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SUMMARY

Individuals often respond differently to identical treatments, and characterizing such variability in treat-
ment response is an important aim in the practice of personalized medicine. In this article, we describe a
nonparametric accelerated failure time model that can be used to analyze heterogeneous treatment effects
(HTE) when patient outcomes are time-to-event. By utilizing Bayesian additive regression trees and a
mean-constrained Dirichlet process mixture model, our approach offers a flexible model for the regres-
sion function while placing few restrictions on the baseline hazard. Our nonparametric method leads to
natural estimates of individual treatment effect and has the flexibility to address many major goals of HTE
assessment. Moreover, our method requires little user input in terms of model specification for treatment
covariate interactions or for tuning parameter selection. Our procedure shows strong predictive perfor-
mance while also exhibiting good frequentist properties in terms of parameter coverage and mitigation
of spurious findings of HTE. We illustrate the merits of our proposed approach with a detailed analysis
of two large clinical trials (N = 6769) for the prevention and treatment of congestive heart failure using
an angiotensin-converting enzyme inhibitor. The analysis revealed considerable evidence for the presence
of HTE in both trials as demonstrated by substantial estimated variation in treatment effect and by high
proportions of patients exhibiting strong evidence of having treatment effects which differ from the overall
treatment effect.
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1. INTRODUCTION

While the main focus of clinical trials is on evaluating the average effect of a particular treatment, assess-
ing heterogeneity in treatment effect (HTE) across key patient sub-populations remains an important
task in evaluating the results of clinical studies. Accurate evaluations of HTE that is attributable to
variation in baseline patient characteristics offers many potential benefits in terms of informing patient
decision-making and in appropriately targeting existing therapies. HTE assessment can encompass a wide
range of goals: quantification of overall heterogeneity in treatment response, identification of impor-
tant patient characteristics related to HTE, estimation of proportion who benefits from the treatment,
identification of patient sub-populations deriving most benefit from treatment, detection of cross-over
(qualitative) interactions, identifying patients who are harmed by treatment, estimation of individualized
treatment effects, optimal treatment allocation for individuals, and predicting treatment effect for a future
patient.

Recently, there has been increasing methodology development in the arena of HTE assessment. How-
ever, each developed method has usually been targeted to address one specific goal of HTE analysis.
For example, Xu and others (2015) and Foster and others (2011) proposed methods to identify patient
subgroups whose response to treatment differs substantially from the average treatment effect. Weisberg
and Pontes (2015) and Lamont and others (2018) discuss estimation of individualized treatment effects.
Zhao and others (2012) discuss construction of optimal individualized treatment rules through minimiza-
tion of a weighted classification error. Shen and Cai (2016) focus on detection of biomarkers which are
predictive of treatment effect heterogeneity. Thus, most existing methods are not sufficiently flexible to
address multiple goals of HTE analysis.

The aim of this article is to construct a unified methodology for analyzing and exploring HTE with a
particular focus on cases where the responses are time-to-event. The methodology is readily extended to
continuous and binary response data. The motivation for investigating such a framework is the recognition
that most, if not all, of the above-stated goals of personalized medicine could be directly addressed if
a sufficiently rich approximation to the true data generating model for patient outcomes were available.
Bayesian nonparametric methods are well-suited to provide this more unified framework for HTE analysis
because they place few a priori restrictions on the form of the data-generating model and provide great
adaptivity. Bayesian nonparametrics allow construction of flexible models for patient outcomes coupled
with probability modeling of all unknown quantities which generates a full posterior distribution over
the desired response surface. This allows researchers to directly address a wide range of inferential
targets without the need to fit a series of separate models or to employ a series of different procedures.
Our methodology has the flexibility to address all of the HTE goals previously highlighted. For example,
researchers could quantify overall HTE; identify most important patient characteristics pertaining to HTE;
estimate the proportion benefiting from, or harmed by, the treatment; and predict treatment effect for a
future patient.

Bayesian additive regression trees (BART) (Chipman and others, 2010) provide a flexible means of
modeling patient outcomes without the need for making specific parametric assumptions, specifying a
functional form for a regression model, or for using pre-specified patient subgroups. Because it relies
on an ensemble of regression trees, BART has the capability to automatically detect non-linearities and
covariate interactions.As reported by Hill (2011) in the context of using BART for causal inference, BART
has the advantage of exhibiting strong predictive performance in a variety of settings while requiring little
user input in terms of selecting tuning parameters. Crucially, using BART for HTE analysis also allows
the user to avoid the need to pre-specify patient subgroups or to specify a potentially large number of
treatment-covariate interaction terms. While tree-based methods have been employed in the context of
personalized medicine and subgroup identification by a variety of investigators including, for example, Su
and others (2009), Loh and others (2015), and Foster and others (2011), BART offers several advantages
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for the analysis of HTE. In contrast to many other tree-based procedures that use a more algorithmic
approach, BART is model-based and utilizes a full likelihood function and corresponding prior over the
tree-related parameters. Because of this, BART automatically generates measures of posterior uncertainty;
on the other hand, reporting uncertainty intervals is often quite challenging for other frequentist tree-based
procedures though there has been interesting recent work on constructing confidence intervals for random
forests (Wager and others, 2014; Wager and Athey, 2015). In addition, because inference with BART
relies on posterior sampling, analysis of HTE on alternative treatment scales can be done directly by
simply transforming the desired parameters in posterior sampling. Moreover, any quantity of interest for
individualized decisions or HTE evaluation can be readily accommodated by the Bayesian framework. In
this article, we aim to utilize and incorporate these advantages of BART into our approach for analyzing
HTE with censored data.

Accelerated failure time (AFT) models (Wei, 1992) represent an alternative to Cox-proportional hazards
models in the analysis of time-to-event data. AFT models have a number of features which make them
appealing in the context of personalized medicine and investigating the comparative effectiveness of
different treatments. Because they involve a regression with log-failure times as the response variable,
AFT models provide a direct interpretation of the relationship between patient covariates and failure times.
Moreover, treatment effects may be defined directly in terms of the underlying failure times for the two
different treatments. Bayesian semi-parametric approaches to the accelerated failure time model have been
investigated by a number of authors including Komárek and Lesaffre (2007), Johnson and Christensen
(1988), Kuo and Mallick (1997), Hanson and Johnson (2002), and Hanson (2006). Kuo and Mallick (1997)
assume a parametric model for the regression function and suggest either modeling the distribution of
the residual term or of the exponential of the residual term via a Dirichlet process (DP) mixture model,
while Hanson (2006) proposed modeling the residual distribution with a DP mixture of Gamma densities.
Our approach for modeling the residual distribution resembles that of Kuo and Mallick (1997). Similar to
these approaches, we model the residual distribution as a location-mixture of Gaussian densities, and by
utilizing constrained DPs, we constrain the mean of the residual distribution to be zero, thereby clarifying
the interpretation of the regression function.

