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Abstract

Original Article

Introduction

Spatiotemporal and machine learning approaches are 
increasingly used to understand the epidemiology of 
infectious diseases.[1] The epidemiological understanding 
gained using these approaches has been instrumental in 
developing decision support tools, early warning systems, 
aberration detection algorithms, disease forecasting models, 
and evidence‑informed public health decision‑making.[2‑4] 
Implementation of Integrated Health Information Portal, 
deregulation of geospatial data by Department of Science and 
Technology, National Digital Health Mission, and other digital 
health initiatives will generate high‑resolution geocoded big 
data on health‑related events in India in the coming years.[5‑7] 
Existing routine datasets have also been used to understand 
micro‑climatic determinants using algorithms that can 
extract spatiotemporal parameters associated with disease 
occurrence.[2]

The development of infectious disease models in low‑and 
middle‑income countries is faced with challenges 
of obtaining high‑resolution data on climatic risk 
variation from on‑ground meteorological stations. Global 
and National intersectoral initiatives provide satellite 
imagery‑based Analysis Ready Datasets  (ARDs) and 
global climatic models through multiple sources.[8‑11] The 
use of these ARDs will enable public health managers and 
epidemiologists to obtain high‑resolution climatic data, 
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providing a future opportunity to strengthen existing disease 
surveillance.

Dengue is hyperendemic in India, and resultant economic 
losses have surpassed other vector‑borne diseases.[12] 
The occurrence of dengue is critically determined by the 
microclimatic conditions.[13,14] Satellite imagery ARDs and 
preprocessed climatic models are routine data sources on 
microclimatic conditions which can be modeled for dengue 
analytics.[15] The incorporation of lagged climatic variables and 
spatial characteristics in such models establishes temporality 
as defined in Hill’s criteria and adheres to Tobler’s law in 
geography.

Satellite imagery ARDs are large datasets commonly available 
in Hierarchical Data Formats  (HDF), network Common 
Data Form  (NetCDF), and other data formats  (Application 
Programming Interface  [API] based).[9‑11,16] Moderate 
Resolution Imaging Spectroradiometer provides ARDs in HDF; 
Integrated Multi‑satellitE Retrievals for Global Precipitation 
Mission  (IMERG) datasets, and Indian Meteorological 
Department  (IMD) in NetCDF format; and Modern‑Era 
Retrospective analysis for Research and Applications, 
Version 2, Meteorological and Oceanographic Satellite Data 
Archival Centre, Bhuvan web portal, and Open Government 
Data Platform India are API‑based routine geospatial data 
sources. Handling large datasets in a reproducible environment 
increases the grade of evidence, reduces manual errors, and 
is computationally efficient.[17] Thus, the present study was 
conducted to explore and develop a reproducible framework 
for extracting spatiotemporal climatic risk parameters from 
satellite imagery ARDs, understand the decadal trend of 
dengue in India, and estimate the relationship between dengue 
occurrence and climatic factors in India.

Materials and Methods

Study design
The study was carried out in two phases. The first phase 
included exploring and developing a reproducible framework 
for research‑level satellite imagery bulk preprocessing. The 
second phase included ecological analysis of publicly available 
dengue occurrence data and climatic variables obtained using 
the developed framework.

Exploration and reproducible framework development
Algorithms provided by Level‑1 and Atmosphere Archive 
and Distribution System Distributed Active Archive Center, 
IMD Gridded datasets archive, Global Precipitation Mission, 
R package archives, GitHub, and other code repositories were 
explored. Proprietary software‑based algorithms and algorithms 
for platforms other than the R environment were excluded. 
Framework for HDF, NetCDF, and API‑based satellite imagery 
ARDs extraction into analyzable tidy data formats was developed.

Secondary data sources
Annual state‑wise dengue occurrence data for the decadal 
period from January 01, 2010 to December 31, 2019, was 

extracted from the National Health Profile reports and 
National Vector Borne Disease Control Programme, India 
website.[18,19] Population estimates from Census 2011 and 
population projections for the year 2012–2019 provided 
population denominators for calculating dengue incidence per 
lakh population.[20] Climatic variables (temperature (mean and 
minimum) and cumulative precipitation) for daily timestamps 
were extracted using the “nasapower” package.[21]

Data analysis and interpretation
The National‑, regional‑, and state‑level decadal trend of 
dengue was calculated. For regional level analysis, the zonal 
councils as defined by the Ministry of Home Affairs were 
adopted.[22] Zonal statistics were performed to calculate climate 
parameters. Descriptive measures were calculated for climatic 
variables. Data visualization using the GIS environment in an 
open‑source platform was carried out. Correlation coefficients 
were calculated to estimate the relationship of dengue 
with mean annual temperature and rainy days. A  P  <  0.05 
was considered statistically significant. The framework 
development and statistical analysis were carried out using 
R version 4.0.3 (R Core Team (2020). R: A language and 
environment for   statistical computing. R Foundation for 
Statistical   Computing, Vienna, Austria).[23]

Ethics statement
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KL/2013/RR‑16) clearance obtained vide letter SCT/IEC/
IEC‑1653/DECEMBER‑2020 dated 19/12/2020.

