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A B S T R A C T   

We examine the impacts of the COVID-19 pandemic and global risk factors on the upside and downside price 
spillovers of MSCI global, building, financial, industrial, and utility green bonds (GBs). Using copulas, CoVaR, 
and quantile regression approaches, we show symmetric tail dependence between MSCI global GB and both 
building and utility GBs. Moreover, the upper tail dependence between MSCI global GB and financial GB 
intensified during COVID-19. We find asymmetric risk spillovers from MSCI global GB to the remaining GBs. 
Finally, the COVID-19 spread, the Citi macro risk index, and the financial condition index contribute positively to 
the quantiles’ risk spillovers. The spillover index method shows significant dynamic volatility spillovers from 
global GB to GB sectors that intensify during the pandemic outbreak, except for financial GB. The causality-in- 
mean and in-variance from COVID-19, Citi macro risk index, and US financial condition index to the downside 
and upside spillover effects are sensitive to quantiles   

1. Introduction 

Green bonds (GBs) are a new financial asset. They aim to enhance 
environmental projects and social welfare. Like non-green bonds, com-
panies can issue GBs to raise capital and finance their environment- 
friendly projects (reducing CO2 emissions and fighting pollution). The 
various purposes funded by green bonds (MSCI Global GBs, Building 
GBs, Industrial GBs, Financial GBs, and Utility) have expanded beyond 
alternative energy to green building and sustainable transportation 
projects. The investment in GBs shows increasing growth since 2015 (see 
Fig. 1) despite the fact that clean energy finance represents a small 
fraction of the financial markets (Le, Le, & Taghizadeh-Hesary, 2020; 
Pham & Huynh, 2020). The creation of this new financial product is to 
fund environmentally sustainable projects.1 Investors are interested in 
this new asset class due to its low correlations with other financial assets 
(Reboredo, 2018; Rehman, 2020). Thus, GB may serve as a potential 
diversifier asset. In addition, investors are interested in understanding 
the dependence and spillover effects among GBs in order to check 
whether they can build a portfolio composed of different GB assets. In 
theory, the fundamentals-based hypothesis stipulates that the spillovers 

among financial assets result in fundamental changes (Ng, 1990; Karolyi 
& Stulz, 1996; King, Sentana, & Wadhwani, 1994). For example, the way 
that managers handle the corporation may alter the stock prices, 
generating time-varying spillover among different markets. The 
investor-induced hypothesis assumes that the behavior of international 
investors drives the spillover among markets. Herding behavior is the 
source of contagion effects (Boyer, Kumagai, & Yuan, 2006). Correla-
tions between market returns are stronger during market downturns 
than during market upturns. This result suggests that contagion may be 
asymmetrical. Therefore, the spillover size and directions may affect the 
hedging demand during bearish and bullish market scenarios. Thus, the 
spread of crisis and information from one country to another may in-
fluence the portfolio structure during different market conditions. 
Kodres and Pritsker (2002) developed a theoretical model of financial 
contagion through cross-market portfolio rebalancing. Investors become 
aware of climate change for government policies and climate-related 
risks for companies. 

However, the recent COVID-19 pandemic outbreak caused a signif-
icant shift in the world’s economic and financial markets (Hanif, Mensi, 
& Vo, 2021; Mensi, Rehman, & Vo, 2021). Causing more than 196 
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million confirmed cases and 4.2 million deaths in July 2021, this un-
precedented pandemic crisis increased risks, uncertainties, fear, and 
volatility in financial markets of both developed and emerging econo-
mies. On the one hand, the massive rise in the number of confirmed 
cases pushes governments to impose strict containment measures, such 
as suspending business operations, locking down cities, restricting 
people’s activities, and social distancing, all of which result in signifi-
cant economic development slowdown. Moreover, the critical declines 
in consumer spending, supply chain disruptions, along with workforce 
shortages have led many businesses to cease operations. Therefore, the 
ongoing COVID-19 crisis has significantly increased the uncertainty and 
volatility of financial markets, leading to a strong economic recession 
(Elgammal, Ahmed, & Alshami, 2021). According to the IMF, global 
economic growth fell by 3.2% in 2020 due to the health crisis. Besides, 
international trade declined by 8.2% in 2020. The contingent effects of 
the health crisis have altered the fear, the preference, the risk appetite, 
and the herding behaviors of investors (Truelove, Carrico, Weber, Raimi, 
& Vandenbergh, 2014). This has intensified the exposure to cross- 
country spillovers, and the chaos seems to have spread across overall 
markets. The contingent effects of the global health crisis have 
augmented the fear and the herding behaviors as well as bidirectional 
shock spillovers. This has increased the contagion and spillovers among 
markets. According to Rizwan, Ahmad, and Ashraf (2020), banking risk 
has risen sharply in the world’s eight major countries, including China, 
Canada, France, Italy, Germany, Spain, the US, and the UK. Similarly, 
Albulescu (2020) highlights the substantial impact of COVID-19 on the 
volatility index of the world’s major financial markets. Ashraf (2020) 
concludes that equity market returns decrease as the number of 
confirmed cases increases, indicating a negative relationship between 
stock market returns and the COVID-19 pandemic growth. Lucey, Vigne, 
Yarovaya, and Wang (2021) show that the COVID-19 crisis intensifies 
the cryptocurrency index’s price and policy uncertainty (UCRY). This 
UCRY index has predictability power in cryptocurrency markets during 
the COVID-19 pandemic spread. 

Only a few studies have examined the relationships between GB 
prices and other financial assets (Ferrer, Shahzad, & Soriano, 2021; 
Reboredo, 2018; Reboredo & Ugolini, 2020). To the best of our 
knowledge, our research is the first to examine the dependence structure 
and risk spillovers among main GBs, as well as the determinants of 
spillovers under bear and bull market status. We augment our analysis 
with popular robustness tests. Specifically, we examine the evolving 
volatility spillovers between global GBs and their main GB sectors using 
the spillover index of Diebold and Yilmaz (2012). Moreover, we test the 
presence of quantile causality from both the COVID-19 crisis, the Citi 

Macro risk index, and the US financial condition index for upside/ 
downside spillovers. For this purpose, we use the causality-in-mean and 
in-variance methods of Balcilar, Bekiros, and Gupta (2017). This study is 
informative for individual and institutional investors interested in clean 
energy finance. 

This paper contributes to the limited empirical literature on GB in 
three ways. First, it examines the dependence structure between MSCI 
Global GB and Building, Utility, Financial, and Industrial GB price 
returns under bear, tranquil, and bull market conditions. Second, it in-
vestigates the asymmetric risk spillovers from MSCI Global GB to 
Building, Utility, Financial, and Industrial GB price returns. Third, we 
examine the determinants of the up/down risk spillovers by relying on 
the CITI Macro risk index, US Financial condition index, and COVID-19 
outbreak under bear and bull market conditions. Our paper applies a 
battery of symmetric, asymmetric, time-invariant, and time-varying 
copula functions to examine the lower and upper tail dependence 
among markets under study. Our paper considers Normal copula, 
Student-t copula, Clayton copula, rotated Clayton copula, Gumbel, 
rotated Gumbel, and Symmetrized Joe-Clayton (SJC) copulas. In addi-
tion, we use the Value at Risk (VaR) and the conditional Value at Risk 
(CoVaR). The CoVaR captures the systemic risk from one market to 
another. More precisely, CoVaR identifies the presence of risk spillovers 
between assets by providing information on the VaR of an asset i, con-
ditional on the fact that another market j is in financial distress. The 
quantile regression approach (QRA) provides valuable insights on the 
effects of the market i on the market j under different market statuses, 
including bearish (lower quantile) and bullish (upper quantile) markets 
(Mensi, Hammoudeh, Reboredo, & Nguyen, 2014). Baur (2013) argues 
for using the QRA to study the structure and degree of dependence as it 
can reveal information on the asymmetric and nonlinear effects of 
conditional variables on the dependent variables. 

