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ABSTRACT: Accurate diagnosis of cancer subtypes is a great
guide for the development of surgical plans and prognosis in the
clinic. Raman spectroscopy, combined with the machine learning
algorithm, has been demonstrated to be a powerful tool for tumor
identification. However, the analysis and classification of Raman
spectra for biological samples with complex compositions are still
challenges. In addition, the signal-to-noise ratio of the spectra also
influences the accuracy of the classification. Herein, we applied the
variational autoencoder (VAE) to Raman spectra for downscaling
and noise reduction simultaneously. We validated the performance
of the VAE algorithm at the cellular and tissue levels. VAE
successfully downscaled high-dimensional Raman spectral data to two-dimensional (2D) data for three subtypes of non-small cell
lung cancer cells and two subtypes of kidney cancer tissues. Gaussian naiv̈e bayes was applied to subtype discrimination with the 2D
data after VAE encoding at both the cellular and tissue levels, significantly outperforming the discrimination results using original
spectra. Therefore, the analysis of Raman spectroscopy based on VAE and machine learning has great potential for rapid diagnosis of
tumor subtypes.

■ INTRODUCTION
Early diagnosis of cancer is highly important for improving the
10 year survival of patients. As the treatments of different
subtypes have significant differences, identification of cancer
subtypes is an essential reference for developing a therapy
plan.1 At present, the most mainstream clinical methods are
the pathological diagnosis and immunochemistry.2,3 However,
these processes are too complicated and time-consuming, and
the probability of misjudgment strongly relies on personal
experience. Therefore, it is beneficial to develop a rapid,
noninvasive, and highly sensitive technique that can accurately
detect and recognize different subtypes of tumors. Raman
spectroscopy is a label-free molecular vibrational spectroscopic
method that can provide specific fingerprint information about
the chemical composition of the biological sample, which is
beneficial for clinical diagnosis.4−6 The Raman spectra consist
of spectral information from nucleic acids, proteins, lipids,
carbohydrates, and so on. Different types of cancer cells have
different structures and compositions, corresponding to
different spectra, which may lead to the possible differentiation
of tumor subtypes.7−9

Raman spectra of biological samples consist of molecular
information with complex composition, which makes it almost
impossible to achieve the peak intensity of the target molecule
directly. Therefore, an efficient analytical technique is needed
to process the Raman signal. As a significant branch of machine
learning, classification algorithms such as linear discriminant
analysis (LDA) and supporting vector machine (SVM) are

currently the most common methods for analyzing Raman
spectra.6,10−14 These classification algorithms commonly
distinguish Raman spectra by mining the differences between
data belonging to different classes. Instead of the traditional
method of extracting peak intensity, these algorithms process
the entire information on the spectra when classifying them,
and the more comprehensive information makes it more
accurate.15,16 Currently, researchers have implemented algo-
rithms to discriminate Raman spectra of tumors at the cellular
and tissue levels.17−19

Although Raman spectroscopy has been shown to be
applicable for the identification of cancer subtypes, there is
still a problem that may affect the application of the classifier:
feature redundancy.20−23 The spectra consist of hundreds or
even thousands of data points, which make up multiple Raman
peaks in the spectrum. But not every Raman peak contributes
to distinguish different types of Raman spectra. Thus,
unimportant data points may create feature redundancy that
can have a negative impact on the classification performance.
At present, the feature selection method based on variance
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thresholding is a common one to eliminate invalid information
in machine learning, but it fails to consider the entire spectral
information comprehensively and thus has limited improve-
ment on the spectra classification.24−26 In addition, a poor
signal-to-noise ratio means that the intensity of the weaker
peaks is highly susceptible to being masked or affected by
noise, thus affecting the classification effect. These deficiencies
make the classification algorithms ineffective in differentiating
Raman spectra of different tumor subtypes, which consist of
similar compositions.
In this work, we combined the nine classification algorithms

with Raman spectroscopy to distinguish the subtypes of
cancers. The variational autoencoder (VAE) was employed to
reduce feature redundancy and to accomplish noise reduction.
Some studies have been conducted using autoencoders (e.g.,
sparse autoencoder) to process spectra for improved analysis in
fields such as tumor types, microplastics, and drug
resistance.27−29 However, the application of autoencoders for
classifying tumor subtypes is still lacking. VAE encodes Raman
spectra as two-dimensional (2D) information, which fits a
Gaussian distribution, and the fewer data dimensions make it
insufficient to store noise information.30−32 Nine classification
models were trained to classify the VAE-encoded Raman
spectra of three subtypes of non-small cell lung cancer
(NSCLC) cell lines (A549, H1299, and H460) and two
subtypes of kidney cancer tissues (clear cell renal cell
carcinomas (CCRCC) and papillary renal cell carcinoma
(PRCC)). Meanwhile, we compared the classification perform-
ance of different classifiers for both the original spectra and the
VAE-compressed data, and the results show that the VAE-
processed data generally give better classification results. For
NSCLC cells, the Gaussian naiv̈e bayes (NB) achieves the best
classification result with an accuracy of 89.6%. For kidney
cancer data, the Gaussian NB represented the best
classification performance with an accuracy of 81.4%.

