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Abstract
Stomata play important roles in gas and water exchange in leaves. The morphological features of stomata and pave-
ment cells are highly plastic and are regulated during development. However, it is very laborious and time-
consuming to collect accurate quantitative data from the leaf surface by manual phenotyping. Here, we introduce
LeafNet, a tool that automatically localizes stomata, segments pavement cells (to prepare them for quantification),
and reports multiple morphological parameters for a variety of leaf epidermal images, especially bright-field micros-
copy images. LeafNet employs a hierarchical strategy to identify stomata using a deep convolutional network and
then segments pavement cells on stomata-masked images using a region merging method. LeafNet achieved promis-
ing performance on test images for quantifying different phenotypes of individual stomata and pavement cells com-
pared with six currently available tools, including StomataCounter, Cellpose, PlantSeg, and PaCeQuant. LeafNet
shows great flexibility, and we improved its ability to analyze bright-field images from a broad range of species as
well as confocal images using transfer learning. Large-scale images of leaves can be efficiently processed in batch
mode and interactively inspected with a graphic user interface or a web server (https://leafnet.whu.edu.cn/). The
functionalities of LeafNet could easily be extended and will enhance the efficiency and productivity of leaf pheno-
typing for many plant biologists.
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Introduction
Stomata are microscopic openings in the epidermis of
leaves, stems, and other plant organs that allow for oxygen
and carbon dioxide exchange between a plant and the at-
mosphere as well as for water loss by transpiration (Zoulias
et al., 2018). In general, each stoma contains a pair of spe-
cialized guard cells. In many plants, two or more subsidiary
or accessory cells that are adjacent to guard cells coopera-
tively regulate stomatal aperture. Stomatal function is essen-
tial for photosynthesis and respiration, which are critical for
plant survival in the terrestrial environment and for plant
productivity (Qi and Torii, 2018). Thus, stomata biology has
attracted the interest of many plant researchers over the
years.

Recent changes in climate, including elevated CO2 levels,
high temperatures, and drought, have significantly influ-
enced the ecosystem structure and the productivity of
global agriculture (Engineer et al., 2016; Xu et al., 2016).
High-throughput leaf thermal imaging has identified multi-
ple mutants in the CO2 response (Hashimoto et al., 2006).
To optimize the regulatory functions of stomata in response
to the changing environment, the generation, development,
and patterning of stomata and pavement cells are regulated
by the complex interplay between internal developmental
programs and various environmental cues (Casson and
Hetherington, 2010). However, the irregularity of plant

epidermal cells makes quantitative analysis difficult and inef-
ficient. Hence, there is an urgent need for high-throughput
technologies for screening large populations of genetic mate-
rials to identify regulators of stomatal development.

Due to the irregularity of epidermal cells surrounding sto-
mata, traditional phenotyping of stomata and pavement
cells in images generally depends on laborious, time-
consuming manual work by specialists in plant biology.
Fetter et al. developed StomataCounter to identify and
count stomata in scanning electron microscopy (SEM)
images and differential interference contrast (DIC) images
using deep convolutional neural networks (CNNs; Fetter
et al., 2019), but this technique has reduced accuracy for
bright-field images. Several tools have recently been devel-
oped for the segmentation of pavement cells (to prepare
them for quantification), including PaCeQuant (Möller et al.,
2017), PlantSeg (Wolny et al., 2020), and Cellpose (Stringer
et al., 2021). PlantSeg and PaCeQuant can generate accurate
segmentation for confocal and light sheet images, but their
accuracy is limited using bright-field images taken under a
light microscope. Cellpose performs well with convex
polygon-like cells, but fails with puzzle-shaped cells.
MorphoGraphX is a 3D image analysis tool that can be used
to collect accurate leaf epidermal information from confocal
or light sheet images (Barbier de Reuille et al., 2015); how-
ever, collecting large numbers of 3D images is expensive and
time-consuming compared with 2D bright-field images.

IN A NUTSHELL
Background: Stomata are microscopic openings in the leaf epidermis that allow for oxygen and carbon dioxide
exchange between a plant and the atmosphere. The phenotypes of stomata and the surrounding pavement cells,
including their numbers, sizes, and other morphological features, are important for understanding their functions
and regulation. Traditional phenotyping generally depends on laborious and time-consuming manual work by
specialists in plant biology. In recent years, several programs were independently developed to detect stomata or
to segment pavement cells. However, the accuracy of these methods for analyzing light microscopy images from
a broad range of species is limited.

Question: We aimed to develop an automatic tool to accurately identify and quantify different features of sto-
mata and pavement cells at the same time using light microscopy images to facilitate plant biology studies.

Findings: We introduce LeafNet, a tool that can automatically localize stomata, segment pavement cells, and re-
port multiple morphological parameters for a variety of leaf epidermal images, especially images generated by
bright-field microscopy. We employed a hierarchical strategy to identify stomata using a deep convolutional net-
work and then segment pavement cells on stomata-masked image using a region merging method. LeafNet
achieved promising performance on test images when quantifying different phenotypes of individual stomata and
pavement cells in a comparison with six currently available tools. LeafNet shows great flexibility, and we further
expanded its ability to analyze bright-field images from various species as well as confocal images using transfer
learning. Users can install LeafNet locally via the conda package or directly use it in the webserver at https://leaf
net.whu.edu.cn/.

Next steps: We believe that the plant community needs more well-labeled datasets for training and testing. We
think that pavement cell segmentation and stoma detection could be better solved with a single joint deep
learning model, with more datasets released by researchers in the future.
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Therefore, an automatic tool is needed to accurately identify
stomata and pavement cells simultaneously in bright-field
images taken under a light microscope.

Here, we present an accurate, robust, automatic, high-
throughput analytical tool called LeafNet for identifying and
quantifying different features of both stomata and pavement
cells in light microscopy images for plant biology studies.