For robustness purposes, we examine the time-varying volatility 
spillovers between global GB and sectoral GBs before and during the 
COVID-19 pandemic spread using the spillover index by Diebold and 
Yilmaz (2012). This approach predicts the size and the net directional 
volatility spillovers among GB markets. It determines the percentage of 
risk received and transmitted for each market in the system. It is, 
therefore, able to capture the source of valuable contagion for portfolio 
risk management and asset allocations. It helps market participants 
determine whether the price transmissions from one market to another 
are time-varying and crisis sensitive. On the other hand, we explore 
whether the control variables cause the spillover strengths across 
different quantiles using the quantile causality test. The causality-in- 
mean and in-variance allow one to determine whether global GB has 

Fig. 1. Evolution of global GB issuance (in USD bn) between 2015 and 2020. 
Source (https://www.climatebonds.net). 
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predictive power for GB sectors. The nonparametric causality-in- 
quantiles test examines the predictability of the mean and variance of 
GB sectors through global GB. This method provides valuable informa-
tion on the interactions among GB markets as it accounts for all market 
conditions jointly (e.g., bubbles, crashes, crises, and low/high vola-
tility). Overall, the adopted methodology improves our understanding of 
the evolving volatility connectedness and informs investors about 

potential diversification benefit opportunities. 
Our results show significant temporal and symmetric tail depen-

dence between MSCI Global GB and Building and Utility GB during bear 
and bull market conditions. Moreover, an upper tail dependence is 
identified between MSCI Global GB and Financial GB. A Symmetrized JC 
copula reveals that Industrial GB has asymmetric tail dependence on 
MSCI Global. Furthermore, we find significant asymmetric risk 

Fig. 2. Dynamic of GB daily prices.  
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spillovers from MSCI Global GB to sectoral GBs intensified during the 
global health crisis. More importantly, the Citi Macro risk index posi-
tively impacts the upside risk spillover of Utility and Financial GBs 
across different quantiles. However, the Macro risk index contributes to 
the upside risk spillovers of Building at lower quantiles but has an 
insignificant impact on the upside risk spillovers of Industrial GB. The 
financial condition index affects negatively the upside spillovers of 

Industrial GB at low and high quantiles. The COVID-19 crisis influences 
the upside and downside spillover effects, with the exception of Indus-
trial GB. The volatility spillover between global GB and sectoral GBs is 
time-varying and shows a significant jump during the pandemic. Finally, 
we find substantial causality in-mean and in-variance between markets 
under investigation, which is asymmetric and sensitive to quantiles. 

The remainder of this paper is organized as follows. Section 2 

Fig. 3. Dynamics of GB daily price returns.  
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presents a review of the literature. Section 3 discusses the data and 
methodology. The empirical results are reported and discussed in Sec-
tion 4, and a conclusion is presented in Section 5. 

2. Literature review 

There is limited empirical literature studying the relationships be-
tween GBs and financial markets. Reboredo (2018) shows that spillovers 
from conventional bonds influence GBs and that GB assets provide sig-
nificant diversification gains for stock and energy markets. Reboredo 
and Ugolini (2020) examine the price spillovers between GBs, global 
government bond markets, global graded fixed-rate corporate debt, 
global high-yield debt markets, global stock markets, and USD currency 
markets. They find that GBs are net receivers of price spillovers. Ferrer 
et al. (2021) use the frequency dynamic spillover index of Baruník and 
Křehlík (2018) to show significant short-term spillovers between GBS 
and conventional financial and energy markets in the short term. Tiwari, 
Abakah, Gabauer, Adjei, and Dwumfour (2022) have recently investi-
gated the return spillovers between S&P Green Bond, Solactive Global 
Solar, Solactive Global Wind, S&P Global Clean Energy, and Carbon 
price indexes. Using the TVP-VAR approach, the authors show that the 
total connectedness is time-varying and influenced by major events. 
Clean energy is a net transmitter of shocks in the system, whereas Green 
Bonds and Solactive Global Wind are net receivers of shocks in the 
system. Pham and Huynh (2020) examine the relationships between 
investor attention and GB markets. They show that investor attention 
can influence GB returns and volatility. Moreover, the authors find 
strong short-term interdependence between investor attention and GB 
market returns and volatility. Naeem, Mbakri, Altharthi, Omri, and 
Shahzad (2021) examine the impacts of the COVID-19 crisis on the 
frequency of spillovers between GBs and other financial and commodity 
markets (global stock market, bond market, oil, USD index, gold, and 
Bitcoin). Using both Diebold and Yilmaz (2012) and Baruník and Křehlík 
(2018) methodologies, the authors find evidence of bi-directional 
spillovers between the USD index and GBs that intensified during the 
pandemic crisis. The authors also find a strong connection between GB 
and conventional bonds. Weak short- and long-term linkages between 
GBs and Bitcoin market are identified. Zamojska, Mosionek-Schweda, 
and Golab (2020) find that GBs are integrated with other financial 
markets. Hachenberg and Schiereck (2018) show that financial and 
corporate GBs trade tighter than their comparable non-green bonds, and 
government-related bonds, on the other hand, trade marginally wider. 
Tang and Whang (2020) show that GB issuance contributes positively to 
stock prices and liquidity. Moreover, the lower cost of debt does not fully 
explain the positive stock returns around green bond announcements. 
More importantly, institutional ownership rises after the firm issues GBs. 
Flammer (2021) confirms the findings of Tang and Whang (2020). The 

author shows a positive reaction from investors to GB issuance, espe-
cially for bonds certified by third parties and first-time issuers. Guo and 
Zhou (2021) show that GB was a good hedge asset during the COVID-19 
crisis for US and Chinese financial markets. Other studies have examined 
the relationships between GB and other financial assets (Glomsrød & 
Wei, 2018; Hammoudeh, Ajmi, & Mokni, 2020). 

Our study contributes to the literature by examining the lower and 
upper tail dependence between MSCI Global Green and both Building 
GBs, Industrial GBs, Financial GBs, and Utility GBs, using a variety of 
copula functions. Moreover, we analyze the downside and upside spill-
overs from MSCI Global Green and GB sectors (Building, Industrial, 
Financial, and Utility) using a conditional Value at Risk measure. For 
robustness, we investigate the volatility spillovers from global GBs to 
sector GBs using the spillover index by Diebold and Yilmaz (2012). For 
robustness, we analyze the drivers of spillovers. More precisely, we use 
the quantile causality in-mean and in-variance and test the causality 
from the COVID-19 pandemic crisis, the Financial condition index, and 
the Citi Macro risk index to upside/downside GB risk spillovers. Our 
empirical methods offer great flexibility and provide new insights into 
the linkages among GB markets. 

3. Data and methodology 

3.1. Data and summary statistics 

We use daily closing spot prices of primary green bonds, namely 
MSCI Global GB, Building, Industrial, Financial, and Utility GBs. We 
select daily data in order to provide robust results in our estimations. 
Specifically, daily data evaluates the immediate market response to 
news announcements (Pastor & Veronesi, 2012). The use of low- 
frequency data (weekly, monthly, and quarterly) makes detecting an 
announcement shock and its immediate effects more difficult (Ferrari, 
Kearns, & Schrimpf, 2016). In addition, low-frequency data fails to deal 
with holidays and lead-lag relationships. Therefore, daily data is 
adequate for short-term and medium-term tactical forecasting. We 
notice that different days of the week have different patterns, which can 
be identified at this level. The sample period starts from January 2, 
2018, to April 30, 2020 (550 daily observations). The data was compiled 
by Bloomberg. The selection period begins on January 2, 2018, to 
highlight the changing behavior of price spillover between GBs from 
tranquil to financially turbulent periods. This also provides us a baseline 
for a better understanding of the changes during the COVID-19 crisis. 
Fig. 2 depicts the evolution of GB prices and shows a similar trend 
among all GBs except the industrial GB. We observe that GB prices 
declined in 2018 because rising interest rates weighed on all debt issu-
ance and during the COVID-19 outbreak. It is worth noting that GB 
prices experienced an upside trend in 2019. This is explained by the fact 

Table 1 
Descriptive statistics of GB price returns.  

Statistics MSCI Global Building Utility Financial Industrial 

Mean 0.0051 0.0070 0.0077 0.0054 0.0203 
Std. Dev. 0.3294 0.3275 0.3531 0.2905 0.4221 
Kurtosis 1.6251 1.1550 3.4190 1.5767 5.7124 
Skewness − 0.1597 − 0.1223 − 0.2779 − 0.1033 − 0.3839 
Minimum − 1.6023 − 1.4714 − 2.1350 − 1.5708 − 2.5279 
Maximum 1.6000 1.2426 2.1083 1.3321 1.9122 
Jarque-Bera 155.226*** 78.723*** 680.814*** 143.058*** 1886.84*** 
Observations 550 550 550 550 550 
ADF − 38.5393*** − 38.6542*** − 37.9844*** − 37.4757*** − 43.4832*** 
PP − 38.6736*** − 38.6891*** − 38.1323*** − 37.5699*** − 43.6627*** 
ARCH (20) 2.2112*** 2.1826*** 3.1330*** 1.9373*** 21.1771*** 
Q (20) 30.029* 33.372** 17.646 15.111 84.928*** 
Q2(20) 64.321*** 56.921*** 64.331*** 51.863*** 1728.6*** 

Notes: This table reports the preliminary statistics of global and sectoral GB price returns. ADF and PP indicate Augmented Dickey Fuller and Phillips and Perron, 
respectively. The ARCH(20) test verifies the presence of ARCH effects. Q(20) and Q2(20) refer to the empirical statistics of the Ljung-Box test for autocorrelation and 
squared autocorrelation, respectively. The asterisks *, **, and *** represent the rejection of the null hypothesis at the 10%, 5%, and 1% significance levels. 
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that investor demand has increased. Fig. 3 illustrates the time-varying 
GB price returns and shows evidence of volatility clustering and fat 
tails. This indicates evidence of a non-linear process. 