■ MATERIALS AND METHODS
Cell Culture and Preparation. The three different types

of human non-small cell lung cancer (NSCLC) cell lines A549,
H1299, and H460 were obtained from American Type Culture
Collection (ATCC). All cells were cultured in DMEM with
10% fetal bovine serum, 100 U·mL−1 penicillin, and 100 μg·
mL−1 streptomycin at 37 °C in a cell incubator with 5% CO2.
The mentioned reagents were bought from Gibco. Before the
Raman measurements were performed, the NSCLC cell lines
were washed with phosphate-buffered solution (PBS) and fixed
with 4% paraformaldehyde for 10 min at room temperature.
Then the cells were purified with ultrapure water to remove
paraformaldehyde.
Clinical Sample Acquisition and Pathological Diag-

nosis. All kidney cancer tissues were acquired from patients
who were diagnosed with kidney cancer with a preoperative
imaging technique. The tissues were excised intraoperatively or
removed by biopsy. A total of 30 patient samples were
retrieved, including 16 CCRCC and 14 PRCC. The diameter
of each tissue was about 1−2 mm. The acquisition of tissue
samples and all experiments in this study were approved by the
Ethics Committee of Renji Hospital, School of Medicine,
Shanghai Jiao Tong University. The pathological diagnoses, as
the gold standard for classification results, were accomplished
with the standard procedure in Renji Hospital of Shanghai Jiao
Tong University. All tissues were stored in a 0 °C environment
until Raman spectra were collected.

Raman Spectra Acquisition. Raman spectra were
obtained on a confocal Raman system (Horiba, XploRA
PLUS) from the fixed cells on quartz plates. For the acquisition
of cell Raman spectra, a laser beam of 532 nm was used as an
excitation source. The laser power was 39.1 mW on the sample
with a 60×/NA 0.7 objective. Raman spectra from all cell
samples were recorded in the spectral range of 400−4000
cm−1. The collection time was 2 s for each Raman spectrum.
All cells were scanned with a multipoint grid containing the
whole cell in steps of 0.5−2 μm. For each cell, more than 150
spectra were collected in the acquisition. After the cell spectra
were measured, the nucleus was stained. The staining reagent
was DNA-binding fluorescent dye 4′,6-diamidino-2-phenyl-
indole (DAPI). Fluorescence images were acquired using a
fluorescence microscope (Leica, DM 2500) to distinguish the
nucleus. The spectra acquired at the acquisition location within
the DAPI-stained region are considered nuclear spectra. A total
of 140 NSCLC cells were collected (H1299: 58 cells; H460:
50 cells; A549: 32 cells). To balance the sample size of the
subtypes in the train set, different numbers of spectra were
chosen for different subtypes of cells during the training
process (20 spectra for each cell nucleus and cytoplasm of
H1299, 25 spectra for H460, and 35 spectra for A549). Before
the Raman spectrum acquisition of kidney cancer tissues, all
tissues were taken out from a 0 °C environment and placed at
room temperature (26 °C) for 30 min to avoid the influence of
temperature on the Raman tests.33−35 The tissues were placed
on quartz plates, and the laser was illuminated through the
quartz plate onto the tissues. Raman spectra from kidney
cancer tissues were excited by a 785 nm laser and recorded in
the spectral range of 200−1800 cm−1, and the collection time
was 5 s with the laser power of 29.8 mW. The laser spot area is
approximately 3 μm. For each point, two Raman spectra were
acquired and took their average as the final spectrum to reduce
the random noise. For each tissue, 100 spectra were collected
and 30 spectra were randomly chosen to establish the data set
in the case of information saturation.

Data Preprocessing. Spectral data from our experiments
were preprocessed and analyzed using Python. Before analysis,
the preprocessing of Raman spectral data is crucial. A strong
background always exists in Raman spectra of biological
samples, and noise from different sources also contributes to
the Raman signal. Removing the background and other noise
before analysis is highly important. First, cell spectra were
selected from all spectra according to the Raman peak between
2800 and 3000 cm−1. Then the spectra were background-
subtracted. In the next step, the spectra were smoothed by
employing Savitzky−Golay (SG), a filter using a polynomial
order of 3 and a frame length of 15.36,37 It is a filter based on
local polynomial least-squares fitting in the time domain.
Afterward, we used adaptive iterative reweighted penalized
least-squares (air-PLS), which iterates the least-square method
to remove the baseline.38,39 The background-subtracted
spectra were finally normalized to the standard normal
distribution. The same process was repeated for all three
types of cells. For clinical samples, the SG filter and airPLS
with the same parameters as cell samples were applied to
preprocess the Raman spectra.