Results

Hierarchical strategy for segmenting stomata and
pavement cells
In representative bright-field images of Arabidopsis thaliana
leaf epidermis obtained under a light microscope (Figure 1A
and Supplemental Figure S1A), the stomata appear ellipse-
like, whereas the pavement cells are extremely irregular in

Input

Detect
stoma

StomaNet

Mask
stoma

Segment
pavement cells

LeafSeg

Color

Quantify features

+

+

Output

E

N=140

Training dataD

C Expected statisticsB Expected segmentationA Input

#pavement cells: 118

C
ou

nt

Pavement cell size (μm2)

0

4

8

12

0 2000 4000 6000 8000 10000

#stomata: 34

C
ou

nt

Stoma size (μm2)

0
1
2
3
4

100 150 200 250 300 350 400

softmaxfull conv

concatenate

F

Subnet 3

Residual blocks
In-scale
Down-scale
Up-scale

Subnet 2

Subnet 1 StomaNet

Figure 1 Hierarchical strategy of LeafNet to segment stomata and pavement cells. A, Representative bright-field image of stomata and pavement
cells. B, Representative result from manual segmentation of the input image in (A). Stomata are labeled in blue, and pavement cells are filled with
different colors. C, Expected statistics from the segmentation in (B) on the size distribution for stomata (top) and for pavement cells (bottom).
D, Training data prepared from manual segmentation. The stomata are shown in blue, and the borders of pavement cells are labeled in green.
E, Hierarchical strategy and workflow of LeafNet with the StomaNet module for detecting stomata, and the LeafSeg module for segmenting
pavement cells on stoma-masked input. A graphical illustration of each step is shown in Supplemental Figure S1. F, Graphical illustration of the
deep residual neural network for the StomaNet module. This module is composed of three subnets with in-scale (orange), down-scale (red), and
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shape. Furthermore, the experimental process of creating
the images can generate various types of noise, which makes
it difficult to perform accurate segmentation and to quantify
their numbers and other features. Manual segmentation can
be accurate (Figure 1B), but it is very laborious and time-
consuming to label the boundaries of individual stomata
and the puzzle-shaped contours of pavement cells. Besides
segmentation, it is important to characterize the general fea-
tures of stomata and pavement cells, such as count and size
(Figure 1C), for a large number of leaves from the same or
different genotypes.

To solve these problems more efficiently, we built an au-
tomatic tool for identifying stomata using a deep-learning
approach, segmenting pavement cells with a region merging
algorithm, and quantifying their features, including count,
size, and length-to-width ratio for stomata and 28 different
morphological parameters (e.g. size, perimeter, circularity,
lobe count, and so on) for pavement cells. We initially man-
ually annotated 140 images with fine segmentation of sto-
mata and pavement cells by labeling pavement cell walls in
green, stomata in blue, and the background in black
(Figure 1D). All of these images with manual annotations
are available at the LeafNet website (https://leafnet.whu.edu.
cn/suppdata/).

We developed the LeafNet program, which employs a hi-
erarchical strategy to sequentially identify stomata and pave-
ment cells (Figure 1E). We first trained a stoma detector,
the StomaNet (Supplemental Figure S1B) module, based on
a deep residual network (Figure 1F and Supplemental Figure
S2) to identify reliable stomata in the input image. We then
masked the stomata out of the original image by coloring
them black. We built the LeafSeg module to reliably identify
pavement cell borders using a region merging algorithm
(Supplemental Figure S1C; see “Methods” section for details).
Finally, we merged the stomata and pavement cell borders.
Combining the two modules, LeafNet can generate pixel-
wise segmentation of the input image (Supplemental Figure
S1D) and then collect different morphological features of
stomata and pavement cells (Figure 1E).

LeafNet shows good performance for the
segmentation of stomata and pavement cells
To evaluate the performance of LeafNet for detecting sto-
mata, we manually labeled 30 images with 1,086 complete
stomata as a test set for stomata detection. The stomata
detecting module StomaNet achieved an average precision
(AP) of 98.1%, while StomataCounter (Fetter et al., 2019)
reached 89.5% precision as our baseline (Figure 2A). As a re-
sult, of the 1,086 ground truth stomata (using manual label-
ing as the gold standard), StomaNet successfully detected
1,062 stomata (missing 24) and falsely detected 35 stomata
(Figure 2B).

To compare LeafSeg with a baseline method, the morpho-
logical watershed algorithm (which operates on the topo-
graphic surface of an image gradient), we performed
baseline analysis using Insight Toolkit (ITK), a general image

processing library widely used for biological images
(McCormick et al., 2014). We added another optional mod-
ule, ITK morphological watershed, into LeafNet by calling
the ITK morphological watershed algorithm for pavement
cell segmentation (see “Methods” section for details). The
ITK morphological watershed module is interchangeable
with LeafSeg in LeafNet. For our 140 manually labeled
images, the LeafSeg module of LeafNet achieved an AP of
89.1% for segmenting �14,900 pavement cells, while ITK
morphological watershed achieved an AP of 70.7%
(Figure 2C). In detail, 79.6% pavement cells were correctly
predicted, 6.3% cells resulted from under-segmentation
(multiple ground truth cells were merged into one cell), and
14.2% cells resulted from over-segmentation (one ground
truth cell was split into multiple cells) (Figure 2D).

To further evaluate the ability of LeafNet to quantify dif-
ferent epidermal cell characteristics through pixel-wise seg-
mentation, we compared the predicted stoma sizes, length/
width ratios, and pavement cell sizes with the ground truth.
The average deviations of stoma sizes were in the range of –
13.3% to 13.9% by image, while the average deviations of
length/width ratios ranged from –0.1% to 13.2% (Figure 2E).
The MAE metrics (mean absolute error) of stoma size and
length/width ratio reached 12.6% and 12.4%, respectively.
The cumulative error distribution showed that most sto-
mata were correctly predicted, with �10% of stomata hav-
ing large errors in size or length/width ratio (Figure 2F).
Although under-segmented and over-segmented pavement
cells existed, the difference in pavement cell sizes between
the predictions and ground truth was not significant
(P-value as 0.48 from two-tailed t test on �11,000 complete
pavement cells in images) (Figure 2G).

Moreover, we analyzed the success and failure of LeafNet
for individual cases. The LeafSeg module of pavement cell
segmentation is noise-tolerant (Figure 2H, top row), but oc-
casionally failed when using images with strong noise
(Figure 2H, middle row) or with multiple breaks in short
borders (Figure 2H, bottom row). As shown in the three
representative examples (Figure 2I, left column), the
StomaNet module faithfully captured stomata in most cases.
The presence of fuzzy contours (Figure 2I, middle column)
or ellipse-like cell walls and noise (Figure 2I, right column)
seldom prevented StomaNet from correctly identifying
stomata.

Taken together, LeafNet performed satisfactorily in identi-
fying stomata and pavement cells and quantifying their bio-
logical features.

Comparison of LeafNet with StomataCounter and
PaCeQuant
For stoma detection, StomataCounter was developed to au-
tomatically count stomata from micrographs of the leaf epi-
dermis (Fetter et al., 2019). This program performed well for
SEM and DIC images, but it had limited capacity to detect
stomata in our dataset with bright-field images. In our test-
ing dataset used in Figure 2, StomataCounter only reached
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an AP of 89.5% (Figure 2A); it successfully detected 918 of
1,086 true stomata (missed 168 stomata) but falsely
detected 157 stomata with the best threshold. In addition,
this tool failed to predict the contours of the stomata and
as a result could not quantify their sizes.