Results

Framework
The algorithm undertakes bulk data extraction of climate 
parameters for a multi‑polygon from stored NetCDF/HDF 
files. The files should be downloaded according to the 
instructions given on respective websites and stored in a file 
directory. All the steps for data extraction are automated in 
the algorithm based on user inputs on the path of the directory 
where NetCDF/HDF files are stored. The researcher/user 
should provide identification of desired sub dataset, scale 
factor, and offsets if any. For API‑based extraction, a local 
grid with spatial resolution as of the data source is constructed 
for data extraction. The framework for data extraction from 
satellite imagery ARDs (NetCDF, HDF, and API‑based) can 
be accessed on the GitHub repository.

Epidemiological trend of dengue in India
During the decadal period, 8,18,973 dengue cases were 
reported with a mean  (standard deviation) annual incidence 
of 6.36 (3.60) per lakh population. The median annual dengue 
incidence for India was 6.57 per lakh population. Nationally, 
dengue incidence was maximum in 2019 followed by 
2017 (11.80 and 11.55 per lakh, respectively), and minimum 
dengue incidence was in 2011 (1.56 per lakh). 
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Regionally, the highest median annual dengue incidence 
was observed in the South, followed by the West, North, 
North East, Central, and East region  (8.18, 8.05, 4.5, 1.89, 
1.62, and 1.6 per lakh, respectively). Among the states, the 
highest median annual dengue incidence was observed in 
Punjab, Goa, Kerala, and Odisha  (24.49, 14.41, 12.13, and 
9.1 per lakh, respectively). The Union Territories showed 
higher dengue incidence rates with the highest median annual 
incidence reported from Dadar and Nagar Haveli (126.22 per 
lakh), followed by Puducherry (77.45 per lakh). The national 
capital, Delhi, reported a median annual incidence of 28.70 
per lakh population. Lakshadweep was the only state/UT 
with zero reported cases during the decadal period. Further, 
among the states, the outbreak years, as indicated by unusually 
high (more than 50 per lakh) dengue incidence were reported 
from the states of Arunachal Pradesh (134 per lakh in 2015), 
Uttarakhand (95 per lakh in 2019), Sikkim (66 per lakh in 
2019), Goa (64 per lakh in 2019), Himachal Pradesh (64 per 
lakh in 2018), Kerala (57 per lakh in 2017), and Punjab (52 
per lakh in 2017). The highest dengue incidence among union 
territories was reported from Dadar and Nagar Haveli (921 per 
lakh in 2016 and 427 per lakh in 2017), followed by Puducherry 
(318 per lakh in 2017 and 274 per lakh in 2012).

Climatic trends in India
Daily climatic data were extracted from 1164 coordinate 
locations across the country for the decadal study period 
(4,249,734 observations). The regional summary of decadal 
temperature is represented in Figure 1. The West, South, Central, 
and East regions of the country were warmer (decadal mean 
temperature of 26.31, 26.22, 26.31, and 25.41°C respectively) 
compared to North and Northeast regions  (decadal mean 
temperature of 18.71 and 19.47°C, respectively). The 
temperature variation was maximum in the North region (IQR 
17.37) and minimum in the South  (IQR 3.78). The highest 
decadal mean rainfall was present in the Northeast region, 
followed by the South and East regions  (75.53, 67.04, and 
62.66 mm, respectively).

Correlation between dengue occurrence and climatic 
variables
The correlation between climatic variables and dengue 
is represented in Table  1. The annual average daily mean 
temperature was positively correlated with dengue at the 
national level  (r  =  0.31, P  <  0.01). At the regional level, 
the correlation between mean temperature and dengue was 
maximum in West, North, and Central regions (r  =  0.43, 
0.37, and 0.35, P  =  0.02, < 0.01, and 0.13 respectively). 
The annual average of daily minimum temperature was 
significantly correlated with dengue in the East and Northeast 
regions (r = 0.33 and‑0.32, P = 0.04 and < 0.01, respectively). 
The precipitation days were positively correlated with the 
dengue at the national level  (r  =  0.06, P  =  0.30). At the 
regional level, the East and Northeast regions had a statistically 
significant relationship between precipitation days and 
dengue (r = 0.38 and 0.28, respectively, P = 0.02).