Variational Autoencoder. The VAE consists of an
encoder and a decoder. The encoder compresses the original
data into a latent space (often of lower dimension than the
original space), and the decoder decompresses the data in the
latent space and makes it as close as possible to the original
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data. Unlike traditional autoencoders, for each sample, the
encoder of VAE outputs not a definite value but a probability
distribution, which is represented by the mean and variance of
a normal distribution to ensure the continuity of the encoding.
The VAE algorithm has two major advantages in the analysis of
Raman spectra. The first advantage is to perform clustering of
spectra. Since each spectrum is encoded as a distribution that
overlaps with each other, if the distributions are from not
similar spectra, then a larger loss term will be generated during
training VAE. This characteristic allows classification models to
be better trained and predicted from data in the latent space.
The second advantage is denoising. The dimensionality of the
latent space is not sufficient to support its storage of random
and complex noise. Thus, VAE allows the noise to be further
removed to purify the spectral information.
Before training the VAE models, data from unimportant

silent regions were removed from all spectra, and each
spectrum is guaranteed to have 1056 dimensions for
convolution operations. Normally, a larger volume of data is
desired to prevent overfitting as the number of parameters to
be learned in an unsupervised learning model increases.40 A
simplified VAE network architecture was designed to avoid
overfitting owing to the limitation of the volume of spectral
sets. The encoder was composed of four convolution layers
with 1, 16, 32, and 32 kernels. All of the convolution layers
have the kernel size of 4 pixels and the stride of 2. Each
convolution layer is batch-normalized and followed with a 40%
dropout layer to avoid overfitting. The output of the encoder
was flattened and transformed by three fully connected layers
with 128, 32, and 16 neurons. All of these seven layers in the
encoder employed ReLU as activation functions. Finally, a fully
connected layer with two neurons was used to map the output
to the latent space. The decoder has the opposite network
architecture to the encoder, except that the last convolutional
layer, which has only one filter, does not have any activation
function to output the predicted spectra. The loss function of

VAE was defined as Kullback−Leibler (KL) divergence +0.9*
root-mean-square errors between input spectra and predicted
spectra.41−43 The batch size of VAE training was 50.
All VAE models were accomplished with Keras in Python

and used the stochastic gradient descent optimizer with a
learning rate of 0.0005 and momentum of 0.9.

Classification Using Machine Learning. All Raman
spectra were split into train and test sets in a 7:3 ratio at the
cell or patient level. For the classification of cells, the train set
contains 98 cells (H1299: 40; H460: 35; A549: 23), and the
test set contains 42 cells (H1299: 18; H460: 15; A549: 9). For
kidney cancer, the train set contains 21 patients (CCRCC: 11,
PRCC: 10), and the test set contains 9 patients (CCRCC: 5,
PRCC: 4). Different classification models built were employed
to classify original spectra after preprocessing and data in latent
space separately, including random forest (RF), multilayer
perception (MLP), SVM with linear kernel and radial basic
function (RBF) kernel, logistic regression (LR), k nearest
neighbor (KNN), Gaussian naiv̈e bayes (NB), Adaboost, and
LDA.44−51 All of the models were built with leave-one-patient-
out cross-validation (LOPOCV).52,53 The LOPOCV used the
Raman spectra of one patient or cell as a validation set and the
others as the train set. The validation set is then looped until
each patient’s data are used as the validation set for training the
model. In contrast to the function of the test set, LOPOCV
divides the data in the train set to validate the model for tuning
parameters during the train stage.
Multiple classifiers were usually established for multiple

classifications, and each classifier corresponds to a false positive
rate (FPR) and a true positive rate (TPR). Here, FPR and
TPR are defined with the following formulas:

=
+

=
+

FPR
FP

FP TN
, TPR

TP
TP FN

Figure 1. (i) Bright-field images, (ii) Raman mapping images plotted by the shaded Raman band between 2700 and 3100 cm−1, (iii) DAPI-stained
fluorescent images, (iv) their overlay images, and (v) mean Raman spectra from (a) A549, (b) H460, and (c) H1299 NSCLC cell lines. The scale
bars in panel (i) are 10 μm. The blue curves represent the mean Raman spectra only from the nuclei region, and red curves represent spectra only
from the cytoplasm region. The shaded areas along the spectra represent the standard deviations of the means.
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where FP, TN, FN, and TP are the number of false positive,
true negative, false negative, and true positive samples,
respectively. Obviously, TPR and FPR will be influenced by
the change of threshold which is used to determine the classes.
For a classifier, we can get a TPR and FPR point pair based on
its performance in the test sample. Therefore, the classifier can
be mapped to a point on this plane. With adjusting the
threshold used in this classifier, we can get a curve that goes
through the points (0,0) and (1,1), which is the receiver
operating characteristic (ROC) curve of this classifier. An
overall standard is needed to evaluate the performance of
multiclassifiers. Here, macroaveraging and microaveraging are
employed to evaluate the general performance of machine
learning models. Macro-average is the direct calculation of the
FPR and TPR of each binary classifier, and their average is the
area under the ROC curve (AUC) of multiclassifiers.54 The
microaverage calculates the arithmetic average of TP, FP, TN,
and FN of each binary classifier and then obtains the FPR and
TPR of multiclassifiers according to these average values, and
finally, the ROC curve and AUC are determined.

■ RESULTS AND DISCUSSION
Data Set of NSCLC Cells. Lung cancer, being the second

largest number of new cases, poses a serious threat to human
life.55 NSCLC is the most common type of lung cancer,
accounting for about 85% of lung cancers.56 We employed
three different cell subtypes of NSCLC to verify the
performance of Raman spectroscopy at the cellular level for
subtype diagnosis. Before collecting Raman spectra, all the cell
samples were fixed with 4% paraformaldehyde for 10 min.
Some studies have suggested that paraformaldehyde fixation is
a sample preparation method with minimal impact on
biochemical information over living conditions.57,58 To the
best of our knowledge, 4% paraformaldehyde fixation for 10
min is optimal for Raman studies.59,60 The remaining
molecular information (such as proteins and lipids) on cell
samples is sufficient to distinguish between cell types.61,62 The
whole-cell Raman mapping was performed on each cell model
in this work, and the cell nuclei were stained with DAPI to
distinguish the nucleus boundary in the cell after Raman
acquisition. From the example Raman spectrum in the range of
200−4000 cm−1 (Figure S1a), the background signal almost
obscures the Raman signal in the range of 200−400 cm−1, thus
the scanning ranges of all the cell samples were set to 400−

4000 cm−1. For each cell, more than 150 Raman spectra were
measured in acquisition with a 532 nm laser. Compared to the
common 785 nm laser, the 532 nm laser could acquire the
more significant Raman signals of the C−H bond for the
cellular spectra, although it excites a stronger fluorescence
signal. The fluorescence background can be removed by
baseline correction. Figure 1 shows the bright-field images,
Raman mapping images (plotted by the Raman bands between
2700 and 3100 cm−1), DAPI-stained fluorescent images, and
the average normalized Raman spectra of three subtypes of
NSCLC of A549, H1299, and H460. The cancer cells have
large heterogeneity so that the size and morphology are not
reliable evidence for identifying the subtypes of NSCLC cells.
An obvious Raman band can be detected in the spectral region
between 2700 and 3100 cm−1 (Figure 1iv), which is the
stretching vibration mode of the C−H bond. This band
originates from two main aliphatic C−H bonds located at 2854
and 2940 cm−1 and other abundant C−H bonds belonging to
various biomolecules. Hobro et al. showed that, although the
use of paraformaldehyde fixation has an influence on this
region, its influence is very weak relative to the Raman
intensity of this region.57 Figure S2 shows the Raman spectra
at different detection positions (point 1, quartz; point 2,
cytoplasm; point 3, nucleus), indicating that no significant
Raman bands exist in this spectral range on the quartz
substrate. Therefore, the intensity of the Raman signal between
2700 and 3100 cm−1 can be utilized to determine whether the
spectrum is inside the cell (shown in Figure 1ii). The clearer
cell boundaries are shown in Figure S2 by overexposed
heatmaps. The area of the nucleus is characterized by DAPI
staining, and therefore, we can further separate the Raman
spectra from the nucleus and cytoplasm (Figure 1iii). It can be
found that there are slight differences in the Raman spectra
between the nucleus and cytoplasm for different cells (Figure
S2). The Raman signal from 2100 to 2700 cm−1 was removed
from the spectra as this range is in the biological transparency
window, and typically, it does not affect subsequent data
analysis.63,64

Classification of Different Cellular Raman Data Sets.
To compare the effects of data from different parts of a cell on
the classification effect, we established four different SVM with
RBF kernel models based on different data sets: (1) nuclear
model, where the data set consists of spectra of cell nucleus
only; (2) cytoplasmic model, where the data set consists of