Extensions of the original BART procedure to handle time-to-event outcomes have been proposed and
investigated by Bonato and others (2011) and Sparapani and others (2016). In Bonato and others (2011),
the authors introduce several sum-of-trees models and examine their use in utilizing gene expression
measurements for survival prediction.Among the survival models proposed by Bonato and others (2011) is
an AFT model with a sum-of-trees regression function and a normally distributed residual term. Sparapani
and others (2016) introduce a nonparametric approach that employs BART to directly model the individual-
specific probabilities of an event occurring at the observed event and censoring times. To harness the
advantages of both BART and AFT models for HTE analysis, we propose a nonparametric version of the
AFT model which combines a sum-of-trees model for the regression function with a DP mixture model
for the residual distribution. Such an approach has the advantage of providing great flexibility while
generating interpretable measures of covariate-specific treatment effects thus facilitating the analysis of
HTE.

This article is organized as follows. In Section 2, we describe the general structure of our nonparametric,
tree-basedAFT model, discuss its use in estimating individualized treatment effects, detail new choices for
the BART hyperparameters, and describe our approach for posterior computation. Section 3 examines key
inferential targets in the analysis of HTE and describes how the nonparametric AFT model may be utilized
to estimate these targets. Moreover, in this section, we demonstrate the use of our nonparametric AFT
method to investigate HTE in two large clinical trials involving the use of an ACE inhibitor. In Section 4,
we detail the results of two simulation studies that evaluate our procedure in terms of individualized
treatment effect estimation, coverage, and treatment assignment. We conclude in Section 5 with a short
discussion.
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2. METHODS

2.1. Notation and nonparametric AFT model

We assume that study participants have been randomized to one of two treatments, which we denote by
either A = 0 or A = 1. We let x denote a p × 1 vector of baseline covariates and let T denote patient
failure time. Given censoring time C, we observe Y = min{T , C} and a failure indicator δ = 1{T ≤ C}
We assume also that censoring is noninformative, that is, C and T are independent given (A, x). The data
consist of n independent measurements {(Yi, δi, Ai, xi); i = 1, . . . , n}. Although, we assume randomized
treatment assignment here, our approach may certainly be applied in observational settings. In such
settings, however, one should ensure that appropriate unconfoundedness assumptions (e.g. Hill, 2011)
are reasonable, so that the individualized treatment effects defined in (2.2) correspond to an expected
difference in potential outcomes under the two treatments.

The conventional AFT model assumes that log-failure times are linearly related to patient covariates.
We consider here a nonparametric analogue of the AFT model in which the failure time T is related to the
covariates and treatment assignment through

log T = m(A, x)+ W , (2.1)

and where the distribution of the residual term W is assumed to satisfy E(W ) = 0. With the mean-zero
constraint on the residual distribution, the regression function m(A, x) has a direct interpretation as the
expected log-failure time given treatment assignment and baseline covariates.

The AFT model (2.1) leads to a natural, directly interpretable definition of the individualized treatment
effect (ITE), namely, the difference in expected log-failure in treatment A = 1 versus A = 0. Specifically,
we define the ITE θ(x) for a patient with covariate vector x as

θ(x) = E{log(T )|A = 1, x, m} − E{log(T )|A = 0, x, m}
= m(1, x)− m(0, x). (2.2)

The distribution of T in the accelerated failure time model (2.1) is characterized by both the regression
function m and the distribution FW of the residual term. In the following, we outline a model for the
regression function that utilizes additive regression trees, and we describe a flexible nonparametric mixture
model for the residual distribution FW .

2.2. Overview of BART

BART is an ensemble method in which the regression function is represented as the sum of individual
regression trees. The BART model for the regression function relies on a collection of J binary trees
{T1, . . . , TJ } and an associated set of terminal node values Bj = {μj,1, . . . ,μj,nj } for each binary tree Tj.
Each tree Tj consists of a sequence of decision rules through which any covariate vector can be assigned
to one terminal node of Tj by following the decision rules prescribed at each of the interior nodes. In other
words, each binary tree generates a partition of the predictor space where each element u = (A, x) of the
predictor space belongs to exactly one of the nj terminal nodes of Tj. The decision rules at the interior
nodes of Tj are of the form {uk ≤ c} vs. {uk > c}, where uk denotes the kth element of u. A covariate u that
corresponds to the lth terminal node of Tj is assigned the value μj,l and g(A, x; Tj, Bj) is used to denote the
function returning μj,l ∈ Bj whenever (A, x) is assigned to the lth terminal node of Tj.

The regression function m is represented in BART as a sum of the individual tree contributions

m(A, x) =
J∑

j=1

g(A, x; Tj, Bj). (2.3)
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Trees Tj and node values Bj can be thought of as model parameters. The prior distribution on these
parameters induces a prior on g(A, x; Tj, Bj) and hence induces a prior on the regression function m
via (2.3). To complete the description of the prior on (T1, B1), . . . , (TJ , BJ ), one needs to specify the
following: (i) the distribution on the choice of splitting variable at each internal node; (ii) the distribution
of the splitting value c used at each internal node; (iii) the probability that a node at a given node-
depth d splits, which is assumed to be equal to α(1 + d)−β ; and (iv) the distribution of the terminal
node values μj,l which is assumed to be μj,l ∼ Normal{0, (4k2J )−1}. In order to ensure that the prior
variance (4k2J )−1 for μj,l induces a prior on the regression function that assigns high probability to
the observed range of the data, Chipman and others (2010) center and scale the response so that the
minimum and maximum values of the transformed response are −0.5 and 0.5, respectively. Regarding
(i), at each interior node, the splitting variable is chosen uniformly from the set of available splitting
variables. Regarding (ii), Chipman and others (2010) suggest a uniform prior on the discrete set of
available splitting values though alternative prior distributions for the splitting value are implemented in
the R package BayesTree. We discuss our choice for the prior distribution on the splitting values in
more detail in Section 2.4.

To denote the distribution on the regression function m induced by the prior distribution on Tj, Bj with
parameter values (α,β, k) and J total trees, we use the notation m ∼ BART(α,β, k , J ). Choices for the
hyperparameters (α,β, k , J ) are described in more detail in Section 2.4.