Discussion

The present study documents availability of high‑resolution 
satellite imagery research‑level datasets and provide 
a reproducible algorithm for bulk data extraction and 
preprocessing of these datasets. Availability of micro‑climatic 
data enables the development of models for understanding 
knowledge gaps in infectious disease epidemiology.[1,13,14,24] 
Advances in technology and increasing geocoded health 
data generation provide a challenge and an opportunity for 
the growth of epidemiological theories. Digital healthcare 
epidemiology, as compared to conventional epidemiology, is 
based on routine unstructured big datasets and requires a data 
science approach.[25] Research with reproducible open‑source 
algorithms facilitates understanding of the research pathways 
and enables future expansion of existing frameworks.[17,26]

Satellite remote sensing has increased manifold in the 
past few decades in technology and application potential. 
High‑resolution and multi‑frequency satellite sensors 
can capture data on multiple climatic and environmental 
parameters, among others.[27] A validation study of the IMERG 
rainfall dataset with IMD gridded data showed a correlation 
of + 0.88 in India.[28] It is also essential to understand that raw 
satellite imagery datasets have inherent data quality issues 
and require technical proficiency for preprocessing. Thus, 
the availability of research‑level datasets from domain expert 
teams helps public health professionals and epidemiologists to 
estimate the spatiotemporal variation of risk factors in disease 
causation.

The decadal dengue trend in India showed an increase across 
the country. This may be attributed to an actual increase over 
the decadal period and enhanced diagnostics, surveillance, 
and reporting mechanisms in the country. The correlation of 
climatic factors was found to be varying across regions in the 
country. It may be attributed to the large geographical extent 
and presence of multiple climatic zones. Temperature between 
16‑30 degrees Celsius is optimal for dengue transmission.[29] 
Precipitation provides water habitat for immature stages in 
the mosquito life cycle; however, high precipitation leading 
to flushing of immature stages is likely to have a negative 
association with dengue occurrence. In a study carried out to 
assess climatic factors and dengue occurrence in Thailand, 
different climatic factors were found to be associated with 
dengue incidence in coastal areas and plains.[30] Further studies 
at a more granular level (district/sub‑district) are required to 
understand micro‑climatic risk variation and its association 
with dengue in India.

The limitations in the present study include the lack of 
availability of granular dengue occurrence data. Data with a 
higher spatial and temporal resolution of disease occurrence 
would have further enhanced the understanding of the 
spatiotemporal epidemiology of dengue and its microclimatic 
associations. Furthermore, higher resolution data is required to 
understand the variance in these associations as per topography. 
These were beyond the scope of the present study. The role 
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of bio‑eco‑social determinants on the association of climatic 
factors with dengue occurrence was not studied in the present 
study. Incorporation of the same will enable the development 
of forecasting models to strengthen disease surveillance. The 
strength of the present study was the novel approach of using 
satellite imagery data to estimate the association between 
climatic factors and decadal dengue trends at national, regional, 
and state levels in India and the ability of the reproducible 
algorithm to process 4.2 million observations capturing daily 
climatic variables over a decade in a reproducible manner. 
The algorithms developed can be utilized in understanding the 
epidemiology of diseases affected by climatic conditions. The 
algorithm, being open‑source and scalable, can be expanded 
to include additional satellite datasets in the future.

Collaborative studies between health departments and 
academic institutions with granular dengue surveillance 
data need to be conducted for understanding micro‑climatic 
associations of dengue. Further, additional covariates such as 
climatic, environmental, sociodemographic, behavioral, and 
health system characteristics should be incorporated to 
understand the complex interplay of factors associated with 
dengue transmission. This understanding will enable us to 
develop efficient disease prevention and control strategies in 
the country.

Conclusion 
The present study documents and provides a reproducible, 

systematic algorithm for spatiotemporal climatic risk 
assessment using research-level satellite imagery datasets. 
Further, the study highlights heterogenous high dengue 
burden in the country associated with climatic factors. The 
data science approach for spatiotemporal modelling of dengue 
incorporating climatic variables has the potential to develop 
forecasting models for strengthening routine surveillance in 
the country.
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