For pavement cell segmentation, we first tried PaCeQuant,
a recently developed tool for pavement cell segmentation
and morphological analysis of fluorescence microscopy
images (Möller et al., 2017). This tool also performed well
for 2D images converted from confocal images by maximum
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intensity z-projection (Supplemental Figure S3A). When our
dataset (representative image in Figure 3A) was examined
with PaCeQuant, almost all pavement cells were over-
segmented into tiny areas, and no reasonable results were
generated (Figure 3B) in contrast to LeafNet (Figure 3C),
suggesting that PaCeQuant is not suitable for analyzing
bright-field images. We further examined the results from
the PaCeQuant output in detail and concluded that
PaCeQuant is very sensitive to various types of noise in
bright-field images, such as dots and lines (Figure 3D, top
row) or a dirty background (Figure 3D, middle row). The
missing feature of PaCeQuant to detect stomata also af-
fected its performance to segment cells adjacent to those
stomata (Figure 3D, bottom row), whereas the accuracy of
LeafNet in segmenting pavement cells is substantially en-
hanced by masking stomata before performing pavement
cell segmentation.

To further verify that the poor results of PaCeQuant were
due to its low tolerance to noise, we used the segmentation
from LeafNet to generate input images without these types
of noise for PaCeQuant. In this case, PaCeQuant successfully
segmented the pavement cells (Figure 3E, left), as shown in
the three areas in Figure 3E (right), in contrast to when
PaCeQuant was directly applied to the bright-field images
(Figure 3D, middle column). These results indicate that
LeafNet performs well in tolerating various types of noise in
bright-field images and that its hierarchical strategy is effec-
tive for avoiding the interference from stomata during pave-
ment cell segmentation.

To perform further morphological analysis, we imple-
mented a script to parse the annotation image generated by
LeafNet and to directly feed the pavement cell segmentation
results into PaCeQuant without calling its own segmenta-
tion function. The combination of LeafNet’s cell
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segmentation and PaCeQuant’s feature extraction enabled
us to obtain 28 morphological parameters such as perime-
ter, circularity, lobe counts, and so on in bright-field images.
These quantification results were then visualized within the
segmentation (Supplemental Figure S4). In addition, the an-
notation image from LeafNet can be manually corrected us-
ing GNU Image Manipulation Program (GIMP) or
Photoshop before extracting the morphological features (see
“Methods” section for details).

Quantitative evaluation of pavement cell
segmentation using LeafNet and other programs
We quantitatively evaluated LeafNet using three different
metrics: recognition quality (RQ; evaluating LeafNet’s ability
to correctly report pavement cells from an image), segmen-
tation quality (SQ, evaluating LeafNet’s ability to closely
match the predicted borders with cell walls), and panoptic
quality (PQ; the product of SQ and RQ; see “Methods” sec-
tion for details). Meanwhile, we used the same dataset to in-
vestigate the performance of ITK morphological watershed
and several recently developed programs, including
PaCeQuant (Möller et al., 2017), PlantSeg (Wolny et al.,
2020), Cellpose (Stringer et al., 2021), and CSU-CN from Cell
Segmentation Benchmark. As expected, LeafNet performed
much better than PaCeQuant, especially for RQ and PQ
(Figure 4A), with a representative example shown in
Figure 4B. Consistent with the results of our comparison
based on AP (Figure 2C), the performance of ITK morpho-
logical watershed was worse than that of LeafNet with the
LeafSeg module for these three metrics (Figure 4, A and B).

PlantSeg, which contains a pretrained model to segment
2D images, performed well on 2D images converted from
confocal images by maximum intensity z-projection
(Supplemental Figure S3B). However, PlantSeg’s performance
on our dataset was worse than LeafNet’s, probably because
the pretrained model was not trained for bright-field images
(Figure 4, A and B). Please note that PlantSeg has multiple
algorithm options for pavement cell segmentation, and the
results are based on the default GASP algorithm.

Cellpose accurately segmented convex polygon-like cells in
bright-field images (Supplemental Figure S3C). On our data-
set of bright-field images from Arabidopsis leaves, Cellpose
did not perform well with its pretrained cyto model. We
retrained a new model called Cellpose-retrained with the
images from our dataset. Cellpose-retrained showed im-
provement over Cellpose; however, its performance was still
worse than LeafNet’s (Figure 4, A and B), probably because
the Cellpose algorithm does not support nonconvex-shaped
cells.

We chose the CSU-CN method as a representative tool
from the Cell Segmentation Benchmark in Cell Tracking
Challenge (http://celltrackingchallenge.net/) because it
achieved the highest score on the Fluo-N2DH-GOWT1 data-
set, which contains high-contrast bright cells separated by a
dark background, similar to our images. CSU-CN accurately
segmented the image from the testing set Fluo-N2DH-

GOWT1 (Supplemental Figure S3D). However, CSU-CN
failed to segment our bright-field images of Arabidopsis
leaves (Figure 4, A and B), likely because all of its training
data were morphologically different from our images.

These results indicate that LeafNet well tolerates various
types of noise when bright-field images are used, and its hi-
erarchical strategy is effective for avoiding the interference
from stomata during pavement cell segmentation.

Extension of LeafNet to confocal images
To explore LeafNet’s flexibility and broad utility, we first ex-
amined its performance using bright-field images from a dif-
ferent plant species, tobacco (Nicotiana tabacum). As
expected, as shown by a representative example in
Figure 5A, LeafNet can faithfully identify the two stomata
and segment pavement cells, as in the ground truth image
(manual labeling as the gold standard), while
StomataCounter can only count stomata without giving ex-
act borders. For our dataset of 14 images from N. tabacum,
there were 79 stomata and 285 pavement cells based on
ground truth labeling. LeafNet successfully detected 75 and
falsely detected 8 stomata, while StomataCounter success-
fully detected only 36 and falsely detected 30 stomata. The
overall performance of LeafNet (F1 score 92.6%) was much
better than that of StomataCounter (F1 score 49.7%)
(Figure 5B). The performance of StomataCounter for N.
tabacum was much worse than that for A. thaliana, while
LeafNet’s performance showed a small loss (Figure 5B; 55%
in F1 score). On tobacco pavement cells, LeafNet achieved a
good panoptic score that appeared to be slightly better
than that for A. thaliana (Figure 5C), pointing to LeafNet’s
good adaptability to species with similar cell morphology.