2.3. Centered DP mixture prior

We model the density fW of W as a location-mixture of Gaussian densities with common scale parameter
σ . Letting G denote the distribution of the locations, we assume the density of W (conditional on G and
σ) can be expressed as

fW (w|G, σ) = 1

σ

∫
φ
(w − τ

σ

)
dG(τ ), (2.4)

where φ(·) is the standard normal density function. The DP is a widely used choice for a nonparametric
prior on an unknown probability distribution, and when placing a DP prior on G, the resulting DP mixture
model for the distribution of W provides a flexible prior for the residual density. Indeed, a DP mixture
model similar to (2.4) was used by Kuo and Mallick (1997) as a prior for a smooth residual distribution
in a semi-parametric accelerated failure time model. The Gaussian location-mixture model in (2.4) is
also similar to the flexible approach described in Komárek and others (2005) for modeling the residual
distribution in an AFT setting.

Because of the zero-mean constraint on the residual distribution, the DP is not an appropriate choice for
a prior on G.A direct approach proposed byYang and others (2010) addresses the problem of placing mean
and variance constraints on an unknown probability measure by utilizing a parameter-expanded version
of the DP which the authors refer to as the centered DP (CDP). As formulated by Yang and others (2010),
the CDP with mass parameter M and base measure G0 has the following stick-breaking representation

G =
∞∑

h=1

πhδτh , πh = Vh

∏
l<h

(1 − Vl), τh = τ ∗
h − μG∗ , τ ∗

h ∼ G0, Vh ∼ Beta(1, M ),

where μG∗ = ∑∞
h=1 πhτ

∗
h and where δτ denotes a distribution consisting only of a point mass at τ .

We denote that a random measure G follows a CDP with the notation G ∼ CDP(M , G0). From the
above representation of the CDP, it is clear that the mixture model (2.4) for W and the assumption that
G ∼ CDP(M , G0) together imply the mean-zero constraint, since the expectation of W may be expressed as
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E(W |G, σ) =
∞∑

h=1

τhπh =
∞∑

h=1

τ ∗
h πh − μG∗

∞∑
h=1

πh,

which equals zero almost surely.
For the scale parameter σ of fW , we assume that σ 2 ∼ κν/χ 2

ν , with the default degrees of freedom ν

set to ν = 3. Instead of specifying a particular value for the mass parameter, we allow for learning about
this parameter by assuming M ∼ Gamma(ψ1,ψ2)whereψ1 andψ2 refer to the shape and rate parameters
of the Gamma distribution, respectively.

Our nonparametric model that combines the BART model for the regression function and DP mixture
model for the residual density can now be expressed hierarchically as

log Ti = m(Ai, xi)+ Wi, Wi|τi, σ 2 ∼ N (τi, σ 2), for i = 1, . . . , n

m ∼ BART(α,β, k , J ), τi|G ∼ G, G|M ∼ CDP(M , G0)

σ 2 ∼ κν/χ 2
ν , M ∼ Gamma(ψ1,ψ2). (2.5)

In our implementation, the base measure G0 is assumed to be Gaussian with mean zero and variance σ 2
τ .

Choosing G0 to be conjugate to the Normal distribution simplifies posterior computation considerably, but
other choices of G0 could be considered. For example, a t-distributed base measure could be implemented
by introducing an additional latent scale parameter.

2.4. Prior specification

2.4.1. Prior for trees. For the hyperparameters of the trees T1, . . . , TJ , we defer to the defaults suggested
in Chipman and others (2010); namely, α = 0.95, β = 2, and J = 200. These default settings seem to
work quite well in practice, and in part F of the supplementary material available at Biostatistics online,
we investigate the impact of varying J through cross-validation estimates of prediction performance. Our
choice for the prior distribution of the splitting value c is uniform over the covariate quantiles which is
is based on the implementation in the BayesTree package (Chipman and McCulloch, 2016). Further
details are provided in part D of the supplementary material available at Biostatistics online.

2.4.2. Prior for terminal node parameters. As discussed in Section 2.2, the original description of
BART in Chipman and others (2010) employs a transformation of the response variable and sets the
hyperparameter k to k = 2 so that the regression function is assigned substantial prior probability to the
observed range of the response. Because our responses Yi are right-censored, we propose an alternative
approach to transforming the responses and to setting the prior variance of the terminal node parameters.
Our suggested approach is to first fit a parametric AFT model that only has an intercept in the model and
that assumes log-normal residuals. This produces estimates of the intercept μ̂AFT and the residual scale
σ̂AFT which allows us to define transformed “centered” responses ytr

i = yi exp{−μ̂AFT }. Turning to the prior
variance of the terminal node parameters μj,l , we assign the terminal node values the prior distribution
μj,l ∼ Normal{0, ζ 2/(4Jk2)}, where ζ = 4σ̂AFT . This prior on μj,l induces a Normal{0, 4σ̂ 2

AFT/k
2} prior

on the regression function m(A, x) and hence assigns approximately 95% prior probability to the interval
[−4k−1σ̂AFT , 4k−1σ̂AFT ]. Thus, the default setting of k = 2 assigns 95% prior probability to the interval
[−2σ̂AFT , 2σ̂AFT ]. Note that assigning most of the prior probability to the interval [−2σ̂AFT , 2σ̂AFT ] is
sensible because this corresponds to the regression function for the “centered” responses ytr

i rather than
the original responses.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
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2.4.3. Residual distribution prior. Under the assumed prior for the mass parameter, we have
E[M |ψ1,ψ2] = ψ1/ψ2 and Var(M |ψ1,ψ2) = ψ1/ψ

2
2 . We set ψ1 = 2 and ψ2 = 0.1 so that the resulting

prior on M is relatively diffuse with E[M |ψ1,ψ2] = 20, Var[M |ψ1,ψ2] = 200.
When setting the defaults for the remaining hyperparameters κ and σ 2

τ , we adopt a similar strategy to
that used by Chipman and others (2010) for BART when calibrating the prior for the residual variance.
There, they rely on a preliminary, rough overestimate σ̂ 2 of the residual variance parameter σ 2 and define
the prior for σ 2 in such a way that there is 1 − q prior probability that σ 2 is greater than the rough
estimate σ̂ 2. Here, q may be regarded as an additional hyperparameter with the value of q determining
how conservative the prior of σ 2 is relative to the initial estimate of the residual variance. Chipman and
others (2010) suggest using q = 0.90 as the default whenever ν is set to ν = 3.