Table 1 presents the descriptive statistics, correlation degree, unit 
root test, and Ljung Box test of GB price returns. The results show pos-
itive average price returns for all GBs. Industrial GB exhibits the highest 
average returns, while MSCI Global GB shows the opposite; Industrial 
GB has the highest risk, but Financial GB has the lowest. The hypothesis 
of the normal distribution is rejected according to the skewness, kurto-
sis, and Jarque Bera test. According to the Augmented Dickey-Fuller 
(ADF) and Phillips–Perron (PP) unit root tests, all GB price returns 
show stationary behavior. The results of the Ljung-Box test statistics of 
the residuals reject the null hypothesis of the white noise process (i.e., an 
i.i.d. process). Similarly, the results of the ARCH test of Engle (1982) 
reject the null of no ARCH effects. The preliminary analysis of GB price 
returns supports the presence of stylized facts (fat-tails, clustering 
volatility, persistence for the GB price returns). 

Table 2 reports the results of the unconditional correlation matrix 
among GB price returns. The correlation between MSCI Global GB with 
Building, Financial, and Utility GBs is high (above 0.93), limiting the 
diversification benefits and indicating a recoupling between these as-
sets. In contrast, we find a low correlation between MSCI Global GB and 
Industrial GB (0.66), suggesting a diversification opportunity. In addi-
tion, we observe that the correlation degree between Financial GB and 
Utility GB is high (0.93) and is 0.88 for Utility GB. The Industrial GB 
exhibits less correlation with the rest of the GBs as it ranges from 0.51 for 
Financial GB to 0.67 for Utility GB. 

3.2. Methodology 

3.2.1. Copula modeling 
Copula provides great flexibility in separating the marginal distri-

butions from the dependence structure and independently modeling 
these distributions. In contrast to the unconditional linear correlation 
coefficient, the copula does not require that price series follow a 
Gaussian distribution. Thus, copulas assess the temporal and non-linear 
dependence between the marginal distributions of the random variables 
instead of focusing directly on the dependency between the random 
variables themselves (Kakouris & Rustem, 2014; Luo, Liu, & Wang, 
2021). It explored the monotonic relationships among the margins. 
Accurate modeling of financial risk contagion and extreme dependence 
are crucial for financial risk management. Copula is flexible enough to 
evaluate the financial contagion among markets as it happens. The 
copula approach offers valuable, useful information not only on average 
dependence but also on the likelihood that two variables will jointly 
experience extreme downside or upside movements. The Copula allows 
investors and portfolio managers to identify the property of an asset as a 
hedge or a safe haven. We select Elliptical copula, including Normal and 
Student-t copulas, as well as Archimedean copulas such as Clayton, 
Rotated Clayton, Gumbel, Rotated Gumbel Copula, and SJC Copula. 
Elliptical copulas assess the symmetric dependence by assuming similar 
relationships between variables during bearish and bullish market 
conditions. Conversely, the Archimedean copula assumes asymmetric 

dependence during market slumps and expansion. 
We test the time-varying average and tail dependence between 

global green bonds and green bonds of the building, utility, financial, 
and industrial sectors using a set of time-varying copulas.2 The under-
lying theory behind copulas is based on the Sklar theorem, stating that 
the joint distribution function, i.e. FXY(x,y) based on two continuous 
random variables, X and Y under copula specification C(u,v) can be 
expressed as appended below. 

FXY(x, y) = C(u, v) (1) 

In Eq. (1), u = FX(x) and v = FY(y) represent marginal distribution 
functions of random variables, suggesting that the copula is a multi-
variate function comprising uniform marginals describing dependence 
between two random variables. Such dependence is determined based 
on RanFx * RanFy for continuous margins, where RanFx and RanFy 
represent marginal distribution functions of random variables. 

The joint probability density function of two series X and Y obtained 

from the copula density function, c(u, v) = ∂2C(u,v)
∂u∂v is as follows. 

fXY (x, y) = c(u, v)fY(y)fX(x) (2)  

where fY(y) and fX(x) denote marginal densities of series Y and X, 
respectively. The information about marginal and copula densities is 
required to determine the joint densities of two variables, X and Y. Ex-
pressions for both the upper (right) and lower (left) tail dependence is 
below. 

λU = limu→1Pr
[
X ≥ F− 1

X (u) |Y ≥ F− 1
Y (u)

]
= limu→1

1 − 2u + C(u, u)
1 − u

(3)  

λL = limu→0Pr
[
X ≤ F− 1

X (u) |Y ≤ F− 1
Y (u)

]
= limu→0

C(u, u)
u

(4)  

where λU, λL ∈ [0,1], which suggests a non-zero probability of an 
extremely small (large) value for one series with an extremely small 
(large) value for another series. Our work employs seven different time- 
varying copulas consisting of Normal, Clayton, rotated Clayton, Gumbel, 
rotated Gumbel, Symmetrized Joe Clayton, and student t copulas.3 

3.2.2. CoVaR measure 
After identifying the best copula, we use this information on 

dependence structure to compute the Conditional Vvalue at Rrisk 
(CoVaR). One of the main advantages of CoVaR compared to bivariate 
dynamic condition correlation GARCH models is its ability to evaluate 
the extreme risk spillovers between markets during radical negative and 
positive price movements. CoVaR metric measure presents itself as an 
important methodological aspect of our work because of its ability to 
quantify the financial risk contagion from Global GBs towards the US 
sectoral GBs during periods of distress rather than the median state 
(Adrian & Brunnermeier, 2016; Lee & Long, 2009; Samarakoon, 2011). 
Since our study samples the COVID-19 period and aims to measure 
dependence between global and US sectoral GBs, applying CoVaR is the 
center of our methodology in measuring spillover from global to US 
sectoral green bonds during this distressing period. Systemic risk may be 
asymmetric due to the heterogeneous driving variables of financial risk 
spillovers. For this purpose, we quantify the upside and downside risk 
spillovers (Yang, Chen and Xie, 2018; Sun, Liu, Wang, & Li, 2020). 

The copulas estimates are used to quantify the downside and upside 
risk spillover from global green bonds towards green bonds of the 
Building, Utility, Financial, and Industrial sectors. Under a confidence 
interval of 1 – α, the downside (upside) VaR at time t is given by Pr(rt ≤

Table 2 
Unconditional correlation matrix among GB price returns.   

MSCI 
global 

Building Utility Financial Industrial 

MSCI 
Global 

1     

Building 0.9869*** 1    
Utility 0.9654*** 0.9279*** 1   
Financial 0.9366*** 0.8890*** 0.9389*** 1  
Industrial 0.6660*** 0.6688*** 0.6775*** 0.5166*** 1 

Notes: This table reports the linear unconditional correlations among leading GB 
price returns. *** stands for significance level at 1%. 

2 Our copula estimations are based on the residuals from the ARMA-GARCH 
model.  

3 Details about the specification of these models are explained by Reboredo, 
Rivera-Castro, and Ugolini (2016) and Shahzad et al. (2017). 
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VaRα, t) = α (Pr(rt ≥ VaR1− α, t) = α), where rt represents GB price returns. 
The expressions for upside and downside VaR extracted from the mar-
ginal models are appended below. 

VaRupside
α,t = μt + t− 1

ʋ,η(1 − α)σt (5)  

VaRdownside
α,t = μt + t− 1

ʋ,η(α)σt (6)  

where tʋ, η− 1(α) denotes αth quantile of the skewed Student-t distribution 
and μt and σt represent the conditional mean and standard deviation of 
the return series, respectively, estimated from the ARMA-GARCH model. 
To measure the effect of extreme return movements in global green 
bonds on the green bond market of Building, Utility, Financial, and In-
dustrial sectors, we apply the CoVaR4 methodology proposed by Adrian 
and Brunnermeier (2016). We assume rt

sgb and rt
gbb which represents the 

returns of sectoral green bonds (i.e. Building, Utility, Financial and In-
dustrial sectors) and global GBs, respectively. For a confidence level of 1 
− β and the β-quantile of the conditional distribution of rt

sgb, the 
downside and upside CoVaRs for any given green bond sectoral returns 
due to an extreme downward and upward global green bond market are 
shown as: 

Pr
(

rsgb
t ≤ CoVaRc,downside

β,t |rgbb
t ≤ VaRgbb,downside

α,t

)
= β (7)  

Pr
(

rsgb
t ≥ CoVaRsgb,upside

β,t |rgbb
t ≥ VaRgbb,upside

1− α,t

)
= β (8) 

In the above equations, VaRα, t
ggb represents α-quantile of the global 

green bonds return distribution. r(rt
ggb ≤ VaRα, t

ggb) = α quantifies po-
tential loss for global green bonds for a specific time horizon under the 
confidence interval 1 – α where VaR1− α, t

ggb is the potential loss during a 
short position in global green bonds for a specific period under the 
confidence interval of 1 – α. We follow Reboredo and Ugolini (2015) for 
estimating CoVaR using a two-step method. The first step is to calculate 
the dependence parameter as the best copula fit between global green 
bonds and each green bond sectoral markets. The second step involves 
the estimation of conditional mean and variance parameters obtained 
from the dependence model (ARMA-GARCH in our case). These two 
steps are then used to estimate the conditional value at risk (CoVaR) 
between global and sectoral green bond markets. 

Following VaR and CoVaR estimations, we apply the Kolmogorov- 
Smirnov (KS) bootstrapping test proposed by Abadie (2002) to investi-
gate asymmetry in risk spillover. More specifically, this test measures 
the difference between two cumulative quantile functions without 
considering any underlying distribution function. Expression for the 
resultant KS test is as follows. 