Figure 2. (i) Graphic classification results and (ii) ROC curves and AUC values of four SVM models based on different types of data sets: (a)
cytoplasmic model, (b) nuclear model, (c) cell model, (d) six-classes model. The gray dashed lines represent the ROC curves for the completely
random guesses.
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spectra of cell cytoplasm only; (3) cell model, where the data
set consists of all spectra of three subtypes of NSCLC cells; the
model only outputs the cell subtype no matter if the spectrum
is from the nucleus or cytoplasm; (4) six-classes model, where
the data set consists of spectral data of the nucleus and
cytoplasm of three subtypes of cells. Therefore, it contains six
classes of spectral data. The model outputs the cell subtype to
which the spectrum belongs along with whether it is a
cytoplasmic or nuclear spectrum. SVM is the classical
algorithm used for classification based on Raman spectra.
The train set consists of the spectra from 98 cells (40 cells for
H1299, 35 cells for H460, and 23 cells for A549). To balance
the sample size of each cell subtype in the train set, 20 spectra
were randomly selected for each cell nucleus and cytoplasm of
H1299, 25 spectra for H460, and 35 spectra for A549. Each
spectrum was standardized after smoothing and baseline
correction. The LOPOCV method was used to evaluate the
classification performance of the model on the train set. To
assess the classification performance of the machine learning
models on unknown data, we adopt the Raman spectra from
42 other cells (18 cells for H1299, 15 cells for H460, and 9
cells for A549) as the test set.
For the SVM classifier with more than two classes, the

model outputs the classification scores which represent the
relative probabilities that every spectrum belongs to every class
and takes the class with the maximum probability as the final
classification result. Figure 2i shows the classification scores of
every spectrum in the test set, which are predicted by the SVM
models based on the entire spectral information. For the six-
classes model, we visualize the 6D classification scores on 3D
space using t-distributed stochastic neighbor embedding (t-
SNE). t-SNE is a powerful technology to visualize high-
dimensional data in low-dimensional space while preserving
the original distribution of the data. As can be seen from the
collection of data points of different colors and shapes, spectra
belonging to different types were successfully separated. The
results show that the SVM has good classification performance
for all four models. Even for the complex six-classes model
which distinguishes the cytoplasm and nucleus of different cell
types, different types of data points can still be separated.
The classification model mostly provides the relative

probability that the spectrum is positive. If the classification
score is greater than the specified threshold, it will be
distinguished as a positive sample; otherwise, it is a negative
sample. As thresholds change, common performance indicators
will be influenced, such as FPR and TPR. Therefore, we
introduce the ROC curve to measure the performance of the
model at full thresholds. As shown in Figure 2ii, we depicted
the ROC curves of every model. The micro- and macroaverage
ROC curves also were calculated with the ROC curves of every
single classifier to evaluate the general performance of the
classification model (see the details in Materials and Methods).
Meanwhile, the AUC values were calculated to evaluate the
model performance numerically. For every model, the AUC
value of the classifier with H460 as the positive sample is
significantly superior to the other classifiers. This result
indicates that the classification performance of the model to
H460 is better. All AUC values are higher than 0.8, which
means that the classification performances of the four models
are credible. The classification results are shown in Table 1.
The results at the spectrum level refer to the percentage of all
spectra that are accurately classified. The accuracies on the cell
level are developing statistics of the result at the spectral level

that select the class with the highest number of classification
spectra in a cell as the final predicted class of this cell. Although
the accuracy of the six-classes model is slightly lower than that
of the other three models at the spectral level, it achieves 100%
accuracy at the cellular level. Therefore, the six-classes model is
considered to obtain the best classification results for cells.

VAE Dimensionality Reduction of Cellular Data. In the
fingerprint and C−H regions, there is rich information on
biomolecular Raman bands, giving them the potential to
distinguish different subtypes of cells. However, the abundant
molecular species may cause feature redundancy, which means
some bands are indistinguishable between different subtypes of
cancer cells. Meanwhile, noise is another main factor affecting
classification performance. The VAE was employed to mitigate
the effects of feature redundancy and noise. Figure 3 shows the

schematic representation of VAE. The VAE consists of an
encoder, which compresses the Raman spectral data into a 2D
latent space, and a decoder, decoding the 2D data from the
latent space into a spectrum. The encoder compresses the
Raman spectrum into data points that fit a Gaussian
distribution. The latent space formed by the neurons at the
end of the encoder is often only two or three dimensions,
which makes it insufficient to store randomly occurring noise
signals, thus simultaneously achieving noise reduction and
dimensionality reduction. The VAE uses a convolutional
network architecture, and the specific architecture and training
details are described in Materials and Methods.
As shown in Figure 4a, the data points of different classes,

which are represented by different shapes and colors, are
trained to fit the Gaussian distribution in the latent space. The
spectra with similarities are grouped into the same cluster,
while those that are not similar are separated. Figure 4b
visualizes the train loss and test loss of the VAE with the
increase of epochs. The loss represents the KL divergence and
the root-mean-square errors between the input spectra and
predicted spectra (see the details in Materials and Methods).