Similar to the approach described above, we begin with a rough over-estimate σ̂ 2
W of the variance of

W to calibrate our choices of κ and σ 2
τ . A direct way of generating the estimate σ̂ 2

W is to fit a parametric
AFT model with log-normal residuals and use the resulting estimate of the residual variance, but other
estimates could potentially be used. To connect the estimate σ̂ 2

W with the hyperparameters κ and σ 2
τ

described in (2.5), it is helpful to first note that the conditional variance of the residual term can be
expressed as

Var(W |G, σ) = σ 2 + σ 2
τ

∞∑
h=1

πh

σ 2
τ

(τ ∗
h − μG∗)2. (2.6)

Our aim then is to select κ and σ 2
τ so that the induced prior on the variance of W assigns approximately

1 − q probability to the event
{
Var(W |G, σ) > σ̂ 2

W

}
, where σ̂ 2

W is treated here as a fixed quantity. As
an approximation to the distribution of (2.6), we use the approximation that

∑∞
h=1

πh
σ2
τ
(τ ∗

h − μG∗)2 has a
Normal{1, 2/(M+1)}distribution (see part E of the supplementary material available at Biostatistics online
for further details about this approximation). Assuming further that κ = σ 2

τ , we have that the variance
of W is approximately distributed as σ 2

τ [ν/χ 2
ν + N (1, {2(M + 1)}−1)] where M ∼ Gamma(ψ1,ψ2), and

with this approximation, we can directly find a value of σ 2
τ = κ such that P

{
Var(W |G, σ) ≤ σ̂ 2

W

} = q. In
contrast to the q = 0.9 setting suggested in Chipman and others (2010), we set the default to q = 0.5.

With the normal approximation to
∑∞

h=1
πh
σ2
τ
(τ ∗

h − μG∗)2, the prior for Var(W |G, σ) has a mean of

νκ + σ 2
τ where νκ is the variance of Wi conditional on a known location τi and σ 2

τ is the variance of the
locations. Thus, when ν = 3, our default setting of σ 2

τ = κ means that roughly three-fourths of the prior
variation in Wi is attributable to the variance of Wi conditional on location. Rather than fixing σ 2

τ = κ ,
one could introduce an additional hyperparameter that represents the proportion of variation in Wi that is
due to variation conditional on location, but we have chosen to fix σ 2

τ = κ in order to keep the number of
model hyperparameters manageable.

2.5. Posterior computation

The original Metropolis-within-Gibbs sampler proposed in Chipman and others (2010) works by sequen-
tially updating each tree while holding all other J − 1 trees fixed. As a result, each iteration of the Gibbs
sampler consists of 2J + 1 steps where the first 2J steps involve updating either one of the trees Tj or
terminal node parameters Bj and the last step involves updating the residual variance parameter. The
Metropolis-Hastings algorithm used to update the individual trees is discussed in Chipman and others
(1998). Our strategy for posterior computation is a direct extension of the original Gibbs sampler, viz.,
after updating trees and terminal node parameters, we update the parameters related to the residual distri-
bution. In addition, censored values are handled through a data augmentation approach where unobserved
survival times are imputed in each Gibbs iteration.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
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To sample from the posterior of the CDP, we adopt the blocked Gibbs sampling approach described
in Ishwaran and James (2001). In this approach, the mixing distribution G is truncated so that it only
has a large, finite number of components H which is done by assuming that, Vh ∼ Beta(1, M ) for
h = 1, . . . , H − 1 and VH = 1. This modification of the stick-breaking weights ensures that

∑H
h=1 πh = 1.

One advantage of using the truncation approximation is that it makes posterior inferences regarding G
straightforward. Additionally, when truncating the stick-breaking distribution, using the CDP prior as
opposed to a DP prior does not present any additional challenges for posterior computation because the
unconstrained parameters τ ∗

h ,μG∗ in (2.5) may be updated as described in Ishwaran and James (2001)
with the parameters of interest τh then being updated through the simple transformation τh = τ ∗

h − μG∗ .
The upper bound on the number of components H should be chosen to be relatively large (as a default, we
set H = 50), and in the Gibbs sampler, the maximum index of the occupied clusters should be monitored.
If a maximum index equal to H occurs frequently in posterior sampling, H should be increased. A
detailed description of our Metropolis-within-Gibbs sampler used for posterior computation is given in
part A of the supplementary material available at Biostatistics online. It is worth mentioning that in
our implementation, we assume that there is no missing data. A number of missing-data models for the
covariates could potentially be directly incorporated into our posterior sampling scheme. In part H of the
supplementary material available at Biostatistics online, we describe two particular missing-data models
for the covariates, and we discuss how they would be into integrated into our nonparametric AFT model.

3. POSTERIOR INFERENCES FOR THE ANALYSIS OF HETEROGENEOUS TREATMENT EFFECTS WITH AN

APPLICATION TO TWO LARGE CLINICAL TRIALS

The nonparametric AFT model (2.5) generates a full posterior over the entire regression function m(A, x)
and the residual distribution. As such, this model has the flexibility to address a variety of questions
related to heterogeneity of treatment effect. In particular, we focus in this section on the use of the
nonparametric AFT model to answer the following key HTE questions: overall variation in response to
treatment, individual-specific treatment effects, evidence for the presence of HTE, and the proportion of
patients likely to benefit from treatment. We use two large clinical trials (the SOLVD trials) to illustrate the
use of the BART-based nonparametricAFT model in addressing these HTE inferential targets.Applications
of the nonparametric AFT model to answer other HTE questions of interest from the SOLVD trial are
described in part B of the supplementary material available at Biostatistics online.

The Studies of Left Ventricular Dysfunction (SOLVD) were devised to investigate the efficacy of the
angiotensin-converting enzyme (ACE) inhibitor enalapril in a target population with low left-ventricular
ejection fractions. The SOLVD treatment trial (SOLVD-T) enrolled patients determined to have a history
of overt congestive heart failure, and the SOLVD prevention trial (SOLVD-P) enrolled patients without
overt congestive heart failure. In total, 2569 patients were enrolled in the treatment trial while 4228 patients
were enrolled in the prevention trial. The survival endpoint that we examine in our analysis is time until
death or hospitalization where time is reported in days from enrollment.

In our analysis of the SOLVD-T and SOLVD-P trials, we included 18 patient covariates common to
both trials, in addition to using treatment and study indicators as covariates. These 18 patient covariates
contained information from key patient characteristics recorded at baseline (e.g. age, sex, weight, ejection
fraction, blood pressure, sodium level, and diabetic status) along with information about patient history
(e.g. history of myocardial infarction, history of stroke, smoking history). In our analysis, we dropped
those patients who had one or more missing covariates, which resulted in 548 patients being dropped
from the total of 6797 enrolled in either trial. Currently, our software does not support an analysis where
the design matrix contains missing values. However, a number of missing-data models could be directly
incorporated into our Gibbs sampling scheme though the computational efficiency of any such scheme will
of course depend on specific model details and the size of the dataset to be analyzed. In the supplementary

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
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Fig. 1. Posterior means of θ(x)with corresponding 95% credible intervals for patients in the SOLVD-T and SOLVD-P
trials.

material available at Biostatistics online, we discuss several potential missing-data models and how they
could be incorporated into our posterior computation scheme.

