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Abstract: Quantitative phase imaging (QPI) is an ideal method to non-invasively monitor cell
populations and provide label-free imaging and analysis. QPI offers enhanced sample characteri-
zation and cell counting compared to conventional label-free techniques. We demonstrate this in
the current study through a comparison of cell counting data from digital phase contrast (DPC)
imaging and from QPI using a system based on Fourier ptychographic microscopy (FPM). Our
FPM system offers multi-well, parallel imaging and a QPI-specific cell segmentation method to
establish automated and reliable cell counting. Three cell types were studied and FPM showed
improvement in the ability to resolve fine details and thin cells, despite limitations of the FPM
system incurred by imaging artifacts. Relative to manually counted fluorescence ground-truth,
cell counting results after automated segmentation showed improved accuracy with QPI over
DPC.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Traditionally, the dominant imaging modalities for label-free imaging have included Zernike
phase contrast, differential interference contrast, and darkfield microscopy. While qualitatively
useful, these techniques can introduce various imaging artifacts and are not inherently quantitative
techniques. Segmentation and cell counting remains difficult and limited due to low contrast,
even with the use of modality-specific segmentation algorithms [1].

Quantitative phase imaging (QPI) is an imaging modality that can in principle provide high
contrast, artifact-free images of optically thin, transparent cell samples. QPI provides a direct
measurement of the phase delay which occurs as light passes through the sample. This data
is ideal for downstream label-free analysis and the extraction of useful metrics [2] such as cell
density, morphology, and volume.

Label-free measurements are particularly valuable in the study of biological samples as these
minimize the risks of unforeseen chemical damage or staining-induced modifications. Moreover,
QPI enables live-cell imaging and can eliminate the need to sacrifice samples which is inherent
to running end-point analyses and is often required to inform subsequent steps in an experiment.
From single cell studies [3] to entire histology slide imaging [4], QPI has helped to advance a
wide range of biomedical and diagnostic applications [5].

Fourier ptychographic microscopy (FPM) [6,7] is one technique for obtaining quantitative
phase and brightfield images. This technique requires an image set comprised of multiple images,
each taken with a specific illumination angle and divergence. Illumination aside, the imaging path
is otherwise fairly conventional and similar to that found in a traditional brightfield microscope
setup. Given such an image set, it is possible to computationally reconstruct the optical field.
Notably, and advantageously, the resolution of this reconstructed field is limited by the large
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(potentially very large) numerical aperture of combined illumination sources, and not the imaging
objective as in conventional microscopy. In practice, this means that an FPM system can use a
relatively low magnification objective to obtain a large field of view (FOV), while achieving a
resolution over this FOV comparable to that of a higher magnification objective [8].

FPM-based microscopes and QPI offer a number of significant application-defining features.
Utility in the expanding market of high-throughput screening is promising [9], with proposed
label-free imaging systems expected to deliver major cost and time savings in throughput.
Both automated optical aberration correction [10] and super-resolution imaging [11] are also
possible with FPM. These features are particularly enabling with the availability of compact and
inexpensive imaging sensors and molded plastic optics. An FPM system could be constructed
as a large array with one sensor and miniaturized optics for each well of a 96, or even 384,
microwell plate to provide for simultaneous imaging of all wells [12,13]. The capability to image
all sample wells all at once is significant for live-cell experiments, especially for cases where
fast stimulus-responses are expected and/or observed. Multiwell, parallel imaging for FPM is
also compelling with its accelerated phase image reconstruction (all cameras receive identical
illumination sequence conditions), minimized camera idling time, and overall faster throughput.
In contrast, other approaches to quantitative phase microscopy cannot be scaled in this way.
Digital holographic microscopy, for example, would be extremely challenging to implement
in a massively parallel format due to the requirement for the distribution and interferometric
recombination of a reference beam for each well.

In the landscape of quantitative phase microscopy techniques, there is not a strictly fundamental
reason to expect FPM to exceed other techniques in terms of quantitative phase retrieval accuracy.
However, and more importantly, FPM can enable implementations with unique practical
capabilities. Therefore, comparisons to other imaging techniques under practical imaging
conditions are of considerable interest.