Next, we extended LeafNet to analyze confocal images.
Confocal imaging can generate a 3D stack of images of leaf
tissue, as shown in Figure 5D (top panel) (Erguvan et al.,
2019). As LeafNet is designed to analyze 2D bright-field
images, we established a pipeline to convert 3D image stacks
from confocal or light sheet microscopes to a maximum in-
tensity z-projection 2D image using MorphoGraphX (Barbier
de Reuille et al., 2015) and ImageJ (Schindelin et al., 2012;
Figure 5D bottom, Supplemental Figure S5A, and see
“Methods” section for details). We noticed that LeafNet’s de-
fault mode accurately segmented pavement cells but had
difficulty in precisely identifying stomata, probably because
new confocal patterns were not observed in bright-field
images. Thus, we trained a StomaNet confocal model using
transfer learning on a confocal dataset of Arabidopsis leaves
(Erguvan et al., 2019) after preprocessing them into 2D
images and manually labeling all stomata and pavement
cells (Figure 5E).

We compared LeafNet with four other state-of-the-art
programs for analyzing confocal images, including
StomataCounter for stoma detection and PlantSeg,
PaCeQuant, and MorphoGraphX for pavement cell segmen-
tation (Figure 5, F–H and Supplemental Figure S5B).
PlantSeg and PaCeQuant perform segmentation on maxi-
mum intensity z-projections of image stacks in a similar
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manner to LeafNet, while MorphoGraphX performs 2.5D
surface segmentation on the original image stacks, and we
converted the results to 2D segmentation with z-projection,
allowing us to compare the results with other tools (see
“Methods” section for details).

For the 38 ground truth stomata, LeafNet successfully
detected 37 and falsely detected 1 stoma, while

StomataCounter successfully detected 29 and falsely
detected 5 stomata: the performance scores are summarized
in Figure 5F. For the 92 ground truth pavement cells,
LeafNet achieved a panoptic score of 85.0%, while
MorphoGraphX obtained a score of 66.1% and PlantSeg
obtained a score of 81.0%. PaCeQuant accurately identified
most pavement cells but falsely recognized stomata as 74
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pavement cells. As PaCeQuant rejects pavement cells that
are adjacent to image edges, we only quantified the perfor-
mance of MorphoGrahX and PlantSeg to compared with
LeafNet (Figure 5G). LeafNet achieved the highest accuracy
in terms of both stomata (LeafNet F1 score of 0.97 versus
0.80 for StomataCounter) and pavement cells (LeafNet F1
score of 0.85 versus 0.66 for MorphoGraphX and 0.81 for
PlantSeg). In the representative patch in Figure 5H (see

complete image in Supplemental Figure S5B),
StomataCounter missed true stoma, MorphoGraphX, and
PlantSeg mis-segmented pavement cells, and PaCeQuant fre-
quently miscalled one or more pavement cells in one stoma.

In summary, LeatNet outperforms the state-of-the-art pro-
grams in handling confocal images and has good adaptivity
to different species, pointing to its flexibility and potential
broad utility.
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B, Performance of LeafNet for stoma detection in A. thaliana and N. tabacum bright-field images compared with StomataCounter. C, Performance
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Extension of LeafNet to a wide range of species
To further examine the capability of LeafNet to analyze
images from a broad range of species and images obtained
using different micrographic methods, we performed sys-
tematic comparisons of datasets with a variety of images.

For stoma detection, we trained another universal model
in StomaNet using the same deep learning network struc-
ture with the training data used by StomataCounter (Fetter
et al., 2019). The training data contain 44,000 leaf epider-
mal images from more than 600 species taken by DIC mi-
croscopy, SEM, and bright-field microscopy; however, no
label information is available for this dataset (https://data
dryad.org/stash/dataset/doi:10.5061/dryad.kh2gv5f). We used
StomataCounter’s prediction on 960 images for rough train-
ing and then manually labeled 140 randomly selected images
for further training. The StomaNetUniversal model has a
similar performance to StomataCounter on 47 manually la-
beled testing images randomly selected from the testing set
(Figure 6A). StomaNet achieved an AP of 86.6%, similar to
that of StomataCounter (86.7% AP) (Figure 6B).

For pavement cell segmentation, we used a dataset con-
taining leaf epidermal images from different species with
stained cell walls (V}of�ely et al., 2019). The authors indicated
that it is very difficult to perform automatic segmentations
on this dataset due to various image defects, which
prompted them to manually track the boundaries of pave-
ment cells. The boundaries for each pavement cell were in-
dividually saved as coordinates relative to the cell center,
but their positions in the original image are not available.
We successfully mapped 4,188 pavement cells to 223 leaf
epidermal images from 86 different species as our testing
dataset (Figure 6D; see Supplemental Figure S6, A and B for
three representative examples), which are provided in
LeafNet’s website (https://leafnet.whu.edu.cn/suppdata/).

Based on this large testing dataset, we evaluated the
LeafSeg module of LeafNet compared to other existing
methods including ITK morphological watershed, PlantSeg,
PaCeQuant, and Cellpose. LeafSeg and Cellpose were more
robust to various types of noise in regularly shaped cells
comparing to the other programs (Figure 6E top and
Supplemental Figure S6, C and D left), and they both
achieved F1 scores 40.95 and PQ scores 40.75 for 430%
of the images (Figure 6, F and G). However, Cellpose showed
reduced performance for images with puzzle-shaped pave-
ment cells or with uneven lighting, which had little impact
on LeafSeg’s performance (Figure 6, E–G and Supplemental
Figure S6, C and D middle and right). PlantSeg and ITK mor-
phological watershed showed similar performance for images
with both regularly shaped and puzzle-shaped cells
(Figure 6E and Supplemental Figure S6, E and F), but their
overall performance scores were worse than that of LeafSeg
(Figure 6, F–G). We also tested CSU-CN in this dataset, but
the results were unusable (Supplemental Figure S6G).