3.1. Individualized Treatment Effects

As discussed in Section 2.1, a natural definition of the individual treatment effects in the context of an
AFT model is the difference in expected log-survival θ(x) = m(1, x)− m(0, x). Draws from the posterior
distribution of

(
m(A1, x1), . . . , m(An, xn)

)
allow one to compute fully nonparametric estimates θ̂ (xi) of

the treatment effects along with corresponding 95% credible intervals. As is natural with an AFT model,
the treatment difference θ(x) in (2.2) is examined on the scale of log-survival time, but other, more
interpretable scales on which to report treatment effects could be easily computed. For example, ratios in
expected survival times ξ(x) defined by

ξ(x) = E
{
T |A = 1, x, m

}/
E
{
T |A = 0, x, m

} = exp{θ(x)}, (3.1)

could be estimated via posterior output. Likewise, one could estimate differences in expected failure time
by using both posterior draws of θ(x) and of the residual distribution. Posterior information regarding
treatment effects may be used to stratify patients into different groups based on anticipated treatment
benefit. Stratification could be done using the posterior mean, the posterior probability of treatment
benefit, or some other relevant measure.

Figure 1 shows point estimates of the ITEs θ(x) for patients in both the SOLVD-T and SOLVD-P
trials. While the plot in Figure 1 indicates a clear, overall benefit from the treatment, the variation in the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
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ITEs suggests substantial heterogeneity in response to treatment. In the following subsection, we further
investigate the evidence for the presence of HTE in the SOLVD trials.

3.2. Assessing Evidence for Heterogeneity of Treatment Effect

As a way of detecting the presence of HTE, we utilize the posterior probabilities of differential treatment
effect

Di = P
{
θ(xi) ≥ θ̄ |y, δ

}
, (3.2)

along with the closely related quantity

D∗
i = max{1 − 2Di, 2Di − 1}, (3.3)

where, in (3.2), θ̄ = n−1
∑n

i=1 θ(xi) is the conditional average treatment effect. Note that θ̄ is a model
parameter that represents the average value of the individual θ(xi) and does not represent a posterior mean.
The posterior probability Di is a measure of the evidence that the ITE θ(xi) is greater or equal to θ̄ , and
thus we should expect both high and low values of Di in settings where substantial HTE is present. Note
that D∗

i approaches 1 as the value of Di approaches either 0 or 1, and D∗
i = 0 whenever Di = 1/2. For a

given individual i, we consider there to be strong evidence of a differential treatment effect if D∗
i > 0.95

(equivalently, if Di ≤ 0.025 or Di ≥ 0.975), and we define an individual as having mild evidence of a
differential treatment effect provided that D∗

i > 0.8 (equivalently, if Di < 0.1 or Di > 0.9). For cases
with no HTE present, the proportion of patients exhibiting strong evidence of differential treatment effect
should, ideally, be zero or quite close to zero. For this reason, the proportion of patients with D∗

i > 0.95
can potentially be a useful summary measure for detecting the presence of HTE. In this article, we do not
explore explicit choices of a threshold for this proportion, but we examine, through a simulation study in
Section 4.2, the value of this proportion for scenarios where no HTE is present. It is worth mentioning that
the quantity D∗

i represents evidence that the treatment effect for patient i differs from the overall treatment
effect, and by itself, is not a robust indicator of HTE across patients in the trial. Rather, the proportion of
patients with high values of D∗

i is what we use to assess evidence for HTE.
It is worth noting that the presence or absence of HTE depends on the treatment effect scale, and Di

is designed for cases, such as the AFT model, where HTE is difference in expected log-failure time. For
example, it is possible to have heterogeneity on the log-hazard ratio scale while having no heterogeneity
in the ITEs θ(xi) across patients.

Examining the posterior probabilities of differential treatment effect offers further evidence for the pres-
ence of meaningful HTE in the SOLVD trials. Table 1 shows that, in the SOLVD-T trial, approximately
19% of patients had strong evidence of a differential treatment effect (i.e. D∗

i > 0.95), and approximately
42% of patients had mild evidence (i.e. D∗

i > 0.80). In the SOLVD-P trial, approximately 7% of patients
had strong evidence of a differential treatment effect while approximately 32% had mild evidence. Com-
parison of these percentages with the results from the simulations of Section 4.2 suggests the presence
of HTE. In the null simulation scenarios of Section 4.2, the proportion of cases with strong evidence of
differential treatment was very close to zero. Thus, the large proportion of patients with strong evidence
for differential treatment effect is an indication that there is HTE in the SOLVD trials that deserves further
exploration.

3.3. Characterizing heterogeneity of treatment effect

Variability in treatment effect across patients in the study is a prime target of interest when evaluating
the extent of HTE from the results of a clinical trial. Assessments of HTE can be used to evaluate
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Table 1.Tabulation of posterior probabilities of treatment benefit and posterior probabilities of differential
treatment effect Di = P{ξ(xi) ≥ ξ̄ |y, δ} for patients in the SOLVD trials

SOLVD Treatment Trial SOLVD Prevention Trial

P{ξ(xi) > 1|y, δ} ∈ (0.99, 1] 51.38 20.47
P{ξ(xi) > 1|y, δ} ∈ (0.95, 0.99] 24.69 23.71
P{ξ(xi) > 1|y, δ} ∈ (0.75, 0.95] 20.08 41.98
P{ξ(xi) > 1|y, δ} ∈ (0.25, 0.75] 3.85 13.84

P{ξ(xi) > 1|y, δ} ∈ [0, 0.25] 0.00 0.00

D∗
i > 0.95 19.36 7.30

D∗
i > 0.80 41.93 31.58

For each trial, the empirical percentage of patients whose estimated posterior probability of treatment benefit lies within each of the
intervals (0.99, 1], (0.95, 0.99], (0.75, 0.95], (0.25, 0.75], and [0, 0.25] is reported. In addition, the percentages of patients in each
trial that exhibit “strong” (i.e. D∗

i > .95) and “mild” (i.e. Di > 0.80) evidence of differential treatment effect are shown.