KSmn =
( mn

m + n

)1/l
supx∣Fm(x) − Gn(x)∣ (9)  

where Fm(x) and Gn(x) represent cumulative CoVaR and VaR distribu-
tion functions, respectively. On the other hand, m and n represent two 
sample sizes. The expression for null hypotheses to test equalities and 
asymmetries between VaR and CoVaR between green sectoral market 
and global green bond returns is as follows. 

H0 : CoVaRsgb
β,t = VaRsgb

β,t , and (10)  

H0 : CoVaR(D)/VaR(D) = CoVaR(U)/VaR(U) (11)  

3.2.3. Quantile regression approach 
We apply quantile regression QRA to examine the effects of different 

explanatory variables (Citi Macro risk index, US Financial condition 
index, and COVID-19 crisis) on the upside and downside risk spillovers 

resulting from Global GB towards US sectoral GBs. The QRA is more 
informative than the linear ordinary least square regression (Koenker & 
Bassset, 1978; Lee, 2021). Under QRA, the risk spillover (dependent 
variable) covers the entire distribution (different quantiles) conditional 
on a set of explanatory variables. QRA, therefore, accounts for the het-
erogeneity and extreme outliers (Fattouh, Scaramozzino, & Harris, 
2005). The QRA captures the non-linear effects of external risk factors 
and variables on the extreme risk spillovers under different return dis-
tributions. In this way, the sensitivity of downside and upside risk 
spillover to various external factors can be examined under extreme 
spillover phenomena. Therefore, the application of QRA to measure 
sensitivity to the nonlinearities of spillover towards US sectoral green 
bonds and risk factors (or explanatory variables) provides superior re-
sults and deeper insights to investors compared with the conventional 
OLS method. 

We proceed by assuming that the θ quantile of the conditional dis-
tribution of spillover towards US sectoral green bonds yit is linear in xit, 
the resultant expression of which is appended below. 

yit = xit
′

.β0 + uθit  

Quantθ(yit|xit) ≡ inf {y : Fit(y|x)θ } = xit
′

.β0 (12)  

Quantθ(uθit |xit) = 0  

where Quantθ(yit ∣ xit) represents the θth conditional quantile of yit on the 
independent variables (external risk factors in our case) xit, β0 represents 
the unknown parameter vector which needs to be estimated for different 
θ values in (0,1), uθit represents error term extracted from the continu-
ously differentiable distribution function Fuθ(.|x) and the density func-
tion fuθ(.|x). Conditional distribution of the spillover index conditional 
on external risk factors is denoted by Fit(.|x). The entire distribution of 
the spillover index conditional on external risk factors is represented by 
values ranging between 0 and 1. We can get the estimator for β0 as 

min
∑

it:uθit>0

θ× ∣uit∣+
∑

it:uθit<0

(1 − θ) × ∣uit∣  

=
∑

it:yit− xit
′
.βθ>0

θ× ∣yit − xit
′

.βθ∣+
∑

it:yit− xit
′
.βθ<0

(1 − θ) × ∣yit − xit
′

.βθ∣ (13) 

The estimators presented in the above equation lack any explicit 
form. However, we can solve the resulting minimization problem 
through the linear programming technique. The application of quantile 
regression in our work enables us to trace the entire distribution of 
spillover towards US sectoral green bonds condition due to external risk 
factors, i.e., the Citi Macro risk index, the US Financial condition index, 
and the COVID-19 outbreak. We present an expression for estimating the 
vector of β using the ordinary least square optimization technique as 
follows. 

min
∑

i
(uit)

2
=

∑

i
(yit − xit

′

.β)2 (14) 

On comparing the last two equations, we find one prominent feature 
of the quantile regression technique that the value of the estimator 
vector of βθ, varies with θ. By making a comparison of behaviors based 
on changing values of θ, we can characterize dynamic estimator vector 
βθ, for different quantile regions. 

4. Empirical results 

4.1. Dependence analysis during bear and bull market conditions 

Before carrying the copula, we estimate the appropriate marginal 

4 The CoVaR for an asset i represents VaR for asset i conditional on extreme 
movement in asset j. 
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model using different lag orders and the Akaike information criteria 
(AIC). We find that ARMA-GARCH (1,1) fits our data.5 

To select the best copula function, we estimate different time- 
invariant and time-varying copulas and use the AIC to choose the best 
function. The results show that the time-varying copula outperforms the 
time-invariant copula, suggesting a temporal dependence between MSCI 
Global and sectoral GBs. To save space, we report in Table 3 the results 
of the time-varying copula. As we can see, we find a symmetric tail 
dependence between MSCI Global GB and both Building and Utility GB 
as given by the time-varying parameter (TVP) student-t copula. This 
result shows that the dependence is symmetric during bear and bull 
markets. This also indicates that investors have the same behavior 
during extremely agitated market conditions (both downside and upside 
trends). As modeled by Gumbel copula, Financial GB is dependent on 
MSCI Global GB in the upper tail (bull market) and independent in the 
lower tail (bear market). This result shows that Financial GB was a safe 
haven asset for MSCI Global GB during the financial crisis. A Symme-
trized JC copula reveals that Industrial GB has a symmetric tail depen-
dence on MSCI Global GB. 

Fig. 4 displays the evolving dependence between MSCI Global GB 
and Building, Utility, Financial, and Industrial GB price returns. As we 
can see, the dependence varies over time and shows different patterns. 
This result indicates the heterogeneous responsiveness of Building, 
Utility, Financial, and Industrial GB returns to MSCI Global GB return 
shocks. We note that the dependence between MSCI Global GB and In-
dustrial GB is more stable than the remaining cases. Moreover, the visual 
evidence shows that the COVID-19 has weak effects on the dependence 
between Global and Industrial GBs. For Financial GB, the dependence 
has gradually increased since May 2019 and intensified during the 
COVID-19 outbreak period. This result shows increasing integration and 
financial contagion between these two markets. For Utility and Building 
GBs, the dependence is more volatile, indicating that investors often 
restructure their portfolios. This is due to the fact that Building GB is the 
most widely used sector for green bond investment. The market capi-
talization of US Green Buildings will reach $103.08 billion by 2023.6 

Moreover, the increasing dependence in early 2020 is driven by the 
global health crisis. 

Overall, the increasing dependence between GB markets shows the 
surge of green finance in the last few years. Different factors may in-
fluence the dependence between Global GB and sectoral GBs. The 
various degrees of development and ratings of Building, Financial, In-
dustrial, and Utility GBs may explain their different dependence and 
responsiveness to Global GB returns. In addition, investors’ awareness of 
climate, inappropriate institutional arrangements, economic policy 
instability, and energy price shocks may be the key factors affecting GB 
markets’ performance. 

Table 4 reports the descriptive statistics of up/down VaR and CoVaR. 
As shown in the table, the average and standard deviations of upside/ 
downside CoVaR values are superior to those of upside/downside VaR 
values of Building and Utility GBs. This result shows that Global GB has a 
systemic risk to the sectoral GBs. More interestingly, we discover that 
Utility GB has the highest risk spillovers, followed by Financial and In-
dustrial GBs. In contrast, Building is the most negligibly affected by the 
Global GB shocks. This result supports evidence of financial contagion 
between the markets under study. Besides, we show that green Utility 
has the highest upside and downside risk as measured by the VaR values, 
whereas green Building exhibits the least one. This result can be 
explained by the fact that the Building GB market is more developed 
than the Utility GB. 

The visual evidence reported in Fig. 5 is consistent with the findings 
in Table 3. In more detail, the risk spillover trajectories differ from one 
market to another. In addition, we find that upside/downside CoVaR is 

superior (inferior) to upside/downside VaR over the sample period for 
Building and Utility (Financial and Industrial) GBs. The magnitude of 
risk spillovers is higher for Utility than Building GB, indicating that the 
information transmitted in MSCI Global GB has more effect on Utility GB 
than Building GB prices. The results of risk spillovers for Financial GB 
are in line with the findings of the dependence structure where the 
markets present lower tail independence during the bearish market 
condition. We note that the COVID-19 outbreak has a moderate effect on 
risk spillovers. 

We augment our analysis with the robustness of the Kolmogor-
ov–Smirnov (KS) test to check whether the VaR values are statistically 
different from the CoVaR values. We also test the asymmetric effects of 
the CoVaRs on the upside and downside. The results are reported in 
Table 5 and show that the values of both VaR and CoVaR are statistically 
significant at a 1% level of significance, suggesting the presence of 
systemic risk from Global GB to sectoral GB. This result also indicates the 
validity and robustness of our analysis. In addition, we find that the 
upside CoVaR values are statistically different from the downside CoVaR 
values. This result reveals that portfolio risk management differs during 
upside and downside trends. Identifying the appropriate short and 
extended positions requires investors and portfolio managers to consider 
the asymmetric risk spillovers among GBs during downturns and up-
turns in markets. 