Overall, for this complex dataset, LeafSeg had the best
performance, achieving an average F1 score of 0.74 and a
PQ score of 0.64, while ITK morphological watershed
obtained scores of 0.64 and 0.52, Cellpose obtained scores of

0.58 and 0.50, and PlantSeg obtained scores of 0.40 and 0.35,
respectively. We then examined the predicted pavement
cells compared with the ground truth for LeafSeg and
Cellpose, which generated more acceptable results (F1 score-
4 0.95 and PQ4 0.75) than PlantSeg and ITK morphologi-
cal watershed. Of the 4,188 manually labeled pavement cells,
LeafSeg correctly segmented 3,050 cells (72.8%), under-
segmented 697 cells (16.6%) into 304 cells, and over-
segmented 439 cells (10.4%) into 1,194 cells (Figure 6H).
Cellpose correctly segmented 2,535 pavement cells (60.5%),
under-segmented 94 cells (3.5%) into 39 cells, over-
segmented 504 cells (12.0%) into 2,485 cells, and reported
1,055 cells as background (Figure 6I). These results are con-
sistent with the finding that Cellpose performed worse than
LeafSeg based on F1 score and PQ.

In summary, these results suggest that the performance of
StomaNet for stoma counting is similar to that of
StomataCounter based on the 140 manually multi-species
training data and show that StomaNet can obtain accurate
boundaries for stomata with clear signals. For pavement cell
segmentation, LeafSeg showed the best performance among
the tools examined on a large set of images with various
defects from different species. By combining StomaNet and
LeafSeg, LeafNet can be extended to a wide range of species
and to images taken using different methods.

LeafNet detects significant biological differences
Next, we applied LeafNet to evaluate its ability to automati-
cally analyze large-scale microscopy image datasets and to
assess its difference from manual labeling using statistics. In
total, we analyzed 460 images using LeafNet, manually
inspected the segmentations of stomata and pavement cells,
and recorded the correct counts as ground truth. We com-
pared and evaluated the differences between the predicted
and manual results. The predicted counts of stomata and
pavement cells had good linear relationships with the man-
ual counts (Figure 7, A and B), and the deviation of counts
by image showed a tight distribution centered around 0
(Figure 7, C and D), with a mean absolute error of 5.80%
and 5.45% for stomata and pavement cells, respectively.

Furthermore, we tested whether LeafNet can detect statis-
tically significant differences in the densities of stomata and
pavement cells between two different Arabidopsis genotypes
in the Columbia-0 (Col-0) genetic background (M1 and M2).
M1 is Pro35S:PIF4 (expressing PHYTOCHROME INTERACTING
FACTOR4 under the control of the 35S promoter), and M2
is the wild-type control (Col-0). We compared the counts of
stomata and pavement cells generated by LeafNet with
those obtained from a manual annotation of 40 images. As
shown in the representative examples for stomata
(Figure 7E) and for pavement cells (Figure 7F), we observed
consistent results between the predicted (blue) and manual
(orange) results for nonsignificant differences in M1 or in
M2 (not significant P-value), and significant differences be-
tween M1 and M2, from paired t tests.
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These results suggest that LeafNet is a useful tool for plant
biologists to process large numbers of images and quantify
the biological differences in a reliable manner.

Using LeafNet in the CLI, GUI, and web server
To make LeafNet widely accessible to different users, we
designed a standalone program that can be run on most

computer systems. We also developed a graphic user inter-
face (GUI; Supplemental Figure S7A) and a web server
(Supplemental Figure S7B) for users without Linux experi-
ence, and a command-line interface (CLI) for experienced
users with servers (Supplemental Figure S7C). The web
server is hosted at https://leafnet.whu.edu.cn/. We have also
created two Conda packages for both CPU and GPU
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environments, and thus users can easily install LeafNet with
one command “conda install -c anaconda -c conda-forge -c
zhouyulab leafnet(-gpu)” in Linux, Mac OS, or Windows
systems.

LeafNet can use images generated from bright-field, confo-
cal z-projection, and other imaging methods as input by

using different modules. During preprocessing, Peeled deno-
iser works with bright-field images from peeled leaf epider-
mal (e.g. Figure 2A) and with confocal images (e.g.
Figure 5D), while Stained denoiser works with leaf epidermal
images with stained cell walls (e.g. Supplemental Figure S6A)
and is recommended for other types of images. For stoma
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detection, StomaNet is trained for bright-field images from
Arabidopsis by peeling off leaf epidermis, StomaNetConfocal
is trained for confocal images from Arabidopsis, and
StomaNetUniversal is trained to detect stomata in a wide
range of species.

LeafNet can generate three types of output results. The
first type is a preview image provided for visualizing the seg-
mentation, which is shown on the original image with cells
of different colors and stomata marked in blue. The second
type is an annotation image provided for further analysis,
which uses green lines to label pavement cell walls and
labels stomata with blue ellipses. The third type is a statisti-
cal text with quantified data, including morphological fea-
tures of the leaf epidermal image, such as the counts and
sizes of stomata and pavement cells (Supplemental Figure
S8, A–C). All three output results are available in the CLI,
GUI, and web server.

In addition, users can use LeafNet in annotation mode
and manually correct the output. Users can load the anno-
tation image from LeafNet together with the input image
into GIMP or Photoshop and then correct the annotation
image for further analysis (see “Methods” section for details).
Existing epidermal image processing pipelines could also
benefit from LeafNet by simplifying the image annotation
procedure, as the annotation image generated by LeafNet
could easily be handled by other tools. Supplemental Figure
S4 shows a feasible scenario in which manual correction can
be performed on the annotation image from LeafNet and
the corrected image can be fed into PaCeQuant to extract
morphological information.

We also provide training utilities to extend LeafNet for
other types of images. Advanced users can perform transfer
learning to improve the stoma detection model, and our
investigations and codes provide an exemplar workflow.
New types of stomata for other species can be analyzed us-
ing newly labeled images with transfer learning in a similar
manner (Figure 5E). Meanwhile, LeafNet’s segmentation can
be used as a good starting point for further manual correc-
tion to efficiently construct training data.

Discussion
Here we introduce LeafNet, a fully automatic program capa-
ble of precisely detecting stomata and segmenting pavement
cells. We devised a hierarchical strategy to accurately identify
stomata first and then segment pavement cells in stomata-
masked images. By incorporating two modules, StomaNet
and LeafSeg, LeafNet sequentially conquers the two chal-
lenges of precisely detecting stomata and segmenting pave-
ment cells while avoiding the interference between these
two types of objects with different characteristics. The
StomaNet module accurately segments stomata using a
deep neural network. The LeafSeg module tolerates various
types of noise and puzzle-shaped cell shapes, exhibiting ac-
ceptable performance on bright-field images using a region
merging algorithm. LeafNet adapts to images from a broad
range of species and outperforms several state-of-the-art

programs, enabling biologists to perform fast and simple
experiments using easily accessible bright-field microscopy,
SEM, or confocal microscopy.