consistency of response to treatment across patient sub-populations or to assess whether or not there are
patient subgroups that appear to respond especially strongly to treatment. In more conventional subgroup
analyses (e.g. Jones and others, 2011), HTE is frequently reported in terms of the posterior variation
in treatment effect across patient subgroups. While the variance of treatment effect is a useful measure,
especially in the context of subgroup analysis, we can provide a more detailed view of HTE by examining
the full distribution of the individualized treatment effects defined by (2.2) where the distribution may
be captured by the latent empirical distribution function Hn(t) = 1

n

∑n
i=1 1{θ(xi) ≤ t}. Such an approach

to examining the “distribution” of a large collection of parameters has been explored in Louis and Shen
(1999). The distribution function Hn(t) may be regarded as a model parameter that may be directly
estimated by

Ĥn(t) = 1

n

n∑
i=1

P{θ(xi) ≤ t|y, δ}, (3.4)

and credible bands for Hn(t) may be obtained from posterior samples. For improved visualization of the
spread of treatment effects, it is often better to display a density function ĥn(t) associated with (3.4) which
could be obtained through direct differentiation of (3.4). Alternatively, a smooth estimate can be found by
computing the posterior mean of a kernel function Kλ with bandwidth λ

ĥn(t) = 1

n

n∑
i=1

E
{

Kλ

(
t − θ(xi)

)∣∣∣y, δ
}

. (3.5)

The posterior of Hn(t) provides a direct assessment of the variation in the underlying treatment effects,
and as such, serves as a useful overall evaluation of HTE.

Figure 2 displays a histogram of the posterior means of the treatment ratios ξ(x) (see eq. (3.1)), for
each patient in the SOLVD-T and SOLVD-P trials. In contrast to the ITE scale used in Figure 1, defining
the ITEs in terms of the ratios of expected failure times may provide a more interpretable scale by which
to describe HTE. As may be inferred from the histogram in Figure 2, nearly all patients have a positive
estimated treatment effect with 98.9% having an estimated value of ξ(xi) greater than one. Of those in the
SOLVD-T trial, all the patients had E{ξ(xi)|y, δ} > 1, and 98.2% of patients in the SOLVD-P trial had
E{ξ(xi)|y, δ} > 1.
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Fig. 2. Histogram of point estimates (i.e. posterior means) of the treatment effects ξ(x) = eθ(x) and smooth posterior
estimates ĥn(t) of the treatment effect distribution. The histogram is constructed using all point estimates from both
the SOLVD treatment and prevention trials. Smooth estimates, ĥn(t), of the distribution of treatment effects were
computed as described in equation (3.5) for the two trials separately. The kernel bandwidth λ for each trial was chosen
using the rule λ = [0.9 × min(σ̂ξ , ˆIQRξ )]/[1.34 × n1/5

t ], where σ̂ξ and ˆIQRξ are posterior means of the standard
deviation and inter-quartile range of ξ(xi), respectively and where nt is the trial-specific sample size.

Figure 2 also reports the smoothed estimate ĥn(t) of the distribution of the treatment effects separately
for the two trials. These smoothed posterior estimates of the treatment effect distribution were computed
as described in equation (3.5) where posterior samples of ξ(xi) were used in place of θ(xi). Note that
the ĥn(t) shown in Figure 2 are estimates of the distribution of the underlying treatment effects and do
not represent the posterior distribution of the overall treatment effects within each trial. As expected,
the variation in treatment effect suggested by the plots of ĥn(t) in Figure 2 is greater than the variation
exhibited by the posterior means of ξ(xi). The estimates ĥn(t) provide informative characterizations of the
distribution of treatment effects in each trial especially for visualizing the variability in treatment effects
in each trial.

3.4. Proportion who benefits

Another quantity of interest related to HTE is the proportion of patients who benefit from treatment. Such
a measure has a direct interpretation and is also a useful quantity for assessing the presence of cross-over
or qualitative interactions, namely, cases where the effect of treatment has the opposite sign as the overall
average treatment effect. That is, for situations where an overall treatment benefit has been determined,
a low- estimated proportion of patients benefiting may be an indication of the existence of cross-over
interactions.
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Using the treatment differences θ(x), the proportion who benefit may be defined as

Q = 1

n

n∑
i=1

1{θ(xi) > 0}. (3.6)

Alternatively, one could define the proportion benefiting relative to a clinically relevant threshold ε > 0,
i.e. Qε = n−1

∑n
i=1 1{θ(xi) > ε}. The posterior mean of Q is an average of the posterior probabilities

of treatment benefit p̂i = P{θ(xi) > 0|y, δ}. Posterior probabilities of treatment benefit can be used for
treatment assignment (p̂i > 1/2 vs. p̂i ≤ 1/2), or as an additional summary measure of HTE where one,
for example, could tabulate the proportion very likely to benefit from treatment p̂i > 0.99 or the proportion
likely to benefit from treatment p̂i > 0.90.

When using (3.6) to estimate the proportion of patients benefiting in each of the SOLVD trials, the
estimated proportions of patients (i.e. the posterior mean of Q in (3.6)) benefiting were 95.6% and 89.1%
in the SOLVD-T and SOLVD-P trials, respectively. These proportions are approximately equal to the area
under the curve of ĥn(t) for t ≥ 1 in Figure 2.

Table 1 shows a tabulation of patients according to evidence of treatment benefit. In both trials, all
patients have at least a 0.25 posterior probability of treatment benefit (i.e. P{ξ(xi) > 1|y, δ} > 0.25). In
the treatment trial, 76% percent of patients exhibit a posterior probability of benefit greater than 0.95, and
the corresponding percentage for the prevention trial is 44%.

3.5. Partial dependence and exploring important variables for HTE

To explore patient attributes important in driving differences in treatment effect, we use a direct approach
similar to the “Virtual Twins” method used by Foster and others (2011) in the context of subgroup
identification. In Foster and others (2011), the authors suggest a two-stage procedure where one first
estimates treatment difference for each individual and then, using these estimated differences as a new
response variable, one estimates a regression model in order to identify a region of the covariate space
where there is an enhanced treatment effect. Similar to this, to examine important HTE variables in
the SOLVD trials, we first fit the full nonparametric AFT model to generate posterior means θ̂ (xi) of
the individualized treatment effect for each patient. Then, we fit a (weighted) linear regression using
the previously estimated θ̂ (x) as the response variable and the patient covariates (except for treatment
assignment) as the predictors. Because the treatment difference θ(x) should only depend on covariates
that are predictive of HTE, using estimates of the unobserved θ(xi) as the responses in a regression
with the patient covariates as predictors represents a direct and efficient approach to exploring variables
involved in driving treatment effect heterogeneity. In this weighted regression, the residual variances were
assumed proportional to the posterior variances of θ(xi). Additionally, to make the covariates comparable,
all covariates were normalized to have zero mean and unit variance. The patient covariates with the five
largest estimated coefficients in absolute value were as follows: ejection fraction, history of myocardial
infarction, creatinine levels, gender, and diabetic status. We can further explore the role these key variables
play in driving HTE through the use of partial dependence plots.