2. System configurations

The SimulPhi-6 system (CBBP-FPM Inc., CA, USA) is a parallel array microscope system for
imaging 6-well microplates. This system is a commercial version of an experimental system
previously described by Kim et al. 2016 [13]. While conceptually similar to the original
laboratory implementation, the instrument in this work represents approximately three years
of research and development to the hardware and associated software. The unit provides
auto-focusing, dual-band fluorescence imaging, repeatable plate loading and compatibility with
live-cell environments. The software suite includes an original implementation of the FPM
reconstruction algorithm, acquisition control, data management, and FPM-specific segmentation
tools.

The SimulPhi-6 system includes an array of six microscope units, with each unit consisting of
a pair of conventional 4 X, 0.10 NA objective lenses configured for 1:1 imaging onto a 4.3× 5.7
mm CMOS sensor. Illumination is provided by an LED array above the samples. For each
microscope unit, an individual 520 nm LED is selected to provide illumination for each frame
required for the FPM reconstruction.

The target NA of the QPI images is 0.30, a factor of 3 improvement over the native imaging
resolution and comparable to a high quality conventional 10 X objective (10 X objectives typically
range from 0.25 NA to 0.45 NA). Although phase and brightfield images are available after
reconstruction, it is the phase modality image and associated quantitative data that is of primary
interest. One unit of phase shift as presented in this work represents an 18.5 mrad theoretical
phase shift at 520 nm.

While conventional multi-element glass objectives are used here, this system serves as a testbed
for potential systems designed with simpler optics and intended for high-density imaging arrays.
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Miniaturized multi-element glass objectives would likely be impractical or expensive in that
application.

We have also imaged samples for comparison in this work using a commercially available
phase-sensitive imaging modality, digital phase contrast (DPC), on an Opera Phenix system
(PerkinElmer, MA, USA). The DPC modality works by acquiring two defocused brightfield
images at positions above and below the focal plane. Reconstruction of the final image takes into
account changes in light intensities introduced by changes in the refractive index of the sample
[14]. This produces a final DPC image with high signal to noise useful for cell segmentation.
The DPC method is specifically based on solving the transport of intensity equation (TIE) [15].
Where FPM is designed to collect and analyze the interferometric pattern of multiple beams
of light, the TIE method simply relies on characterizing the free-space propagation of a single
beam. Microscopes with combined QPI methods are feasible using the TIE [16] as well as more
complex imaging approaches exist to boost TIE image quality [17]. Ultimately for our study, the
TIE method—otherwise referred to as DPC in this work—is directly compatible with brightfield
microscopy and can be effectively utilized within a commercial system like the Opera Phenix.

Acquisitions on the Opera Phenix were performed using the 10 X, 0.3 NA objective lens
configuration (1.3× 1.3 mm field of view) so as to best match the target resolution output of the
SimulPhi-6 quantitative phase images. Because of the much smaller native field, it was necessary
to stitch together multiple fields to obtain the same field of view as provided by a single FPM
reconstruction. The Opera Phenix system was also used to acquire the fluorescence images
used in this study as a ‘ground truth’ image source for cell identification. Note that while the
SimulPhi-6 system is capable of acquiring fluorescence images with two integrated laser sources
(445 nm and 532 nm), this feature was not used as a primary source in this study. We note that
because fluorescent proteins produce incoherent, isotropic emission, which is incompatible with
the FPM technique, the integrated fluorescence imaging is limited to that of the native 0.10 NA
of the objectives and is thus less desirable in this application.

3. Experiment methodology

We performed cell segmentation and counting on several cell types at varying seeding densities.
These include:

1. Jurkat T-cells (T-cells): A high contrast cell line with minimal cytoplasmic area suitable
as a straightforward baseline to compare all three modalities: fluorescence, DPC, and QPI.

2. Osteosarcoma cells (U2OS): A lower contrast cell line with more cytoplasmic area than
T-cells and representative of many common cell lines, serving as a medium-difficulty
scenario for the label-free modalities.

3. Induced Pluripotent Stem Cell-derived Cardiomyocytes (iPSC-CMs): A cell line with
significant cytoplasmic area, very flat contrast, and morphological diversity serving as a
higher-difficulty scenario for the label-free modalities.

