model discrimi-
nates between positive (1) and negative (o) classes
irrespective of the classification threshold. These
scores for the 2018 and 2019 test data were 0.97
and 0.93, respectively, showing the model's high
capability of discriminating between two classes.

For different classification thresholds, various perfor-
mance metrics of the model-Q2 were also estimated on
both test sets. For 2018, the model achieved 86% sensi-
tivity and 95% specificity at a 0.1 classification threshold
(Figure 2, B). For 2019, the metrics were 69% and
93%, respectively. Thus, model performance was opti-
mized for an outbreak year, which has public health
implications. Both the test data sets had a high-class
imbalance in favor of negative classes (o). For 2018,
85% of observations were regions with no prior WNV
presence (o) compared to 15% with WNV presence (1),
whereas the percentage further dropped for 2019; 91%
compared to 9%. Various performance metrics of all
the models at three different classification thresholds
(0.1, 0.2, 0.5) were also estimated (Appendix; Table A3).

Key drivers of WNV-outbreaks across Europe

We quantified and ranked the key drivers of WNV-out-
breaks using SHAP to quantify the European-wide pre-
dictions. The most influential feature was the mean
temperature of the warmest quarter (bio10), followed by
the maximum temperature of the 2nd quarter (max_-
temp_o2) and temperature seasonality (biog4) (Figure 3,
A). Interestingly, the NDWI of the second and first
quarters were ranked at 5% and G, respectively, in
importance by SHAP. It was found that the regions
with low NDWI during the first half of the year were at
a higher risk of WNV-outbreaks. Other influential fea-
tures were the isothermality (bio3), the precipitation of
the coldest quarter (bio19), and the abundance of Culex
modestus mosquitoes.

www.thelancet.com Vol 17 Month June, 2022

Preceding year's climate trends — key determinants of
WNV-outbreaks

Here, we explored the percent contribution of features
classes based on SHAP's European-wide score of each
feature. This score was first converted as percent contri-
bution per feature and subsequently aggregated accord-
ing to the feature class. The 'bioclimate' feature class
representing the preceding year's climate conditions
alone makes 50% of the total contributions (Figure 3,
B). It is followed by 'climate' and 'environmental' fea-
tures classes that collectively make 35% of overall contri-
butions. They are followed by the rest of the feature
classes making approximately 15% contributions collec-
tively.

Identifying the drivers of the extraordinary 2018
WNV-outbreak

The model results explored and differentiated the
extraordinary outbreak in 2018 compared to the other
annual outbreaks. We identified 88 NUTS3 regions
with WNYV transmission in 2018 but not in the preced-
ing year. The observed features values of the top-6 most
influential SHAP predicted features class-wise from the
year 2017 and 2018 data sets were analyzed for these
regions (Figure 4, A). It was found that the mean tem-
perature of the warmest quarter (bio10) during the year
2018 did not differ significantly (p> o0.05) from that of
the year 2017 for these regions. Though the bio1o turned
out to be the most influential predictor overall, however,
its values were taken from the preceding year in the
model. That said, the influence of quarterly features
from the year 2018 then becomes critical to the 2018
outbreak for these regions. The observed temperatures
for the 2" quarter (max_temp_o2, mean_temp_o2) were
ranked as the second and fourth most important predic-
tors by SHAP. It was found to be significantly (p<o.05)
higher (>1 °C) for 2018 compared to the preceding year.
On the other hand, the NDWI of the first two quarters
of 2018 (Figure 4, A) were not differentiating pinpoint-
ing the pivotal role of high ambient spring temperatures
in the outbreak for these regions.

Discussion

The rationale for using Al in predicting WNV-outbreaks
Understanding the complex interplay between eco-cli-
matic drivers and other factors associated with WNV
transmission is intricate, particularly at a high spatio-
temporal scale. Novel computing methods, accounting
for these complex processes in order to understand
WNV-outbreak risk have rarely been applied at the Euro-
pean level. To this end, we attempted to bridge this gap
by identifying the most influential drivers retrospec-
tively.
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Figure 2. (A) Logloss score of all models by quarters (Q1-Q4) of the year, Europe 2010-2019.
The logloss metrics of all the models are shown for the training data (green circle) and both test data sets, i.e., the year 2018 (light
blue) and 2019 (red) of the WNV-outbreaks in Europe. The model-Q2, had the minimum logloss score for both test data sets, hence

the best model.

(B) Performance metrics of model-Q2 on test data sets. For three classification thresholds shown on the x-axis, the accuracy, bal-
anced accuracy, and specificity score remained more consistent for the test data sets than the other three, i.e., F1 score, precision,

and sensitivity.

