Table 1. Comparison of Machine Learning Models in Classifying Active Ligands (Positive Cases) Bound to CDK2.
| models | accuracy | precision | recall | F1 score | MCC | AUC score | 
|---|---|---|---|---|---|---|
| gradient boosting (LightGBM) | 0.98 | 0.98 | 0.48 | 0.60 | 0.65 | 0.93 | 
| SVM–RBF | 0.98 | 0.79 | 0.60 | 0.68 | 0.68 | 0.92 | 
| SVM–poly3 | 0.98 | 0.65 | 0.48 | 0.55 | 0.55 | 0.87 | 
| random forest | 0.98 | 0.99 | 0.28 | 0.44 | 0.52 | 0.89 | 
| logistic regression | 0.77 | 0.08 | 0.71 | 0.14 | 0.18 | 0.81 |