Table 1. SVM Result of the Distinction between Three
Subtypes of NSCLC

model level LOPOCV (%) accuracy (%)

nuclear model spectrum 92.5 91.9
cell 97.6

cytoplasmic model spectrum 90.1 88.4
cell 97.6

cell model spectrum 90.5 89.2
cell 97.6

six-classes model spectrum 85.7 83.3
cell 100

Figure 3. Schematic representation of the principle of VAE. VAE
consists of two parts including an encoder and a decoder. The
encoder downscales the input Raman spectra into a 2D latent space.
In the latent space, similar data points will be relatively closer. The
decoder converts the downscaled 2D data points back to Raman
spectra.
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Rapid reduction of both the train loss and test loss after 30
epochs represents that the fast convergence of the VAE model,
which suggests strong reliability of the VAE for prediction.
Figure 4c exhibits the comparisons between the VAE-
generated spectra of the central points of every cluster in the
latent space and the mean spectra from the same class of
NSCLC spectra. The great similarity between the practical
spectra and the VAE-generated spectra indicates that the
clustering behavior of the VAE encoder reflects the similarity
trend of the practical spectral distribution. In addition, the
spectra generated by VAE have the characteristics of low noise
like the average spectrum, indicating that VAE contributes to
noise reduction. Meanwhile, the stochastic original spectra and
the corresponding VAE-generated spectra shown in Figure S3
indicate that the VAE can perform noise filtering while
preserving the spectral features in the process of encoding and
compression.

The redundant features are confirmed to be removed by
calculating both correlations between features and variances of
features. The variances for every feature of original spectral
data and VAE-encoded data in the train set were calculated to
detect the significance of the features. Features with low
variance usually include useless information. From Figure S4a,
the variances of the spectral data are all significantly smaller
than VAE-encoded data, and there are variances of numerous
features close to 0. This result indicates that the useless
features are removed by the dimension reduction of VAE. The
Pearson correlation coefficient (PCC) was applied to compute
the correlation between features. The absolute value of PCC is
in the range of 0 to 1, and the closer to 1 shows the higher
correlation. A strong correlation between features represents
the duplication of the information contained in the features.
Usually, an absolute value of PCC greater than 0.5 represents a
relatively strong correlation.65 The statistical results of PCC
values suggest a relatively strong correlation between

Figure 4. Graphic representation of the VAE on the test set for different subtypes of NSCLC cells. (a) VAE-encoded space of NSCLC spectra. (b)
Loss function of VAE on the training set and test set. (c) Experiment-acquired averaged Raman spectra (red) and VAE-generated spectra (blue)
from the centers of different classes: (i) A549 cytoplasm; (ii) A549 nuclei; (iii) H460 cytoplasm; (iv) H460 nuclei; (v) H1299 cytoplasm; (vi)
H1299 nuclei. (d) ROC curves of Gaussian NB and SVM with RBF kernel models based on VAE-encoded data and original spectra of subtypes of
NSCLC. The gray dashed lines represent the ROC curves for the completely random guesses.
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numerous features of the original spectral data (Figure S4b). In
contrast, the correlation between the two features after VAE
encoding is extremely weak (the absolute PCC is 0.036),
which indicates the features are independent of each other.
These results prove that the redundant features are effectively
removed after dimension reduction by VAE.
Classification of VAE-Encoded Cellular Data. To verify

the improvement of the classification performance by VAE, we
trained the nine machine learning algorithms based on the
same training set to classify the spectra of different subtypes of
NSCLC cells through the entire spectral information and the
data in latent space, including RF, MLP, SVM with linear
kernel, SVM with RBF kernel, LR, KNN, Gaussian NB,
Adaboost, and LDA. Because of the better classification
performance at the cellular level, the six-classes model was used
to evaluate the classification performance of every algorithm.
For every classification model trained by entire spectral
information, the feature selection method based on variance
thresholding is used to remove low variance features. We only
included 200 features before model training to prevent
overfitting.
As shown in Table 2, for each algorithm, the accuracy of the