We imaged each cell type at three different seeding densities: low, medium, and high. The
resulting images were used in the following analysis and discussion. FPM image examples from
the U2OS dataset with the three cell seeding densities are shown in Fig. 1. Equivalent images
for T-cells and iPSC-CMs are similarly provided as Figures S1 and S2 respectively. The Opera
Phenix system was configured to acquire the same fields of view (FOVs) as the SimulPhi-6 system
to provide for direct comparisons. Specifically, the full and single FOV dimensions provided by
the SimulPhi-6 system were matched with 25 FOVs with the 10 X magnification objective on the
Opera Phenix system.
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Fig. 1. Example 6-well microplate with different U2OS cell densities imaged on the
SimulPhi-6 system. All images in this figure were captured after fixation. Images A1 to A6
show full field of views for wells 1 to 6, respectively. Low, medium, and high cell densities
are captured in the left column (A1 and A4), the middle column (A2 and A5), and the right
column (A3 and A6), respectively. Images B1 to B6 show zoomed-in regions from images
A1 to A6, respectively, as indicated by the red rectangles. Green scale bars represent 1 mm.
Red scale bars represent 100 µm. The large-scale overlapping ‘weave’ pattern seen in images
A1 to A6 is an artifact of FPM illumination.

4. Sample preparation

4.1. Jurkat T-cells (T-cells)

Jurkat T-cells were maintained in suspension with RPMI 1640 media (Corning) containing 10%
(vol/vol) heat inactivated fetal bovine serum (hiFBS) and 1% (vol/vol) Penicillin-Streptomycin.
For seeding into a 6-well microplate, cells were concentrated and re-suspended in PBS. Two wells
per 6-well microplate were used for seeding approximately 1.5× 105, 5× 105, and 4× 106 cells.
The cells were allowed to settle and attach to the well surface for 30 minutes at 37°C. Following
fixation and fluorescent nuclear staining, described in Section 4.4, the cells were imaged on both
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the SimulPhi-6 and Opera Phenix systems (DPC and fluorescence modes) within two days of
preparation.

4.2. Osteosarcoma (U2OS) cells

U2OS cells were maintained as monolayer cultures in McCoy’s 5A media (Iwakata & Grace
Mod, Corning) containing 10% (vol/vol) FBS and 1% (vol/vol) Antibiotic-Antimycotic. Cells
were harvested from culture using TrypLE Select (ThermoFisher) to allow for passage and
were seeded in 6-well microplates (Corning) for imaging. Two wells per plate were used for
seeding approximately 5× 104, 2× 105, and 8× 105 cells. The cells were allowed to attach to the
well surface overnight in culture media at 37°C. After fixation and fluorescent nuclear staining,
described in Section 4.4, the cells were imaged on both the SimulPhi-6 and Opera Phenix systems
(DPC and fluorescence modes) within two days of preparation.

4.3. Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs)

Cardiomyocytes were differentiated from human induced pluripotent stem cells (iPSC; Ther-
moFisher) using modifications to the monolayer-based differentiation protocol carried out by Lian
et al. and licensed from the Wisconsin Alumni Research Foundation [18]. Briefly, iPSCs were
seeded on PLO-laminin (Sigma; ThermoFisher) coated tissue culture plates at 40,000 cells/cm2

in mTeSR1 (StemCell Technologies) until confluency reached 85-95%. Cells were then treated
with 12 µM CHIR 99021 (Tocris) in RPMI-B27 basal medium (ThermoFisher) for 22-26 hours,
before CHIR was replaced by RPMI/B27 basal medium. After 48 hours in basal medium, cells
were treated with 5 µM IWP2 (Tocris) and a potent and proprietary selective tankyrase inhibitor
(IC50<10 nM in DLD-1 epithelial cells) for 48 hours in RPMI/B27 basal medium. IWP2 and
tankyrase inhibitor were then removed and cells were grown in RPMI/B27 basal medium with
insulin with medium changes every other day until harvest. Cells were harvested on day 11 to
day 15 post-differentiation using TrypLE (ThermoFisher) and cryopreserved in CryoStor CS10
(StemCell Technologies).