4.2. Determinants of volatility spillovers 

The presence of risk spillovers motivates us to study the determinants 
of spillovers during downturn and upturn market trends. Three main 
variables are considered in this study to examine their ability to explain 
the time variations of risk spillovers. They are the Citi Macro risk index, 
the US Financial condition index, and the COVID-19 crisis.7 The choice 
of these variables is motivated by their potent effects on economic 
development (the creation of wealth) and financial stability. More spe-
cifically, we test the determinants of spillover effects in GB markets 
under nine different quantiles to account for diverse risk spillover levels. 
We use the quantile regression approach to test the nonlinearity in the 
relationships. 

Table 6 summarizes the empirical results of the upside and downside 
risk spillover determinants. Therein, the dependent variable is a time- 
varying series of upside and downside risk spillovers estimated from 
the CoVaR model8, i.e. Eqs. (7) and (8). It is also plotted in Fig. 5 and is 
regressed on external risk factors, i.e., the Citi Macro risk index, the US 
Financial condition index, and the COVID-19 crisis indicator. The 
downside and upside spillover values are extracted from the CoVaR 
estimation of Global GBs towards sectoral GBs. These spillover series are 
then regressed against Citi Macro risk, Financial condition index, and 
the COVID-19 crisis. According to Panel A, we find that the Citi Macro 
risk index positively impacts the upside risk spillover of Utility and 
Financial GBs across different quantiles. The Citi Macro risk index 
contributes to the upside risk spillovers of Building at lower quantiles 
(lower risk spillover level). Still, it has an insignificant impact on the 
upside risk spillovers of Industrial GB. This indicates that risk aversion in 
global financial markets influences the dynamic of GB prices. With the 

5 The results of this model are available upon request.  
6 https://seedscientific.com/green-building-statistics. 

7 The Citi Macro risk and Financial condition index data are sourced from 
Bloomberg. COVID-19 is a dummy variable that takes the value of one during 
the pandemic period and zero otherwise. The breakpoint is December 1, 2019 
and onwards.  

8 In order to measure risk spillover, we apply the CoVaR measure proposed by 
Adrian and Brunnermeier (2016). The measurement of CoVaR uses dependence 
coefficients extracted from the copulas model, and the best fitted copulas are 
used as inputs in estimating the CoVaR values. The output from CoVaR esti-
mations is in the form of time-varying series. Table 4 presents the results of 
these upside and downside risk spillover series in the form of descriptive sta-
tistics, whereas these series are plotted in Fig. 5. 
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Table 3 
Time varying copula dependencies between MSCI GB and sectoral series.   

Building Utility Financial Industrial 

1. Normal 
ὼ 0.3684*** 4.9994*** 4.9990*** − 0.6207*** 

(2.1514) (20.5062) (95.7371) (0.1801) 
А − 0.1084*** − 0.4221*** 0.1925*** 0.0485*** 

(0.1481) (8.1533) (2.4121) (0.0405) 
В 4.9398*** − 0.4759*** − 1.7817*** 3.3198*** 

(2.1688) (28.0539) (104.3676) (0.2975) 
AIC − 2017.2415 − 1507.0531 − 1177.6893 − 346.6468  

2. Clayton 
Ψ0 1.0000*** 1.0000*** 1.0000*** 1.8543*** 

(1.0000) (1.0000) (1.0000) (2.2667) 
Ψ1 − 1.0000*** − 1.0000*** − 1.0000*** − 0.9758 

(1.0000) (1.0000) (1.0000) (15.0586) 
Ψ2 0.0000 0.0000 0.0000 0.1285 

(1.0000) (1.0000) (1.0000) (13.7079) 
AIC 2E+08 2E+08 2E+08 − 202.9589  

3. Rotated clayton 
ὼ 1.0000*** 1.0000*** 1.0000*** 1.8632*** 

(1.0000) (1.0000) (1.0000) (4.4056) 
А − 1.0000*** − 1.0000*** − 1.0000*** − 1.0097** 

(1.0000) (1.0000) (1.0000) (10.1389) 
В 0.0000 0.0000 0.0000 0.0551 

(1.0000) (1.0000) (1.0000) (2.2647) 
AIC 2E+08 2E+08 2E+08 − 163.2813  

4. Gumbel 
ὼu 1.7366*** 1.3460*** 1.8194 0.6180*** 

(0.1429) (0.1043) (251.3107) (0.5059) 
αu 0.1391*** 0.1729*** 0.0958 0.2487*** 

(0.0085) (0.0093) (47.3562) (0.2212) 
βu − 4.7346*** − 3.0624*** − 4.9971 − 0.8958*** 

(1.9878) (0.9628) (690.0103) (0.6160) 
AIC − 1977.8175 − 1505.2495 ¡1224.7566 − 332.9853  

5. Rotated Gumbel 
ὼL 1.6778*** 1.2394*** 1.7718 0.6861*** 

(0.1336) (1.2047) (78.3998) (0.3385) 
αL 0.1423*** 0.1815*** 0.0987 0.2008*** 

(0.0085) (0.1131) (14.1861) (0.1768) 
βL − 3.8187*** − 2.0732*** − 4.9946 − 0.7405*** 

(1.6942) (12.0377) (304.9231) (0.2508) 
AIC − 1977.0272 − 1465.5011 − 1171.0654 − 342.5105  

6. Symmetrized JC 
ὼU 1.9546*** 1.9201*** 1.6843*** − 1.9853*** 

(1.3213) (0.8437) (0.8482) (0.0394) 
βU 0.0000 − 0.0029 0.0000 − 0.2545*** 

(1.0010) (1.0046) (1.1298) (0.1481) 
αU 0.0000 0.0094 0.0000 4.0650*** 

(1.2777) (0.9484) (0.0003) (0.0591) 
ὼL 1.9528*** 1.8777*** 1.3980*** 0.3779*** 

(1.4714) (1.0798) (0.9221) (0.2151) 
βL 0.0000 − 0.0032 0.0000 − 2.1757*** 

(1.0007) (0.9451) (1.1049) (0.6552) 
αL 0.0000 − 0.0301 0.0000 0.0917*** 

(1.7153) (0.9435) (1.3870) (0.3022) 
AIC − 1774.7651 − 1431.8524 − 1162.6763 ¡364.5105  

7. Student’s t 
Ψ0 0.7145 − 0.4683 − 1.2886*** 0.9290*** 

(5336.1556) (0.1085) (1.1996) (1.7670) 
Ψ1 − 0.0631 − 0.1402 0.0798*** 0.0676*** 

(1608.8858) (0.0652) (0.5043) (0.0878) 
Ψ2 4.5869 4.9973 4.9957*** 0.9910*** 

(2119.3992) (0.1213) (2.2770) (2.6457) 
υ 4.9985*** 4.9998 4.7605*** 4.9999*** 

(1.9833) (2.2373) (5.0620) (1.3075) 
AIC ¡2035.0111 ¡1530.5111 − 1212.9466 − 359.0732 

W. Mensi et al.                                                                                                                                                                                                                                  



International Review of Financial Analysis 81 (2022) 102125

10

exception of Industrial GB, the increase in Macro uncertainty contributes 
to the risk of spillovers. As for the downside risk spillovers (Panel B), the 
relationship is negative across quantiles. The rise in Citi Macro risk 
uncertainty index decreases the downside risk spillovers. The effect of 
the Financial condition index on the upside spillovers is mixed. It posi-
tively affects the upside spillovers of Utility at intermediate quantiles, 
Financial GB across all quantiles. In contrast, the Financial condition 
index affects the upside spillovers of Industrial GB negatively at low and 
high quantiles. This indicates that the increase in the financial condition 
index reduces the upside spillover level at low and high quantiles. The 
results for downside spillover are pretty similar, with the exception of 
the Financial condition index, which affects the downside spillover of 
Industrial GB across all quantiles. Overall, the financial stress in the US 
bond, equity, and money markets constitutes vital information to predict 
the relationships between Global and sectoral GBs. 

Fig. 4. Best fitted time-varying copulas between global GB and GB sectors. 
Note: The time-varying dependence structure is based on the best-fitted copulas (see Table 3). We find that the dependence structure between global GBs and sectoral 
GBs is best suited for student t copula in the case of Building and Utility sectors. For Financial sector, we report Gumbel copula as best fitted. In contrast, in the case of 
Industrial sector, Symmetrized JC appears as the best-fitted copula based on the least corresponding AIC values. 

Notes: The table presents the estimates and standard errors (in brackets) for the different time-varying bivariate copula models between MSCI GB and Building, 
Financial, Industrial, and Utility price returns. The Akaike information criterion (AIC) values adjusted for small-sample bias are provided for the different copula 
models. We note that the minimum AIC values (in bold) indicate the best copula fit. The А parameter stands for the average dependence (or zero tail-dependence) as 
given by the TVP normal copula. Ψ1 and А measure the lower tail dependence as defined by the Clayton copula and the upper tail dependence modeled by the rotated 
Clayton copula, respectively. The αu and αL parameters refer to the lower tail independence and upper tail dependence defined by the Gumbel and rotated Gumbel 
copulas. ϑ stands for degrees of freedom. βU and βLmeasure the lower and upper tail dependence as defined by the SJC copula. The Ψ0, Ψ1, and Ψ2 parameters determine 
the dependence, persistence, and adjustment for Student-t copula. *** indicates the significance of the parameters at the 1% level. 