To the best of our knowledge, this is the first study
that combines Al and XAI frameworks to assess WNV-
outbreak risk, using a time series (2010-2019) of dispa-
rate predictors, at a high spatial resolution for Europe.
The XGBoost algorithm is being used widely in diverse
fields of natural science and biomedical research, due to
its computational power and ability to optimize model
performance through parameter tuning.”° 7* Some
recent instances of the applications of the gradient
boosting algorithms related to the WNV risk predictions
have been reported.*%"°® In this study, we used XGBoost
to classify the NUTS3 regions with and without WNV
transmission using the human WNV infections data
from 2010 to 2019. Importantly, the model showed a
robust predictive ability (AUC scores 0.97 and 0.93,
respectively for out-sample data) of the entire WNV
transmission season ahead of time. These results were
also post-processed, using a game-theoretic XAI

framework, SHAP, in addition to the algorithm’s inter-
nal evaluation metrics, to determine the feature impor-
tance and contribution.®®®” Detailed discussion on the
preferential selection of SHAP over XGBoost’s internal
metrics can be found in the appendix (see section
XGBoost internal metrics versus SHAP).

Eco-climatic factors: the key drivers of the WNV
transmission

The mean temperature of the warmest quarter of the
preceding year was the most important driver of WNV-
outbreak European-wide. This becomes critical as a vast
majority of WNV-outbreaks previously peaked during
July-September.” Our predictions highlight an impor-
tant aspect; the current year's mean summer tempera-
ture could well indicate a WNV-outbreak in the coming
year. The key aspect is that the mean temperature of the

www.thelancet.com Vol 17 Month June, 2022
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class.

warmest quarter ranged between 20-26°C in regions
with WNV presence (Appendix; Fig. A4). A similar tem-
perature range was mechanistically shown to be the
most suitable for the increased WNV incidence risk vali-
dating our findings.’® Likewise, a higher than usual
spring temperature in this range (22-26°C) (Appendix;
Fig. A4) early in a year could also be a precursor of
WNV-outbreak during the latter half of the same year.
The climate-related predictions of our model are in
agreement with previously published studies in a simi-
lar context.’® Indeed, the evidence of a positive relation-
ship between higher WNV transmission risk and
temperature has been previously reported.>+>%27:2973:74

The influence of higher temperature is found to
increase the replication rates of WNV and its vectors.**

www.thelancet.com Vol 17 Month June, 2022

This mechanism then forces the vectors to transmit
WNV earlier by shortening the gonotrophic cycle,
resulting in an increased biting rate.”> Furthermore,
due to global warming, there is an increasing trend of
extreme weather events such as heatwaves, floods, or
droughts. These events intensify the interaction
between disease hosts, vectors, and viruses that results
in favoring the transmission of a virus to humans.”®7
Our results also highlight that the winter climate
conditions can also be predictors of WNV-outbreak risk.
We found that the precipitation of the coldest quarter
from the preceding year (bio19) was among the most
influential features in our model (Figure 3, A). Our anal-
ysis showed that the lower precipitation was positively
associated with higher WNV-outbreak risk (Figure 3, A).
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However, conflicting evidence of a strong association
between the preceding year's precipitation and human
WNV incidence exists.”” In fact, a strong negative asso-
ciation between annual rainfall of the preceding year
and the regional level human WNYV incidence risk was
reported.”” In another study,” a positive association
was found between WNYV presence and total days with
precipitation in late winter-spring. Ecological studies
suggest that the drought events can lead to outbreaks
the following year due to changes in the mosquito food
web structure.”” Mechanistic studies aiming to deter-
mine the vector ecology in varying climate conditions
may well elaborate on such associations.

The NDWI, an index of water in the ecosystem, was
also associated with the WNV presence (Figure 3, A).
The NDWTI is used as a proxy of water availability in a
region. Our observed data showed a lower NDWI index
during the first half of the year for all regions. Evidence
of anomalies between lower NDWI and WNV risk in
Europe was also reported previously.>*® Lower precipi-
tation in winter implies less water availability in the
region, indicative of drought-like conditions. Such con-
ditions are a likely indicator of the aggregation of host
birds and the vectors at available water bodies, which

could amplify the virus transmission rates,”® and influ-
8
ence the vector competence.”®

Role of host vectors in the WNV-outbreaks

The Culex modestus, the winter diapausing adult species,”
was also ranked as an influential feature by SHAP, show-
ing a positive association between its abundance and
WNV-outbreaks (Figure 3, A). The WNV affected regions
had a higher vector abundance compared to those without
WNV presence. Similar conclusions were drawn in other
studies t00.2"**** The abundance of Culex pipiens was also
found to be higher in 2018. However, our model predicted
that the regions with abundant Culex modestus were at
more WNV-outbreak risk.