Cardiomyocytes were thawed from cryopreserved vials for this study. Briefly, 1 mL vials were
thawed in a water bath at 37°C for several minutes. Cells were then gently added drop-wise
to 9 mL of cardiomyocyte maintenance media (CMM: RPMI 1640 with GlutaMAX, HEPES,
1x B27, 1x Penicillin-Streptomycin) with 10% FBS (to create neutralizing media). This cell
suspension was centrifuged at 300 xg for 5 minutes. The supernatant was removed, the cell pellet
was re-suspended in 10 mL of neutralizing media, and a small aliquot of this was used to count
cells using an automated Vi-CELL XR Cell Viability Analyzer (Beckman Coulter). A specific
protocol was prepared on this instrument to more accurately detect cardiomyocytes and ensure at
least 70% viability. Cells were diluted appropriately in neutralizing media with 1% RevitaCell
to obtain two wells per 6-well microplate with approximately 5× 105, 1× 106, and 1.5× 106

cells. Media was exchanged 24 hours after seeding. Note that at least 4 hours prior to seeding
cells, these 6-well microplates were coated with Matrigel (Corning, hESC-Qualified Matrix),
incubated at 37°C, and any unbound Matrigel was aspirated. Cells were maintained for 4 days in
CMM (exchanged every 48 hours) until fixed and stained as described in Section 4.4. The cells
were imaged on both the SimulPhi-6 and Opera Phenix systems (DPC and fluorescence modes)
the same day after staining.

4.4. Fixation and staining protocol

The procedure for fixation and staining was the same for all sample types. Cells were first
washed several times with PBS to remove cell media and cell debris. Cells were fixed with 4%
paraformaldehyde in PBS for 15 minutes. Following several washes with PBS, cells were stained
with 5 µM of SYTO 24 in PBS for 30 minutes. SYTO 24 (Invitrogen; S7559) was selected as
a green fluorescent cell-permeant nuclear stain, compatible with fluorescence imaging on the
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Opera Phenix system. The cells were subsequently washed several times with PBS. Each well
was carefully filled with 3 mL of PBS and all samples were stored at 4°C prior to imaging.

5. Cell segmentation and counting

Due to the inherent differences in image types, particularly with respect to contrast, the approach
to cell segmentation and counting differs markedly between the DPC images from the Opera
Phenix and the FPM images provided by the SimulPhi-6 system.

5.1. Digital phase contrast

The Columbus high-volume image data storage and analysis system (version 2.8) was used to
configure a cell segmentation and counting procedure for DPC images. This procedure is typically
ad hoc, with the user being responsible for organizing a set of sequential ‘building blocks’ to
create a sample-specific image processing pipeline. Each building block offers various input
parameters to adapt to the specific image operation (i.e., ‘find’ or ‘select’ objects, or ‘calculate’
properties). All first-level building block inputs require a data source (channel) or a mathematical
approach (method), whereas second and third level input parameters allow for fine tuning. The
following analysis sequence was used to count cells in the DPC images:

1. Input Image. View original images from selected data.

2. Find Cells. ‘Method P’ selected for initial detection of all possible cells in the DPC channel.
Area, splitting sensitivity, and common threshold parameters are tested and set manually
based on cell type.

3. Select Population. Remove all segmented cells in contact with the image border.

4. Calculate Morphology Properties. Collect roundness and area parameters for all selected
cells.

5. Select Population. Filter out erroneously segmented objects and cells, including cell debris
and background, based on object roundness and area parameter thresholds.

6. Define Results. Collect final cell counts.

5.2. Quantitative phase

Quantitative phase data enables a segmentation procedure driven by fundamental properties of a
cell population. The segmentation method available with the SimulPhi-6 system is specifically
designed for quantitative phase data. It is possible to configure and run the segmentation for a
given cell type automatically, with minimal free parameters, minimizing user bias and ensuring
that cell identification is based on a clear physical definition.

The segmentation method used for quantitative phase imaging (QPI) data here shares a similar
underlying principle to that described by Loewke et al. 2018 [19]. We have prepared an
original python implementation which leans heavily on routines from the scikit-image library
[20]. Broadly, the method uses a conventional watershed segmentation method [21], seeded by
detecting corners in the euclidean distance transform [22] of the original image. Unconventionally,
the threshold phase level used in watershedding is automatically adjusted to the highest level for
which the total optical volume of the segmented region, vn, exceeds a given minimum volume
threshold, vth, after hole-filling. The segmentation proceeds iteratively, dividing the image into
ever smaller segments until further segmentation is not possible given the volume threshold
requirement.