Partial dependence plots are a useful tool for visually assessing the dependence of an estimated function
on a particular covariate or set of covariates. As described in Friedman (2001), such plots demonstrate
the way an estimated function changes as a particular covariate varies while averaging over the remaining
covariates. For the purposes of examining the impact of a covariate on the treatment effects, we define the
partial dependence function for the lth covariate as

ρl(z) = 1

n

n∑
i=1

θ(z, xi,−l),
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where (z, xi,−l) denotes a vector where the lth component of xi has been removed and replaced with the value
z. Estimated partial dependence functions ρ̂l(z) with associated credible bands may be obtained directly
from MCMC output. The supplementary material available at Biostatistics online contains a figure showing
partial dependence plots for ejection fraction and creatinine, and this figure also displays the posterior
distribution of the overall treatment effect in both the male/female subgroups and the subgroups defined
by history of myocardial infarction.

4. SIMULATIONS STUDIES

To evaluate the performance of the nonparametric, tree-based AFT method, we performed two main
simulation studies. An additional simulation study involving randomly generated nonlinear regression
functions is described in part C of the supplementary material available at Biostatistics online. For per-
formance related to quantifying HTE, we recorded the following measures: root mean-squared error
(RMSE) of the estimated individualized treatment effects, the misclassification proportion (MCprop),
i.e. the proportion of patients allocated to the wrong treatment, and the average coverage of the credible
intervals. Average coverage proportions are measured as the average coverage over individuals, namely,
n−1

∑n
i=1 1{θ̂L(xi) ≤ θ(xi) ≤ θ̂U (xi)}, for interval estimates [θ̂L(xi), θ̂U (xi)].

For the performance measures of RMSE and coverage proportions, we compared our tree-based non-
parametric AFT model (NP-AFTree) with the semi-parametric AFT model (SP-AFTree) where the BART
model is used for the regression function and the residual distribution is assumed to be Gaussian. In addi-
tion, we compared the NP-AFTree procedure with a parametricAFT model (Param-AFT) which assumes a
linear regression with treatment-covariate interactions and log-normal residuals. For both the NP-AFTree
and SP-AFTree methods, 7000 MCMC iterations were used with the first 2000 treated as burn-in steps.
For both of these, the default parameters (i.e. q = 0.5, k = 2, J = 200) were used for each simulation
scenario.

4.1. AFT simulations based on the SOLVD trials

In our first set of simulations, we use data from the SOLVD trials (The SOLVD Investigators, 1991) as a
guide. To generate our simulated data, we first took two random subsets of sizes n = 200 and n = 1, 000
from the SOLVD data. For each subset, we computed estimates m̃200(A, x) and m̃1000(A, x), respectively
of the regression function for A ∈ {0, 1} using the nonparametric AFT Tree model. Simulated responses
yk were then generated as

log yk = Ak(n)m̃
n(0, xk(n))+ (1 − Ak(n))m̃

n(1, xk(n))− 0.4 + Wk , k = 1, . . . , n, (4.1)

where the regression function was fixed across simulation replications and (Ak(n), xk(n)) corresponds to
the kth patient’s treatment assignment and covariate vector in the random subset with n patients. The
constant −0.4 in (4.1) was added so that there was a substantial fraction of simulated patients that would
have an underlying ITE less than zero. For the distribution of Wk , we considered four different choices: a
Gaussian distribution, a Gumbel distribution with mean zero, a “standardized” Gamma distribution with
mean zero, and a mixture of three t-distributions with 3 degrees of freedom for each mixture component.
The parameters of these four distributions were chosen so that the variances were approximately equal,
and the levels of censoring was varied across three levels: none, light censoring (∼15% of cases censored),
and heavy censoring (∼45% of cases censored).

Root mean-squared error, misclassificiation, and coverage results are shown in Figure 3. More detailed
results from this simulation study are detailed in part G of the supplementary material available at Bio-
statistics online. As may be inferred from Figure 3, the NP-AFTree method consistently performs better

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data


64 N. C. HENDERSON AND OTHERS

NP−AFTree SP−AFTree Param−AFT NP−AFTree SP−AFTree Param−AFT

0.02

0.05

0.10

0.20

n=1000
n=200 Root Mean−Squared Error

NP−AFTree SP−AFTree Param−AFT NP−AFTree SP−AFTree Param−AFT

0.02

0.05

0.10

0.20

n=1000
n=200 Misclassification Proportion

NP−AFTree SP−AFTree Param−AFT NP−AFTree SP−AFTree Param−AFT

0.88

0.90

0.92

0.94

0.96

0.98

1.00

n=1000
n=200

Coverage Proportion

Fig. 3. Simulations based on the SOLVD trial data. Results are based on 50 simulation replications. Root mean-squared
error, misclassification proportion, and empirical coverage are shown for each method. Performance measures are
shown for the NP-AFTree method, the SP-AFTree, and the parametric, linear regression-based AFT (Param-AFT)
approach. Four different choices of the residual distribution were chosen: a Gaussian distribution, a Gumbel distribution
with mean zero, a “standardized” Gamma distribution with mean zero, and a mixture of three t-distributions with 3
degrees of freedom for each mixture component.

in terms of RMSE and MCprop than the SP-AFTree procedure. Moreover, while not apparent from the
figure, the NP-AFTree approach performs just as well as SP-AFTree, even when the true residual distri-
bution is Gaussian (see the supplementary material available at Biostatistics online). For each residual
distribution, the advantage of NP-AFTree over SP-AFTree is more pronounced for the smaller sample

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
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sizes settings n = 200, with closer performance for the n = 1000 cases. While RMSE and MCprop
seem to be comparable between NP-AFTree and SP-AFTree for the n = 1000 settings, the coverage for
NP-AFTree is consistently closer to the desired 95% level and is greater than 95% for nearly all settings.
When n = 200, average coverage often differs substantially from 95%, but in these cases, BART is quite
conservative in the sense that coverage is typically much greater than 95%. It is worth mentioning that
while we have observed good frequentist coverage in many settings, BART does not come with strong
frequentist coverage guarantees as the reported uncertainty measures are based on Bayesian credible inter-
vals. The supplementary material available at Biostatistics online shows an example where modest under
coverage has been observed. In our experience, such cases of under coverage can occur when there is
both low treatment balance in certain regions of the covariate space and considerable variation in the ITE
function θ(x). In these cases, the regularization prior used by BART imposes a kind of skepticism on very
large ITEs meaning that ITE estimates and credible intervals are shrunken considerably whenever there is
not strong evidence supporting ITEs that differ strongly from the overall treatment effect. In other words,
under coverage is often due to shrinkage towards the overall treatment effect rather than estimates which
overstate the amount of HTE.