Table 4 
Descriptive statistics of VaR and CoVaR.   

Upside VaR Downside VaR Upside CoVaR Downside CoVaR 

Building 0.1810 − 0.1799 0.2209 − 0.2048 
(0.0132) (0.0129) (0.0160) (0.0147) 

Utility 
0.5543 − 0.5312 0.6767 − 0.6121 
(0.0531) (0.0565) (0.0616) (0.0616) 

Financial 
0.4645 − 0.4590 0.4221 − 0.3979 
(0.0556) (0.0586) (0.0525) (0.0529) 

Industrial 0.3256 − 0.2891 0.2629 − 0.3099 
(0.0300) (0.0276) (0.0255) (0.0276) 

Notes: This table presents the mean and the standard deviation (in parenthesis) 
of the upside and downside VaR and CoVaR of GBs. 
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Regarding the effects of the global health crisis on the quantile 
spillovers, we find an asymmetric dependence between the COVID-19 
outbreak and upside/downside spillovers for Building GB under 
extreme quantiles. COVID-19 intensifies (reduces) the downside (up-
side) risk spillovers for Financial GB regardless of quantiles. In contrast, 
the pandemic outbreak reduces (increases) the downside (upside) 
spillovers for Utility GB at both intermediate and upper (only lower and 
medium) quantiles. The lockdown, the increasing uncertainty, and the 
operating chain’s disruption have put the brakes on the GB issuance and, 
therefore, on the magnitude of risk spillovers. On the other hand, we 
show insignificant quantile dependence for the case of Industrial GB. 

4.3. Robustness tests: Quantile causality test and spillover index method 

We notice that robustness tests enhance our findings’ relevance and 
reliability. It also confirms or infirms the quality and strength of the used 
models. In our study, we apply two robustness measures to our principal 
analysis, namely volatility spillover, based on the work of Diebold and 
Yilmaz (2012), and causality in quantiles, following Balcilar et al. 
(2017). The former measure helps examine the volatility spillover be-
tween global and US sectoral green bonds. The results of this method-
ology support our earlier findings as we can see a significant increase in 
volatility transmission during the COVID-19 period, marked by a red 
line. Our second robustness measure supports the quantile regression 
results by estimating the coefficient of causal relationship running from 
external risk factors to the upside and downside risk spillover. This test 
helps measure causality across extreme and median distributions of 
spillover, which is similar to quantile regression, in which we examine 
the effect of external risk factors on upside and downside risk spillover 
towards US sectoral GB. Nevertheless, the quantile regression results are 
based on a multivariate regression model, which is later confirmed by 
the bivariate causality test across different quantiles. 

The expression to measure causality in quantiles running from risk 

Fig. 5. Time variations of VaR and CoVaR.  

Table 5 
Tests of equalities and asymmetries between VaR and CoVaR.   

Building Utility Financial Industrial 

Test of equalities 
H0: CoVaR (D) = VaR (D) 0.7782 0.5833 0.3881 0.3414 
H1: CoVaR (D) ∕= VaR (D) [0.0000] [0.0000] [0.0000] [0.0000] 
H0: CoVaR (U) = VaR (U) 0.9237 0.7506 0.2971 0.8398 
H1: CoVaR (U) ∕= VaR (U) [0.0000] [0.0000] [0.0000] [0.0000]  

Test of asymmetries 
H0: CoVaR(D)/VaR(D) = CoVaR 

(U)/VaR(U) 0.6958 0.7250 0.3424 0.8251 

Ha: CoVaR(D)/VaR(D) < CoVaR 
(U)/VaR(U) 

[0.0000] [0.0000] [0.0000] [0.0000] 

Notes: This table reports the results of the Kolmogorov–Smirnov (KS) test. The 
KS tests the null hypothesis of no systemic impact between Global GB and sec-
toral GB price returns. The values in squared brackets stand for p-values for the 
KS statistic. 
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Table 6 
Results of QRA for CoVaR.  

Panel A: Determinants of upside risk spillovers 

Building 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C 
0.2016*** 0.2018*** 0.2073*** 0.2125*** 0.2197*** 0.2203*** 0.2242*** 0.2304*** 0.2605*** 
(0.0026) (0.0031) (0.0038) (0.0046) (0.0051) (0.0057) (0.0061) (0.0069) (0.0126) 

Macro Risk 0.0068* 0.0105* 0.0060 0.0022 − 0.0029 0.0025 0.0044 0.0038 − 0.0195 
(0.0040) (0.0046) (0.0055) (0.0066) (0.0072) (0.0084) (0.0092) (0.0104) (0.0173) 

Financial 
0.0006 0.0023 0.0010 − 0.0006 − 0.0037 − 0.0031 − 0.0034 − 0.0043 ¡0.0157* 

(0.0014) (0.0017) (0.0022) (0.0028) (0.0032) (0.0036) (0.0036) (0.0043) (0.0083) 

COVID-19 
0.0025 0.0036* 0.0041** 0.0031 0.0009 0.0010 − 0.0021 − 0.0016 ¡0.0139*** 

(0.0020) (0.0020) (0.0020) (0.0021) (0.0022) (0.0024) (0.0026) (0.0034) (0.0043) 
Pseudo R-squared 0.0021         

Utility 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C 0.5534*** 0.5331*** 0.5755*** 0.5659*** 0.5879*** 0.6084*** 0.6318*** 0.6583*** 0.6609*** 
(0.0485) (0.0337) (0.0198) (0.0196) (0.0169) (0.0177) (0.0194) (0.0196) (0.0213) 

Macro Risk 
0.1124 0.1727*** 0.1311*** 0.1662*** 0.1500*** 0.1476*** 0.1586*** 0.1473*** 0.1858*** 

(0.0770) (0.0506) (0.0313) (0.0315) (0.0279) (0.0273) (0.0265) (0.0265) (0.0312) 

Financial 
− 0.0249 0.0035 0.0070 0.0188** 0.0208** 0.0105 − 0.0125 − 0.0160 − 0.0026 
(0.0268) (0.0167) (0.0106) (0.0093) (0.0085) (0.0119) (0.0130) (0.0142) (0.0152) 

COVID-19 0.0714*** 0.0576*** 0.0369*** 0.0297*** 0.0189*** 0.0083 0.0014 ¡0.0128* ¡0.0181* 
(0.0077) (0.0094) (0.0076) (0.0080) (0.0073) (0.0074) (0.0079) (0.0076) (0.0105) 

Pseudo R-squared 0.0594         

Financial 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C 
0.3349*** 0.2853*** 0.2714*** 0.2632*** 0.2568*** 0.2678*** 0.2840*** 0.2976*** 0.3716*** 
(0.0171) (0.0188) (0.0133) (0.0120) (0.0111) (0.0119) (0.0132) (0.0197) (0.0297) 

Macro Risk 
0.0728*** 0.1795*** 0.2226*** 0.2512*** 0.2768*** 0.2777*** 0.2697*** 0.2662*** 0.1930*** 
(0.0279) (0.0302) (0.0211) (0.0189) (0.0174) (0.0181) (0.0197) (0.0288) (0.0415) 

Financial − 0.0063 0.0317** 0.0428*** 0.0497*** 0.0557*** 0.0582*** 0.0538*** 0.0577*** 0.0330** 
(0.0150) (0.0142) (0.0093) (0.0078) (0.0071) (0.0070) (0.0078) (0.0102) (0.0138) 

COVID-19 ¡0.0205*** ¡0.0222*** ¡0.0225*** ¡0.0166*** ¡0.0189*** ¡0.0229*** ¡0.0312*** ¡0.0405*** ¡0.0734*** 
(0.0054) (0.0059) (0.0062) (0.0056) (0.0057) (0.0060) (0.0062) (0.0084) (0.0116) 

Pseudo R-squared 0.2791         

Industrial 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C 
0.2389*** 0.2523*** 0.2575*** 0.2595*** 0.2660*** 0.2757*** 0.2860*** 0.2940*** 0.3292*** 
(0.0075) (0.0061) (0.0065) (0.0073) (0.0088) (0.0091) (0.0095) (0.0114) (0.0220) 

Macro Risk − 0.0027 − 0.0125 − 0.0131 − 0.0085 − 0.0085 − 0.0112 − 0.0150 − 0.0131 − 0.0463 
(0.0107) (0.0092) (0.0097) (0.0109) (0.0123) (0.0130) (0.0140) (0.0171) (0.0330) 

Financial − 0.0031 ¡0.0080** ¡0.0061*** − 0.0057 − 0.0076 − 0.0094 ¡0.0152*** ¡0.0182** ¡0.0233* 
(0.0039) (0.0033) (0.0037) (0.0044) (0.0060) (0.0059) (0.0058) (0.0074) (0.0119) 

COVID-19 
− 0.0014 − 0.0021 − 0.0041 − 0.0029 − 0.0065 − 0.0076 − 0.0055 − 0.0035 − 0.0158 
(0.0035) (0.0036) (0.0036) (0.0040) (0.0043) (0.0047) (0.0053) (0.0055) (0.0100) 