classifier trained using the VAE-encoded data was generally

higher than that of the classifier trained using the entire
spectral information. The accuracy improvement varies among
different classification algorithms, indicating that there are
discrepancies in the improvement effect of VAE on different
algorithms. Raman spectra are high-dimensional data and have
high correlations between adjacent features because the peaks
possess a certain width. After dimension reduction by VAE, the
dimension of data turns into two dimensions, and the features
are relatively independent from each other. Therefore, for
algorithms that are appropriate for low-dimensional or low-
relevance data, their classification accuracies will be signifi-
cantly improved after dimension reduction by VAE, such as
Adaboost and Gaussian NB.66 In contrast, for algorithms
suitable for high-dimensional data, the improvements in
classification accuracies after dimension reduction are not
significant, such as MLP.67 Among them, Gaussian NB
achieved the best classification results for the VAE-encoded
data, and SVM with the RBF kernel had the best results for the
entire spectral information. A similar result can also be proven
by the ROC curves of these two classification models in Figure
4d. SVM with the RBF kernel has a great advantage for the
classification of nonlinear high-dimensional data. In contrast,
Gaussian NB has better classification performance for low-

dimensional data. The role of VAE is to compress high-
dimensional data into low-dimensional data. Therefore,
Gaussian NB produces better classification results for VAE-
encoded data. As shown in Figure 4d, the ROC curves of the
Gaussian NB and SVM with RBF kernel models trained with
the entire spectral information are relatively weaker, indicating
that the dimensionality reduction process of VAE has a
beneficial performance on the classification models.
We also established four Gaussian NB models based on

different data sets (nuclear model, cytoplasmic model, cell
model, and six-classes model). The accuracies and ROC curves
of these four Gaussian NB models on the test set are shown in
Table S1 and Figure S5. It can be found that all four Gaussian
NB models show superior performance to the SVM models
(see Table 1), and the accuracy can reach 100% on the cell
level for each model.
We also compared the influence of four dimension reduction

methods on the classification performance including principal
component analysis (PCA), t-SNE, uniform manifold approx-
imation and projection (UMAP), and VAE (Table S2). The
LDA, Gaussian NB, and SVM algorithms that perform
effectively on low-dimensional data were selected for the
classification of data after dimensionality reduction. The
LOPOCVs and accuracies of the algorithms were computed
to evaluate the classification performances (Table S2). The
results showed that UMAP and VAE were significantly
superior to PCA and t-SNE in improving the classification
results. Although the improvement of LDA classification by
UMAP is better than VAE, the combination of VAE and
Gaussian NB still achieves the best classification performance.
Therefore, compared with other three dimension reduction
algorithms, VAE can effectively perform dimension reduction
and improve the classification performance.

VAE Dimensionality Reduction of Kidney Cancer
Data. To further validate the performance of Raman
spectroscopy combined with VAE for cancer diagnosis on
the tissue level, we collected Raman spectra of kidney cancer
tissues from patients removed by surgery or puncture and
established the machine learning models for in vitro cancer
subtype diagnosis. Kidney cancer caused about 180,000 deaths,
and the incidence is gradually increasing at a rate of 2.2% in
2020.55 We retrieved tumor tissues from 16 CCRCC patients
and 14 PRCC patients for evaluation. The scanning ranges
were set to 200−1800 cm−1 for all tissue samples due to the
weak Raman signal after the biological transparency window
(Figure S1b). For each tissue, approximately 100 Raman
spectra were acquired, but in the case of signal saturation, some
of the spectra were excluded and typically only 30 spectra of
the tumor tissue were employed to train and test the machine
learning models after preprocessing. We calculated the PCC
between the average spectra of 100 spectra and 30 spectra. The
PCC shows that there is a strong correlation between the two
mean spectra (PCCs > 0.95), which means that the tissue
information derived from 30 spectra is almost equivalent to
100 spectra. Raman spectra of 70% of the patient samples (11
CCRCC and 10 PRCC) were used as the train set to train the
VAE model and the classification models, and the remaining
spectra were used to perform model performance tests.
Figure 5 shows the results achieved by the trained VAE

model on the test set. As shown in Figure 5a, a commendable
differentiation effect can be achieved for the data set of the two
subtypes of kidney cancer in the latent space of VAE. Data
points of the same subtype are clustered together, while data

Table 2. Classification Result of Nine Models on Six Classes
of NSCLC Cell Spectra with and without VAE

without VAE with VAE

model
LOPOCV

(%)
accuracy
(%)

LOPOCV
(%)

accuracy
(%)