4.2. Several “null” simulations

We considered data generated from several “null” cases where the simulation scenarios were designed
to have no HTE. For these simulations, we consider four AFT models and one Cox proportional-hazards
model. In these “null” simulations, we are primarily interested in the degree to which the NP-AFTree
procedure “detects” spurious HTE in settings where no HTE is present in the underlying data generating
model. The AFT models used for the simulations assumed a linear regression function with no treatment-
covariate interactions

log yi = β0 + β1Ai +
∑

k

βkxik + Wi, (4.2)

and the hazard functions for the Cox model simulations similarly took the form

h(t|x) = h0(t) exp
(
β0 + β1Ai +

∑
k

βkxik

)
. (4.3)

Although there may be a degree of heterogeneity in θ(x) for the Cox proportional hazards model (4.3),
it is still worthwhile to investigate the behavior of Di when there is no HTE when treatment effects are
defined in terms of hazard ratios.

The parameters in (4.2) were first estimated from the SOLVD data using a parametric AFT model
with log-normal residuals. Herein, we estimated the parameters in (4.2) separately using the same fixed
subsets of size n = 1000 and n = 200 used in Section 4.1. The parameters were fixed across simulation
replications. For the AFT models, we considered the same four choices of the residual term distribution as
in Section 4.1. The parameters for the hazard functions in (4.3) were found by fitting a Cox proportional
hazards model to the same two subsets of size n = 200 and n = 1000 from the SOVLD trials data, and
these parameters were fixed across simulation replications. The cumulative baseline hazard function used
for generating the Cox proportional hazards simulations was found using Breslow’s estimator.

For each null simulation scenario, we computed the posterior probabilities of differential treatment
effect Di (see equations (3.2) and 3.3)) and tabulated the percentage of patients with either strong evidence
of differential treatment effect (i.e. D∗

i > 0.95) or mild evidence (i.e. D∗
i > 0.8). Table 2 shows, for each

null simulation scenario, the average proportion of individuals exhibiting strong evidence of a differential
treatment effect and the average proportion of individuals exhibiting mild evidence.As displayed in Table 2,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy028#supplementary-data
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Table 2. Simulation for settings without any HTE present
Normal Gumbel Std-Gamma T-mixture Cox-PH

n Censoring SE ME SE ME SE ME SE ME SE ME
200 none 0.000 0.095 0.000 0.040 0.000 0.070 0.000 0.060 0.000 0.140
200 light 0.000 0.095 0.000 0.000 0.075 0.350 0.000 0.380 0.000 0.015
200 heavy 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.055 0.000 0.290

1000 none 0.000 0.803 0.073 2.066 0.092 1.483 0.161 3.087 0.176 3.824
1000 light 0.061 1.989 0.015 0.967 0.213 2.674 0.066 3.176 0.111 3.405
1000 heavy 0.002 1.253 0.000 0.484 0.030 1.176 0.123 2.953 0.135 2.688

Results are based on 100 simulation replications. Average percentage of patients exhibiting strong evidence (SE) of differential
treatment effect (i.e. D∗

i > 0.95) and average percentage of patients exhibiting mild evidence (ME) of differential treatment effect
(i.e. D∗

i > 0.8). Results are shown for AFT models with the same four residual distributions used in the simulations from Section 4.1
and for a Cox-proportional hazards model with no treatment-covariate interactions. Censoring levels were varied according to: none,
light censoring (∼25% of cases censored), and heavy censoring (∼45% of cases censored).

the average percentage of individuals showing strong evidence of differential treatment effect is less than
0.22% for all simulation settings. Moreover, the percentages of cases with mild evidence of differential
treatment effect was fairly modest. The average percentage of patients with mild evidence was less than
3.9% for all except one simulation scenario, and most of the simulation scenarios had, on average, less than
3% of patients exhibiting mild evidence of differential treatment effect. Null simulations with n = 200
tended to have much fewer cases of strong or mild evidence than those simulations with n = 1000. The
results presented in Table 2 suggest that the NP-AFTree procedure rarely reports any patients as having
strong evidence of differential treatment effects in situations where HTE is absent.

5. DISCUSSION

In this article, we have described a flexible, tree-based approach to examining heterogeneity of treatment
effect with survival endpoints. This method produces estimates of individualized treatment effects and
corresponding credible intervals for AFT models with an arbitrary regression function and residual distri-
bution. Moreover, we have demonstrated how this approach provides a useful framework for addressing
a variety of other HTE-related questions. When using the default hyperparameter settings, the method
only requires the user to input the survival outcomes, treatment assignments, and patient covariates. Due
to the tree-based formulation of the regression function, the user does not need to pre-specify any treat-
ment covariate interaction terms or patient subgroups in order to obtain informative characterizations of
HTE. As shown in several simulation studies, the default settings exhibit strong predictive performance
and good coverage properties. Though quite flexible, our nonparametric AFT model does entail some
assumptions regarding the manner in which the patient covariates modify the baseline hazard. Hence, it
would be worth further investigating the robustness of the nonparametric AFT method to other forms of
model misspecification such as cases where neither an AFT or a Cox proportional hazards assumption
holds or cases where the residual distribution depends on the patient covariates.

In addition to describing a novel nonparametric AFT model, we examined a number of measures for
reporting HTE including the distribution of individualized treatment effects, the proportion of patients
benefiting from treatment, and posterior probabilities of differential treatment effect. Each have potential
uses in allowing for more refined interpretations of clinical trial results. The argument has been made by
some (e.g. Kent and Hayward, 2007) that the positive results of some clinical trials are driven substantially
by the outcomes of high-risk patients. In such cases, the posterior distribution of the ITEs along with the
estimated proportion benefiting may help in clarifying the degree to which lower risk patients are expected
to benefit from the proposed treatment. In Section 4.2, we explored the use of posterior probabilities of
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differential treatment effect as a means of detecting the presence of HTE. Such measures show potential
for evaluating the consistency of treatment and for assessing whether or not further investigations into
HTE are warranted.

6. SOFTWARE

The methods described in this paper are implemented in the R package AFTrees, which is available for
download at https://github.com/nchenderson/AFTrees (accessed July 4, 2018). TheAFTreespackage and
additional supplementary code is also available for download at http://hteguru.com/index.php/software/
(accessed July 4, 2018).

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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