Object detection and cell segmentation are classic tasks in
biological image processing, and many tools have been built
for different scenarios. At the level of stomata detection,
StomataCounter (Fetter et al., 2019) performed well on dif-
ferent types of images. StomaNet achieved higher accuracy
than StomataCounter for bright-field images from
Arabidopsis or species with similar morphology using 140
training images. StomaNetUniversal achieved similar accu-
racy to StomataCounter on images from a wide range of
species using 960 roughly labeled and 140 manually labeled
training images, in contrast to StomataCounter’s much
larger training data of 4,618 images, suggesting that
StomaNet requires less training data than StomataCounter
and that StomaNetUniversal has the potential to evolve
once more training data have been introduced. Moreover,
StomaNet’s ability to accurately segment the borders of sto-
mata enables LeafNet to mask stomata, which prevents the
stomata from interfering with subsequent pavement cell
segmentation.

For pavement cell segmentation, we tested three nondeep
learning-based tools including MorphoGraphX (Barbier de
Reuille et al., 2015), PaCeQuant (Möller et al., 2017), and ITK
morphological watershed (McCormick et al., 2014), and
three recently developed deep learning-based tools including
PlantSeg (Wolny et al., 2020), Cellpose (Stringer et al., 2021),
and CSU-CN (from Cell Tracking Challenge), based on a sys-
tematic evaluation on our own and published datasets.
MorphoGraphX has been used to perform surface segmen-
tation on confocal image stacks (Sapala et al., 2018).
However, its performance was slightly worse than that of
LeafNet and PlantSeg (Figure 5, G and H), and it could not
process bright-field images. PaCeQuant could not tolerate
the noise, uneven lighting, and inconsistent border signals in
bright-field images. ITK morphological watershed showed
better tolerance to image defects, but it did not perform as
well as LeafSeg (Figures 4 and 6). PlantSeg, Cellpose, and
CSU-CN achieved state-of-the-art performance on their own
preferred input images (Supplemental Figure S3, B–D), but
their performance on bright-field leaf epidermal images was
worse than that of LeafSeg, especially on puzzle-shaped
pavement cells (Figures 4 and 6). Based on the results for
these representative tools, we conclude that the segmenta-
tion of pavement cells in bright-field images is challenging
and that LeafSeg represents a significant advancement: it is
well-adapted to this task and performs even better than the
three deep learning-based methods examined.

To explore the possibility of using a CNN to enhance cell
wall signals as in PlantSeg, we retrained a PlantSeg CNN
model with 100 training images from our dataset in
Figure 4. We applied our Stained Denoiser before training
and prediction to improve its generalization ability. We eval-
uated the performance of this retrained network (named
CNNwall) on 40 other images from the same dataset. With
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CNNwall enhancement, PlantSeg’s PQ increased from 13.5%
to 70.4% on testing images, outperforming ITK morphologi-
cal watershed (59.1%), and LeafSeg’s PQ increased from
77.4% to 81.4% (Supplemental Figure S9A).

We further tested CNNwall’s broad utility using the Vofely
dataset (V}of�ely et al., 2019) used in Figure 6, D–I. PlantSeg’s
PQ increased from 34.5% to 55.7%, outperforming ITK mor-
phological watershed (52.9%), suggesting that CNNwall is
better adapted to various input images than PlantSeg’s origi-
nal model (Supplemental Figure S9, B and C). However,
LeafSeg’s PQ dropped from 64.5% to 56.5%, a value similar
to PlantSeg’s (55.7%) (Supplemental Figure S9, B and C). As
illustrated in the exemplar images, we reasoned that al-
though CNNwall could enhance the signals of cell walls
(Supplemental Figure S9D), it could also introduce extra arti-
facts when input images are different from those in the
training dataset, which would impair cell segmentation
(Supplemental Figure S9E). Consistently, the differences in
pavement cells in a wide range of species and using different
imaging methods had a huge impact to the performance of
previously reported deep learning-based cell segmentation
methods (Supplemental Figure S3, B–D and Supplemental
Figure S6, D, E, and G). Therefore, a much larger dataset
may be required to train a universal deep learning-based
pavement cell segmentation model than to train a good
stoma detection model. Considering that manually labeling
pavement cell boundaries take more time than labeling sto-
mata, we currently provide CNNwall-enhanced LeafSeg as
an optional method and provide the original LeafSeg as our
default universal method for pavement cell segmentation.

Nevertheless, we believe that pavement cell segmentation
and stoma detection could be better solved using a single
joint deep learning model in the future. Many articles
reported to date by the plant community only contain mor-
phological information but do not provide manually cor-
rected segmentation. Platforms such as Cell Tracking
Challenge (Ulman et al., 2017) provide different types of
images from cultivated cell lines with pixel-wise labels for
researchers and programmers to test and compare their
methods, but there no such platform is currently available
for pavement cell segmentation and stoma detection. We
believe that the plant community needs more well-labeled
datasets, and thus we shared all our training datasets, testing
datasets, and the results from LeafNet and existing tools in
the Download page of the LeafNet web server. In the future,
as more datasets are released by researchers, a deep
learning-based universal model could be created to segment
pavement cells and stomata simultaneously with better ac-
curacy and to further enhance the performance of auto-
matic morphological analysis tools on bright-field images.

The LeafNet program, the associated web server, strategy,
and codes are provided for the plant community with the
potential to replace manual work, enhance productivity, and
increase reproducibility. We have shown that LeafNet is flex-
ible and can be extended to different species or confocal
images, and we anticipate that it will be useful for a broad

range of researchers interested in quantifying stomata and
pavement cells.

Methods

Plant culture
All A. thaliana plants used in this study were of the Col-0
genetic background. The seeds were sterilized with 75% eth-
anol for 2 min and 2% sodium hypochlorite solution for
15 min. The seeds were sown in Petri dishes containing 0.5
strength Murashige and Skoog medium solidified with agar
and placed at 4�C for 3 days in complete darkness, followed
by growth under short days (10-h light/14-h dark) or long
days (14-h light/10-h dark) at 22�C. Seedlings were grown
under white fluorescent light at a light intensity of 100 lmol
photons/m2/s.

Image collection
The light microscope images in this study were taken using
a modified method as described (Engineer et al., 2014).
Briefly, plant tissues (leaves) were sampled throughout plant
growth. To obtain epidermal peels, glass slides (CITOGLAS
9821) were sprayed with Hollister Medical Adhesive (3.8 oz.
Spray HH7730), and the abaxial epidermal surfaces of leaves
from independent seedlings were gently pressed onto the
slides. The mesophyll tissues were removed from the slides
with a blade, and the epidermal peels were imaged under a
Leica DMi8 microscope at 200� magnification.