Pseudo R-squared 0.0044          

Panel B: Determinants of downside risk spillovers 

Building 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C 
¡0.2328*** ¡0.2171*** ¡0.2074*** ¡0.2054*** ¡0.2003*** ¡0.1969*** ¡0.1908*** ¡0.1875*** ¡0.1872*** 

(0.0099) (0.0081) (0.0061) (0.0049) (0.0046) (0.0042) (0.0035) (0.0028) (0.0023) 

Macro Risk 
0.0092 − 0.0023 − 0.0031 − 0.0005 − 0.0012 − 0.0026 − 0.0079 − 0.0094 ¡0.0057** 

(0.0140) (0.0118) (0.0092) (0.0073) (0.0066) (0.0060) (0.0050) (0.0042) (0.0036) 

Financial 0.0101 0.0075 0.0021 0.0036 0.0008 0.0008 − 0.0015 − 0.0015 − 0.0011 
(0.0063) (0.0048) (0.0034) (0.0031) (0.0028) (0.0026) (0.0021) (0.0017) (0.0013) 

COVID-19 
0.0067*** 0.0036 0.0003 − 0.0025 − 0.0029 − 0.0023 ¡0.0040** ¡0.0033* − 0.0015 
(0.0038) (0.0032) (0.0026) (0.0024) (0.0022) (0.0022) (0.0020) (0.0018) (0.0018) 

Pseudo R-squared 0.0020         

Utility 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C 
¡0.6260*** ¡0.5738*** ¡0.5523*** ¡0.5127*** ¡0.4995*** ¡0.4875*** ¡0.4724*** ¡0.4265*** ¡0.5092*** 

(0.0286) (0.0193) (0.0185) (0.0179) (0.0189) (0.0193) (0.0216) (0.0303) (0.0594) 

Macro Risk ¡0.1378*** ¡0.1751*** ¡0.1771*** ¡0.1827*** ¡0.1800*** ¡0.1855*** ¡0.1907*** ¡0.2406*** − 0.0732 
(0.0370) (0.0265) (0.0254) (0.0283) (0.0306) (0.0310) (0.0334) (0.0447) (0.0979) 

Financial 
0.0237 0.0012 − 0.0049 ¡0.0328*** ¡0.0339*** ¡0.0274*** ¡0.0217** ¡0.0298** 0.0363 

(0.0186) (0.0126) (0.0129) (0.0097) (0.0085) (0.0085) (0.0102) (0.0158) (0.0317) 

COVID-19 
0.0226** 0.0037 − 0.0032 ¡0.0171** ¡0.0229*** ¡0.0313*** ¡0.0424*** ¡0.0554*** ¡0.0574*** 
(0.0101) (0.0086) (0.0080) (0.0081) (0.0085) (0.0086) (0.0086) (0.0093) (0.0097) 

Pseudo R-squared 0.0617         

Financial 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

(continued on next page) 
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Table 6 (continued ) 

Panel B: Determinants of downside risk spillovers 

Building 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C ¡0.3398*** ¡0.2690*** ¡0.2423*** ¡0.2304*** ¡0.2234*** ¡0.2234*** ¡0.2260*** ¡0.2424*** ¡0.2955*** 
(0.0287) (0.0207) (0.0111) (0.0106) (0.0109) (0.0118) (0.0140) (0.0222) (0.0190) 

Macro Risk 
¡0.2054*** ¡0.2759*** ¡0.2886*** ¡0.2898*** ¡0.2837*** ¡0.2692*** ¡0.2490*** ¡0.2038*** ¡0.0949*** 

(0.0397) (0.0281) (0.0163) (0.0156) (0.0167) (0.0186) (0.0224) (0.0361) (0.0305) 

Financial 
¡0.0278** ¡0.0568*** ¡0.0660*** ¡0.0704*** ¡0.0716*** ¡0.0675*** ¡0.0605*** ¡0.0458*** − 0.0086 
(0.0141) (0.0116) (0.0068) (0.0073) (0.0070) (0.0074) (0.0089) (0.0151) (0.0142) 

COVID-19 0.0539*** 0.0377*** 0.0287*** 0.0262*** 0.0230*** 0.0188*** 0.0165*** 0.0169*** 0.0245*** 
(0.0119) (0.0089) (0.0060) (0.0054) (0.0054) (0.0053) (0.0051) (0.0054) (0.0067) 

Pseudo R-squared 0.3016         

Industrial 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

C 
¡0.3818*** ¡0.3593*** ¡0.3482*** ¡0.3361*** ¡0.3269*** ¡0.3185*** ¡0.3164*** ¡0.3033*** ¡0.3069*** 

(0.0198) (0.0137) (0.0132) (0.0098) (0.0086) (0.0081) (0.0080) (0.0080) (0.0066) 

Macro Risk 
0.0355 0.0253 0.0296 0.0280** 0.0227*** 0.0191 0.0236** 0.0173 0.0346*** 

(0.0327) (0.0199) (0.0186) (0.0139) (0.0127) (0.0119) (0.0118) (0.0114) (0.0098) 

Financial 0.0418*** 0.0361*** 0.0290*** 0.0242*** 0.0225*** 0.0203*** 0.0228*** 0.0157*** 0.0198*** 
(0.0101) (0.0092) (0.0090) (0.0071) (0.0056) (0.0048) (0.0046) (0.0047) (0.0036) 

COVID-19 0.0012 − 0.0002 0.0022 0.0061 0.0041 0.0047 0.0048 − 0.0004 − 0.0012 
(0.0088) (0.0069) (0.0081) (0.0057) (0.0049) (0.0039) (0.0037) (0.0034) (0.0028) 

Pseudo R-squared 0.0310        

Notes: *, **, and *** indicate significance at the 10%, 5% and 1% levels, respectively. 

Fig. 6. Volatility spillover from Global GBs to sectoral GBs.  
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Fig. 7. Causality in quantiles from control variables to upside/downside risk spillovers. 
Notes: The black and blue lines in the above figures represent causality in mean and variance, respectively, running from COVID-19, Macro risk, and Financial 
condition index towards upside/downside risk spillover (from global GBs to sectoral GBs). Dark blue and red dashed lines represent critical values at 5% and 10%, 
respectively. 
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Fig. 7. (continued). 
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Fig. 7. (continued). 

W. Mensi et al.                                                                                                                                                                                                                                  



International Review of Financial Analysis 81 (2022) 102125

17

Fig. 7. (continued). 
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factors (xt) to the US sectoral spillover (yt) is presented below.9 

H0 : P
{

Fyt|yt− 1{Qθ| (Yt− 1) | Zt− 1} = θ
}
= 1 (15)  

H1 : P
{

Fyt|yt− 1{Qθ| (Yt− 1) | Zt− 1} = θ
}〈

1 (16) 

For our work, we also estimate causality in variance as the second 
moment. This is because the rejection of the hypothesis of causality in 
moment m does not imply non-causality in moment k, for m ≤ k. 
Therefore, for this purpose, we present causality in variance as follows 

H0 : P
{

Fyt|yt− 1{Qθ| (Yt− 1) | Zt− 1} = θ
}
= 1 for k = 1, 2,….K (17)  

H1 : P
{

Fyt|yt− 1{Qθ| (Yt− 1) | Zt− 1} = θ
}〈

1 for k = 1, 2,….K (18) 

The second robustness test is the spillover index of Diebold and 
Yilmaz (2012). This spillover index is defined as the flow of information 
from one market towards the other by employing a generalized VAR 
model, as appended below. 

Ci←*(H) =

∑N
j=1,j∕=i θ̃ij(H)

∑N
ij=1θ̃ij(H)

× 100 =

∑N
j=1,j∕=1θ̃ij(H)

N
× 100 

In the above spillover formula, the directional connectedness 
Ci←*(H) is directed from global GB towards other US sectoral GBs, where 
i denotes sectoral green bonds and j represents Global GB. 

Fig. 6 displays the time variations of volatility spillovers between 
Global GB and sectoral GBs using the spillover index of Diebold and 
Yilmaz (2012). As we can see, the volatility spillovers between markets 
under investigation are time-varying and sensitive to the COVID-19 
pandemic crisis. More specifically, the dynamic volatility spillovers 
between global GBs and Building GBs vary between 48.23% in January 
2018 and 49.38% in February 2020. As for Industrial GB, the extent of 
spillovers ranges between 12.6% in January 2018 and 32.6% in 
February 2020. The spillover index between Global GB and the Financial 
sector GB is less volatile and shows a smooth evolution of around 42%. 
The spillovers between GBs and the Utility GB exhibit a downside trend 
during the COVID-19 pandemic crisis. More interestingly, the spillover 
index increases during the ongoing pandemic for both Building and 
Industrial GBs and decreases in the case of Utility and Financial GBs. Yi, 
Bai, Lyu, and Dai (2021) show that the spread of COVID-19 has had a 
significant impact on the GB market volatility. We notice that the 
spillover effects between global GBs and Financial GB are relatively 
stable at around 46% showing a decrease during the pandemic crisis 
(around 41% in February 2020). This result indicates that the respon-
siveness of GB sectors to Global GB prices is heterogeneous and 
asymmetric. 