Analogous to our regional-level predictions (Appen-
dix; Fig. As), concurrent risk indicators were positively
associated with the WNV vector abundance in other
regional-level studies.’®** In a regional study of the
2018-outbreak in Italy,’® the 2018 spring temperature
was compared with the previous year's WNV-outbreak
indicating an anomaly that could have played a role in
amplified WNV transmission at the beginning of the
season.
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Figure 4. Comparison of observed data of top SHAP predicted features.
The boxplot and the mean value (large solid circle) of top-6 most influential features predicted by SHAP for the NUTS regions
with a WNV presence in 2018 but not in the preceding year. The regions are compared using the values of the observed features

during 2017 (green color) with the 2018 data (light blue).
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WNYV epidemiology and the need for cross-disciplinary

public health practice

An after-action review was conducted by ECDC after the
2018 WNV outbreak that demonstrated the benefits of
cross-sectoral and cross-disciplinary approaches to pre-
paredness for WNV outbreaks in Europe.”* Precautions
were recommended to foster and strengthen arrange-
ments that enable coordinated One Health surveillance
and response during WNV transmission seasons; ensure
adequate laboratory capacities; strengthen risk communi-
cation, and fund longerterm research to address the
knowledge gaps identified in this after-action review.

Our study can help address some of the knowledge
gaps identified in that after-action review in order to
improve the response to WNV transmission in Europe.
It can help tailor prevention and response activities geo-
graphically and temporally. Our study was data-driven,
and we did not account for mechanistic processes of
these WNV drivers, though one could also consider
those to analyze or explore the WNV-outbreak dynam-
ics. While both the modelling paradigms uniquely
address the epidemiological hypothesis of interest, a
combination of both can help understand the intricate
processes driving the WNV transmission. This, in
essence, can help make more realistic and evidence-
based largescale spatio-temporal WNV predictions and
guide the public health response.

Roadmap to Al-based WNV early warning system
WNV outbreaks can have far-reaching implications, not
only for individuals but also for society at large, includ-
ing the tourism industry. Contamination of blood banks
by donors infected with WNV also represents a signifi-
cant threat to the blood supply.®* Early detection of
WNV outbreaks can accelerate the public health
response, and reduce the risk to individuals, the econ-
omy, and blood banks. Thus, building a reliable EWS
for WNV remains a public health priority.

However, the complexity of WNV transmission has
proven to be challenging at best. A number of attempts
have been made with entomological surveillance by focus-
ing on interventions that enable the early detection of virus
circulation in mosquitoes. These models require data on
mosquito populations and the environment. Such EWS
rely on data from field investigations which is hard to
come by on a timely basis. Therefore, these efforts have
not yielded operationalized EWS on a European scale. In
contrast, our model does not require time-sensitive ento-
mological input data from the field and can therefore be
operationalized by public health authorities. Further, it
can be deployed at a finer spatial resolution (NUTS3 level)
with a season’s lead time as well.

There are several steps involved to build an efficient
and reliable EWS for a disease with the complexity of
WNV. They include determining the influence of weather
and other environmental variables on disease ecology to

www.thelancet.com Vol 17 Month June, 2022

the surveillance and screening and engaging the decision-
makers with risk forecasts to intervention strategies. 5

The EWS built as such must be evaluated and
refined continuously by addressing the underlying chal-
lenges and minimizing their limitations. This can be
done by following the guidelines from the recent litera-
ture on the WNV roadmap to the EWS.2° Further, strat-
egies adopted to build the EWS for other diseases can
also be utilized for this purpose.®”

In this Europe-level spatio-temporal WNV-outbreaks
study, we found that the seasonal climate patterns, the
environmental factors, and the WNV vectors abundance
were crucial characters of the past WNV-outbreaks. The
rising global climate change impact in recent years indi-
cates a further geographic expansion of WNV to previ-
ously najve European regions. To this end, our results
suggest that a climate-related WNV early-warning sys-
tem that can account for and explain the intricate inter-
plays between climatic and other drivers is necessary to
achieve the European Climate and Health Observatory
goals. The presented model can serve this purpose. This
can be done, for example, by using future climate data
to identify, inform and prepare for the potential spatial
hotspots for WNV transmission in Europe in the near
future. Finally, similar indicators can be developed to
forecast other infectious diseases at the European scale.
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