Gaussian NB 81.4 80.7 89.6 89.6
RF 83.2 83.0 88.5 88.0
SVM (RBF) 85.7 83.3 88.4 86.3
SVM (linear) 83.7 83.3 88.3 88.6
LDA 84.3 83.6 87.9 87.7
LR 82.9 81.6 86.3 85.7
Ada 78.7 75.3 87.7 86.4
KNN 77.0 75.2 84.7 83.7
MLP 80.2 79.7 81.3 81.1
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points of different subtypes are aggregated into different
clusters. VAE maintains the original similarity relationship of
the data well while performing dimensionality reduction of
Raman spectra of kidney cancer. The convergences, consisting
of the KL divergences and mean square errors between the
decoded spectra and practical spectra in train and test
processes, are shown in Figure 5b. Both the train loss and
the test loss converge after 50 epochs, demonstrating that the
VAE model is robust to the encoding and decoding process of
kidney cancer data. Figure 5c demonstrates the comparisons
between the VAE-generated spectra of the central points of
different clusters in the latent space and the mean spectra of
different subtypes of cancer. Similar to the cell results, the
agreement between the mean spectra and generated spectra
suggests that the VAE accomplishes both spectral information
compression and noise reduction. The variances and
correlation coefficients indicate that the useless and highly
correlated features were removed after the dimension
reduction of VAE (Figure S6).
Classification of Kidney Cancer. The same nine

algorithms were trained based on the validation of LOPOCV
to classify different subtypes of kidney cancer tissues through
entire spectral information and VAE-encoded data in latent
space, respectively. Table 3 represents the classification results
of nine models on VAE-encoded spectral data of kidney
cancer. It shows that Gaussian NB achieves the best
performance among the nine classification algorithms, with a
differentiation accuracy of 81.4% and an AUC value of 0.835.
In addition, the classification of the data using VAE after
dimensionality reduction is generally better compared with the
results obtained using the entire spectral information (Table
S3). Figure 5d shows the classification effect of the RF, which
achieves the best performance based on the entire spectral
information on the test set. The two axes represent the
probability that the spectral data belong to the two subtypes
calculated by RF. The results demonstrated that the split

between the data of the two subtypes was not apparent. We
also compared the ROC curves of RF and Gaussian NB based
on both the entire spectral information and VAE-encoded data
(Figure 5e). The ROC curves of the Gaussian NB classifier
based on the VAE-encoded data are significantly better than
those of the other three classifiers, indicating that VAE could
significantly improve classification performance with the help
of Gaussian NB. Thus, it demonstrates that VAE performs
effective information purification and noise reduction for the
spectra of kidney cancer. At the same time, the accuracy of up
to 81.4% proves that Raman spectroscopy combined with VAE
is an effective tool for in vitro biopsy of subtypes of kidney
cancer, therefore aiding the surgeon in designing the surgical
plan.

■ CONCLUSIONS
In summary, we developed an analysis technique based on the
label-free Raman spectroscopy to identify tumor subtypes. We
applied an autoencoder network of VAE to attenuate the
effects of high feature dimensionality and noise. VAE
downscales Raman spectral data in high-dimensional space to
a low-dimensional space (only two dimensions) and maintains

Figure 5. Graphic representation of the VAE on the test set for two subtypes of kidney cancer. (a) VAE-encoded space of kidney cancer spectra.
(b) Loss function of VAE on the training set and test set. (c) Experiment-acquired averaged Raman spectra (red) and VAE-generated spectra from
the centers of different subtypes, (i) CCRCC and (ii) PRCC, of kidney cancer spectra (blue). Insets in panel (c) show pathological images of two
subtypes. The scale bars are 1 mm. (d) Graphic classification results of RF based on the original spectra. (e) ROC curves of Gaussian NB and RF
based on VAE-encoded data and original spectra of subtypes of kidney cancer.

Table 3. Classification Results of Nine Models on VAE-
Encoded Data of Kidney Cancer Spectra

model LOPOCV (%) accuracy (%) AUC

Gaussian NB 82.7 81.4 0.835
LDA 80.6 80.2 0.823
LR 79.3 78.9 0.795
MLP 79.2 78.4 0.806
SVM (RBF) 79.2 78.7 0.793
KNN 79.1 77.6 0.785
SVM (linear) 78.5 76.4 0.777
RF 78.5 77.3 0.783
Ada 73.4 72.6 0.747
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the Gaussian distribution in the latter. The low-dimensional
information in the latent space of VAE makes it impossible to
store randomly occurring noise information for noise reduction
purposes. Among nine types of machine learning algorithms
combined with VAE, Gaussian NB achieved the best
performance to classify the cell data from three subtypes of
NSCLC and the tissue data from two subtypes of kidney
cancer. In contrast to the conventional SVM algorithms,
Gaussian NB improves the classification accuracy from 83.3 to
89.6% at the cellular level and from 77.5 to 81.4% at the tissue
level. These results suggest that the analysis of Raman spectra
using the VAE-combined machine learning algorithms can
assist physicians in making rapid, noninvasive, and more
accurate discrimination of the subtypes of cancer cells and
tissues. It is of great significance for both the development of
surgical plans and postoperative drug administration.
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