Fig. 7 displays the estimated results of quantile causality in-mean 
(black color curve) and in-variance (blue color curve) from the 
COVID-19 crisis, the Citi Macro Risk index, and the US financial con-
dition index, the upside/downside spillovers as measured by CoVaR. 

Looking at the Building GBs, the visual evidence shows significant 
causality in-mean and in-variance from the COVID-19 crisis to upside/ 
downside risk spillovers between global GB and Building GBs at lower 
and medium quantiles (from 0.1 to 0.5 for causality invariance and 0.6 
for causality in mean). The result is similar when considering the cau-
sality of the Citi Macro Risk index to upside risk spillovers. In contrast, 
we observe insignificant causality at the upper quantiles of COVID-19 to 
upside/downside spillovers. Similarly, we find negligible quantile cau-
sality (in mean and invariance) from the Citi Macro Risk index to 
downside spillovers. In the case of Building GB, the financial condition 
index has a significant quantile causality on the upside/downside 
spillovers. Looking at the Utility GB, we observe insignificant causality 
from the COVID-19 crisis to the upside/downside spillovers of the Utility 
sector for most quantiles, with the middle quantile the exception. A 
similar result is obtained for the Citi Macro Risk index, where this var-
iable causes the downside spillovers in mean (variance) at lower (upper) 
quantiles. The financial condition index has insignificant quantile cau-
sality of upside/downside spillovers. On the upside spillovers, the 
financial GB, COVID-19, macro risk, and financial condition index have 
insignificant causality-in-mean and in-variance. As for downside spill-
overs, the results of the causality-in-quantile test reveal that the COVID- 
19 spread shows significant effects in the median. However, we offer 
insignificant quantile causality from the financial condition index to the 
downside spillovers. The Citi Macro Risk index causes the downside 
spillovers of Financial GB at the upper (lower) quantiles. Finally, the 
COVID-19 pandemic spread has insignificant quantile causality on the 
upside spillovers, whereas it shows significant causality in-mean and in- 
variance on the downside spillovers at intermediate quantiles. On the 
other hand, the Citi Macro Risk index has only a significant impact on 
the upside spillovers across different quantiles. The financial condition 
index has insignificant causality-in-mean on upside and downside 
spillovers for all quantiles. In contrast, the financial condition index has 
significant causality-in-variance at the lower and intermediate quan-
tiles. Overall, we observe that the causality in-mean and in-variance is 
asymmetric and sensitive to quantiles and the GB sectors. 

5. Conclusion 

This study is the first to examine the dependence structure and the 
asymmetric up/down risk spillovers between MSCI Global GB and both 
Building, Utility, Industrial, and Financial GB price returns. It also ex-
amines the impacts of the COVID-19 outbreak, the Citi Macro risk index, 
and the US financial condition index on up/down spillovers across 
different quantiles. To achieve our objectives, we use diverse copula 
functions, conditional Value at Risk (CoVaR), the spillover index of 
Diebold and Yilmaz (2012), the quantile causality test, and the quantile 
regression approach. 

The results show a symmetric tail dependence between MSCI Global 
GB and Building, and Utility GB price returns. In contrast, we find an 
asymmetric tail dependence between MSCI Global GB and Industrial, 
and Financial GBs. The dependence between the markets understudy is 
time-varying and affected by COVID-19 for Financial, Utility, Building 
GBs, and it is relatively stable for Industrial GB. More interestingly, we 
show significant upside/downside risk spillovers from MSCI Global GB 
to Building and Utility GBs, whereas little spillover is found for Financial 
and Industrial GBs. On the other hand, we find minor effects of Citi 
Macro risk and US Financial condition indexes along with the COVID-19 
pandemic crisis on both the downside (except highest quantiles) and 
upside (except lower quantiles) risk spillovers from global GBs towards 
the Building sector GBs. In contrast, Utilities and Financial sectors 
remain most vulnerable to the effects of the Citi Macro Risk index, 
Financial Condition index, and COVID-19 crisis on the downside and 
upside risk spillovers. Both upside and downside risk spillover in the 
Financial sector appear even more sensitive to changes in Macro risk and 
Financial Condition indexes together with the COVID-19 outbreak. The 
robustness test shows asymmetric risk spillovers. The Citi Macro Risk 

9 To measure causality in quantiles, the analysis uses the novel methodo-
logical approach proposed by Balcilar, Gupta, and Pierdzioch (2016). We follow 
the work of Jeong et al. (2012) to test that xt does not cause yt in the θ quantile 
for the lag vector of {yt-1, … yt-p, xt-1, … xt-p} if: Qθ (yt, yt-1, … yt-p, xt-1, … xt-p) =
Qθ (yt, yt-1, … yt-p). However, we presume that causality exists between xt and 
yt. in θth quantile with regards to:{yt-1, … yt-p, xt-1, … xt-p} {yt-1, … yt-p, xt-1, … xt- 

p} if Qθ (yt, yt-1, … yt-p, xt-1, … xt-p) ∕= Qθ (yt, yt-1, … yt-p). Qθ (yt
.) in the above 

equation represents the θth quantile of yt. The conditional quantiles of Qθ (yt
.) 

and yt are dependent on t and range between zero and one, i.e. 0 < θ < 1. We 
define the vectors yt-1 ≡ (yt-1, … yt-p), (xt-1, … xt-p) and Zt = (Xt, Yt). The 
functions Fyt|yt-1 (yt| Yt-1) and Fyt|zt-1 (yt| Zt-1) represent the conditional distri-
bution functions of yt conditional on the vectors Yt-1 and Zt-1, respectively. The 
distribution Fyt|zt-1 (yt| Zt-1) is presumed to be continuous completely in yt 
almost for all Zt-1. We define Qθ (Zt-1) ≡ Qθ (yt|Zt-1) and Qθ (Yt-1) ≡ Qθ (yt|Yt-1) 
Qθ (Yt-1) ≡ Qθ (yt|Yt-1) which yields Fyt|zt-1{Qθ| (Zt-1)| Zt-1} holding probability 
to unit (one). 
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index, US Financial condition index, and the COVID-19 outbreak are 
critical determinants for risk spillovers. The relationship varies across 
various quantiles (or different levels of spillovers), indicating non-linear 
dependence. The spillover index analysis shows dynamic volatility 
spillover effects between MSCI global GB and sectoral GBs. More pre-
cisely, the spillover intensified during the COVID-19 pandemic crisis for 
all sectors except Financial GB, where the spillover index remains 
relatively stable. The nonparametric quantile causality test reveals that 
the COVID-19 crisis, the Citi Macro Risk index, and the US financial 
condition index cause the upside/downside spillovers invariance. 

These findings have important policy implications for market par-
ticipants. Investors exploiting sector GBs should pay attention to the 
effects of MSCI global GB price return shocks. Specifically, investors 
should be aware that Industrial GB is the least vulnerable market to 
Global GB shocks. Building and Utilities GB sectors are more sensitive to 
changes in global GB price movement (both upward and downward). 
The low CoVaR values of Financial and Industrial sector GBs highlight 
their common sensitivity to the increasing level of risk in global green 
bonds. Investors should be aware that consumer-oriented sectors are 
more sensitive to global GBs than the economy-oriented sectors. Despite 
the common aspect of GBs (i.e., investing in environmentally friendly 
initiatives and projects), they exhibit heterogeneous behavior in terms of 

risk spillover, which carries implications for individuals as well as 
institutional investors. Policymakers should be aware of the heteroge-
neity of spillovers between Global GB and GB sectors as well as of the 
critical drivers of spillovers that vary across quantiles. The cross-market 
information among GBs provides vital information to regulators to 
reduce the magnitude of shocks received by GB sectors to mitigate 
financial contagions during market downturns and stipulate the growth 
of GBs through more issues by mainstream companies. This may, 
therefore, motivate investors to consider the less vulnerable GBs in their 
investment strategies. 

This paper can be extended by examining the role of the main GBs as 
hedges or safe-haven assets for the Cryptocurrency Environmental 
Attention Index (CEAI).10 In addition, future research can examine the 
short- and long-term spillovers among GBs because these environmen-
tally friendly assets provide more significant long-term benefits to 
investors. 
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Appendix 

A.1. Quantile regression 

Under the quantile framework, dependence between two variables x and y remain unconditional in the absence of any exogenous variable however 
becomes conditional along with x. We can determine the dependence structure using values of β(τ) for τ ∈ [0,1]. The dependence of y on an inde-
pendent variable in vector x can be i) a constant for which the value of β(τ) remains unchanged for different values of τ, ii) symmetric (asymmetric) in 
the case when the value of β(τ) remains similar (dissimilar) under low and high quantile values, iii) monotonically increasing (decreasing) when the 
value of β(τ) increases (decreases) with the value of τ. We can measure coefficients of β(τ) for given τ values by minimizing the weighted absolute 
deviations between x and y as mentioned below. 

β̂(τ) = argmin
∑T

t=1

(
τ − 1{yt<x′t β(τ)}

)
∣yt − x′

t β(τ)∣ (A1)  

Eq. (A1) contains 1{yt<xt′ β(τ)} as an indicator function. Koenker and d’Orey (1987) proposed this usual indicator function solution using a linear 
programming algorithm. 
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