Manual labeling to create the training dataset
We used the GIMP program to annotate stomata and pave-
ment cells in input images. Briefly, we created a new annota-
tion layer on top of the sample layer and set its opacity to
50%. We manually labeled the boundaries of pavement cells
with a green line with 100 hardness and filled the stomata
with blue coloring on the annotation layer. We then set the
opacity of the annotation layer back to 100% and set its
background to black. Finally, we removed the sample layer,
flattened the image, and saved it as an annotation figure.
The manual annotations were validated by one or more
other annotators independently.

LeafNet workflow
The LeafNet workflow consists of image preprocessing, the
StomaNet module, and the LeafSeg module.

Preprocessing

Images taken under a light microscope can be noisy and
must be denoised before training or prediction. LeafNet has
two different preprocessing modules. For our images of the
epidermal surface peeled from leaves, we used the Peeled
Denoiser based on the noise reduction function from the
generic graphics library GEGL. Preprocessing involves the fol-
lowing steps: (1) resize the image to the resolution of the
trained model in PIL with Image.ANTIALIAS; (2) invert the
image only if it is a fluorescence image; (3) separate the im-
age into dark and bright parts with Otsu threshold; (4)
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perform an adaptive linear transformation on the bright
part to scale the mean of pixel gray scale to 200; (5) merge
the dark part and transform the bright part; and (6) denoise
the image with the noise reduction function from GEGL.

For other types of images, we used the Stained Denoiser.
This denoiser is better adapted to different types of images
and is recommended for most scenarios. This denoiser
involves the following steps: (1–2) the same steps as for the
Peeled Denoiser; (3) apply a median filter to the image; (4)
apply a high-pass filter to the image; (5) perform adaptive
area normalization on the image; and (6) apply mean curva-
ture blur on the image.

The StomaNet module for detecting stomata
StomaNet input

As we used valid convolution and transpose convolution
without padding, a fixed network size is needed, as the layer
output size must be a positive integer. Therefore, the sliding
window method is used for network input, including the fol-
lowing steps: (1) As the network output is smaller than the
input, denoised images are copy padded with OpenCV using
the border reflect method and (2) the sliding window
method is used to split the input images into smaller images
as network input. The input images are broken into patches
whose sizes match the network input (186 for StomaNet)
with a stride of network output (104 for StomaNet).

StomaNet network architecture

StomaNet is a deep residual network inspired by ISL
(Christiansen et al., 2018) built with TensorFlow and Keras.
The network comprises three sub-networks (called towers)
of different input sizes to collect information at different
scales. The towers are composed of residual blocks. Residual
blocks are sub-networks of the structure shown in
Supplemental Figure S2A. Three types of residual blocks are
used in the network: down-scale, in-scale, and up-scale, the
parameters of which are shown in Supplemental Figure S2B.

Residual blocks consist of two parts. The first part directly
copies the data to output, forming a residual connection.
Up sampling, cropping, and average pooling are used in dif-
ferent types of residual blocks to keep the data in the same
shape with convolution filters. The second part consists of
two convolution layers, which form an encoder-decoder
structure. Input is batch normalized and activated by ReLU
and Tanh (concatenated), encoded by a convolution layer
called Conv2D expand. The output of the encoder is
concatenated with the max pooling result of block input,
batch normalized, and activated by ReLU and Tanh
(concatenated) again. The 1*1 convolution is used as a de-
coder to reduce the count of filters to make it match the
block input. The results of the two steps are added to gen-
erate the output of a residual block.

StomaNet output

The output of the network are images that represent the
pixel-wise plausibility of stomata in the area (104 for

StomaNet) of the center of the input (186 for StomaNet).
As the input is generated by the sliding window approach,
output images are stacked, generating a full-sized probability
heatmap of stomata.

Training samples

For StomaNet, we manually labeled stomata in blue
(0,0,255) in raw images from Arabidopsis using GIMP soft-
ware, and saved the annotated images with the same name
and resolution as the original image in a label folder. A 4 px
Gaussian Blur was applied to stomata labels. The labeled
images were broken into patches using the sliding-window
method (the step length equals the size of the network out-
put in generating nonoverlapping results) and split into a
training set and validation set. An additional 15 negative
images (including five photographs, five instances of random
noise, and five different cells) without any stomata were
added to the training set to prevent overfitting. For
StomaNet confocal mode, we labeled six additional 2D
images transformed from 3D confocal images for transfer
learning. For StomaNetUniversal model, we manually labeled
140 images of diverse species using the same method.

Model training

StomaNet was built to be trainable with devices accessible
to most researchers in an acceptable timeframe. We trained
StomaNet with 4 Tesla K40m in approximately 2 h, and it
could be trained with a GTX 1060 6G in �8 h. It is possible
to train StomaNet with cheaper video gaming cards, but the
batch size should be decreased according to the VRAM of
the card used. We used Nadam optimizer with a batch size
of 25 for StomaNet.

Transfer learning

Transfer learning is implemented by using another pre-
trained model’s weights as initial weights and then applying
the above training procedure to fine-tune the model. We
did not freeze the weights of any layers in the initial model,
as low-level features also vary using different imaging meth-
ods. The StomaNetConfocal model was trained with six
manually labeled images based on StomaNet’s model. The
StomaNetUniversal model was trained with 140 manually la-
beled images based on an initial model trained on 960
images with rough labels from StomataCounter’s prediction.

Prediction

The prediction of stomata involves three steps: (1) stack
results from the network to produce a heatmap with the
same size as the input image; (2) assign the score as weight
for the pixels in the heatmap with scores 40.5 and perform
DBSCAN (eps = 10, minimum samples = 40) on these pixels
to generate clusters; and (3) perform PCA on each cluster
and use the two principal components to describe the
stoma as an ellipse. The stoma center is the weighted aver-
age of all pixels, and stoma size is the count of all pixels in
the cluster multiplied by the size correction ratio (0.85 for
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StomaNet). The stoma length/width ratio is computed as
(PC1/PC2)0.5, and stoma angle is the angle of PC1.

The LeafSeg module for segmenting pavement cells
After detecting stomata in the input image, the LeafSeg
module segments pavement cells using a region merging al-
gorithm as follows: (1) mask stomata in black (grayscale = 0)
with the length and width multiplied by 1.5 and copy the
masked image; (2) perform a median blur on the masked
image; (3) binarize the blurred image with Otsu threshold
and copy it; (4) skeletonize the image, remove isolated skele-
tons 564 px in size, and dilate the remaining skeletons by
4 px to obtain smooth borders; (5) perform a Euclidean dis-
tance transform on the border image; (6) perform the wa-
tershed algorithm on the masked image from step 1, with
the peaks in the distance image from step 5 as different
labels; (7) obtain border dots from watershed areas, and de-
fine the border score as the average value of the binarized
image from step 3 under the border; and (8) merge the
areas based on border score. An area can only merge with
one other area (with the lowest score) at a time. Border
score is recalculated after each merge. The final borders are
used as the boundaries of pavement cells for counting and
statistical analysis.

The borders of an image (50 px wide after resizing) are
considered invalid areas, which are marked with a red line in
the segmentation results. If the stoma center is located in a
valid area, the stoma is counted as 1 stoma; otherwise, it is
not counted in the final statistical result. Pavement cells
covering the edge of a valid area are counted as 0.5 pave-
ment cell and are not included in other statistical results
such as cell size.

Metrics for evaluating pavement cell segmentation
To evaluate pavement cell segmentation, three metrics were
used: RQ, SQ, and PQ. The PQ is the product of SQ and
RQ, which are defined as follows:

where TP represents true positives; FP represents false posi-
tives; FN represents false negatives; p and g represent predic-
tion and ground truth; IoU stands for Intersection over
Union; and jxj represents the number of x.

2D segmentation with ITK morphological
watershed, PlantSeg, PaCeQuant, and Cellpose
For ITK morphological watershed, we applied the following
steps for a fair comparison with LeafNet: (1) preprocess the
image with Stained Denoiser, as described in the LeafNet
workflow; (2) perform ITK morphological watershed on the
preprocessed image, try different segmentation levels, and
choose the one with the best PQ; (3) remove the areas
darker than the Otsu threshold of the full image to remove

cell walls; and (4) perform watershed with the remaining
areas as labels to fill in the removed areas.

For PlantSeg, we used the confocal_2D_unet_bce_dice_ds3x
model for boundary detection, applied rescaling based on the
image resolution, and used the GASP algorithm for segmenta-
tion. We tried different Under-/Over-segmentation factors and
CNN prediction thresholds and chose the values with the best
PQ, and used the default values for the other parameters.

For PaCeQuant and Cellpose, we only set one parameter
based on the input image resolution and used default values
for other parameters.

Preprocessing of 3D images to 2D images
MorphoGraphX is used to generate 2D images from 3D
image stacks via the following processes: (1) use Stack-
4Canvas-4ReverseAxes to reverse z-axis when the image
stack is upside down; (2) use Stack-4Filters-4Gaussian Blur
Stack to denoise the image by 1 lm; (3) use Stack-4Multi-
stack-4Copy Work to Main Stack to save the denoised
stack; (4) use Stack-4Morphology-4Edge Detect to create a
solid shape; (5) use Mesh-4Creation-4Marching Cube
Surface to create a mesh surface; (6) use Mesh-4Structure-
4Subdivide and Mesh-4Structure-4Smooth Mesh to
smooth the mesh; (7) use Stack-4Multi-stack-4Copy Main
to Work Stack to load the input signal; (8) use Stack-4Mesh
Interaction-4Annihilate(minDist = 6 lm, maxDist = 8 lm) to
remove the surface; and (9) save the work stack, and use
ImageJ to generate a maximum intensity z-projection image.

Surface segmentation with MorphoGraphX
To segment 3D image stacks with MorphoGraphX, we first
used the above steps 1–6 to create a mesh surface and then
performed the following operations: (1) use Stack-4Multi-
stack-4Copy Main to Work stack to load input signal; (2)
use Mesh-4Signal-4Project Signal (minDist = 6 lm,
maxDist = 8 lm) to project the signal onto the mesh sur-
face; and (3) use Mesh-4Segmentation-4Auto-
Segmentation (blur for seeding = 5 lm, radius for auto
seeding = 5 lm, blur for cell outlines = 1 lm, normalize radi-
us = 20 lm, border distance = 0.5 lm, merge threshold = 1.5
for input signal) to segment the mesh surface.

Prediction of stomata using StomataCounter
To predict stomata with StomataCounter, we used the
model named sc_feb2019.caffemodel, set the scale parame-
ter as 2 for our regular (A. thaliana, bright-field) and confo-
cal (A. thaliana, confocal) dataset, and set the scale as 1 for
the N. tabacum, bright-field dataset. Confocal maximum in-
tensity z-projection images should be inverted for better
performance. We tried different values for the threshold pa-
rameter in console mode to call stoma and used the one
with the best F1 score (1.625 for the regular dataset, 2.25 for
the N. tabacum dataset, and 0.3 for the confocal dataset).

Manual correction procedure with LeafNet
All results of LeafNet reported in this article are original out-
put without any correction. We added this section for users
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to improve the segmentation results. The manual correction
procedure involves the following steps: (1) use LeafNet to
generate a segmentation image; (2) load the sample image
and annotation image into GIMP or Photoshop; (3) place
the annotation image in a layer above the sample image; (4)
set the opacity of the annotation layer to 50%; (5) correct
pavement cell boundaries with 100 hardness and in green
(0,255,0) on the annotation layer, and correct stomata with
100 hardness and in blue (0,0,255) on the annotation layer;
(6) set the opacity of the annotation layer back to 100%; (7)
set the background of the image to black (0,0,0); (8) remove
the sample image layer; and (9) flatten the image, and save
the corrected annotation.

Quantification and statistical analysis
The quantifications of stomata and pavement cells are from
LeafNet version 1.0. To test for the differences between
manual and LeafNet predictions across different genotypes
(Figure 6, E and F), we used the paired two-tailed t test.

Data and code availability
Source code and released LeafNet packages are available in
the GitHub repository: https://github.com/zhouyulab/leafnet,
and the web application is available at https://leafnet.whu.
edu.cn/. The training data and the results from all the analy-
sis, as well as detailed configurations to run these tools, are
available at https://leafnet.whu.edu.cn/suppdata/.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Graphical representation of the
LeafNet workflow.

Supplemental Figure S2. Detailed structure of StomaNet.
Supplemental Figure S3. Representative examples of seg-

mentation results from four programs using their preferred
images.

Supplemental Figure S4. Integration of LeafNet with
PaCeQuant.

Supplemental Figure S5. Preprocessing of a 3D image
and representative results from five programs.

Supplemental Figure S6. Representative examples of seg-
mentation results from five tools using complex datasets.

Supplemental Figure S7. User interfaces for LeafNet.
Supplemental Figure S8. Sample output for LeafNet.
Supplemental Figure S9. Performance of CNNwall en-

hancement for pavement cell segmentation.
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