An additional step used in this work is the final application of a flood-fill which starts from
each identified nucleus, proceeding with lower phase levels until overlap with other cells occurs.
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This results in an additional expanded contour with optical volume vb, typically enclosing the
cytoplasm or other associated larger-scale cell structure.

The only necessary free parameter to which the simulation is especially sensitive is the
minimum volume threshold, vth. This is considered a property of the given cell population,
representing the minimum volume of material required to ‘build’ a viable cell nucleus. Given
a large dataset of the representative cell type, vth can in principle be optimized automatically.
Supplement 1 Section 4 describes the technique and uses the U2OS cell data as an example.

Other relevant features of the QPI segmentation software available and used on a case-by-case
basis include:

1. A filter for reducing high spatial frequency FPM artifacts in the segmentation step (see
Figure S3 for example artifacts).

2. Multiple methods for determining the initial background, most notably the classic Otsu’s
method [23] and the more robust Yen’s method [24].

3. A suite of tools for calculating various metrics for each segmented cell. These can be
analyzed statistically, and the final results filtered based on these values to discriminate
outliers.

6. Analysis results and discussion

Images for all FOVs on the Opera Phenix, for both the SYTO 24 fluorescence and DPC channels,
were acquired sequentially in each well of the 6-well microplates. Images were automatically
uploaded to Columbus for subsequent analysis. FPM images of the same regions were acquired
simultaneously on the SimulPhi-6 system and saved for later analysis.

6.1. Manual fluorescence counting

DPC and QPI analyses were validated using ground-truth cell counts obtained from fluorescence
images of SYTO 24 nuclear staining. A manual cell counting approach was applied here with the
work assigned randomly to four individuals, each of whom were experienced in cell counting and
were given the same reference examples showing cells and debris. Cells overlapping with image
borders were not included in the final counts. The raw images were pre-processed in order to:

1. Crop and align images collected on the Opera Phenix to match the acquired FOVs from
the SimulPhi-6 system. Note, multiple FOVs at 10 X on the Opera Phenix were needed to
match the SimulPhi-6 full FOV.

2. Enhance the visibility of nuclei with low signal by manually boosting the image contrast.

3. Add gridlines, making it easier to traverse the image to record cell numbers (especially
useful in the case of high cell density).

6.2. Automated cell counting

Automated cell counting in Columbus was performed on fluorescence and DPC images as
described in Section 5.1. The analysis sequence was modified at step 2 to accommodate SYTO 24
fluorescence for the specific cell type. Automated cell counting on FPM images was performed
as described in Section 5.2. Results presented in all bar plot and box plot figures were prepared
in MATLAB, using the bar and boxplot functions respectively. Python was used to prepare all
histogram results as part of the QPI segmentation method.

https://doi.org/10.6084/m9.figshare.19102208
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6.3. T-cell counting

Figure 2 shows T-cells at a medium seeding density captured with the three different imaging
modalities and their associated segmentation results. Successful segmentation of the cell
boundaries was reasonably straightforward for this homogeneous and round cell type in all
modalities. Given the smaller size of these cells, minor adjustments in step 2 of the Columbus
segmentation parameters were made to improve detection (area thresholds lowered and minimum
valid nuclei spacing decreased) in both the fluorescence and DPC images. For QPI segmentation,
we used default parameters and manually applied a volume threshold of 75 units. We found the
resulting cell counts to be relatively independent of an exact threshold value. Because this cell
type is very uniform, we did not make use of any boundary segmentation, nor did we find it
necessary to apply any metrics-based exclusion criteria.

Fig. 2. Segmentation of Jurkat T-cells at medium seeding density in SYTO 24 fluorescence,
DPC, and FPM modalities. The fluorescence and DPC images show regions with segmen-
tation overlay from Columbus whereas the FPM image shows the overlay from the QPI
segmentation. Note that nuclei are detected in the fluorescence channel, while slightly larger
objects, i.e. cells, are detected in the DPC and FPM channels. All larger image scale bars
represent 100 µm and smaller inset scale bars represent 20 µm.

Figure 3 shows the cell counting results for the three different modalities as deviations relative
to ground truth counts derived from the fluorescence data. Overall, we observed a general
deviation of around ±5% across all the modalities and cell densities. While no discernible
systematic bias was detected for a given modality or seeding density, outliers are discussed below.

A qualitative comparison of the images showed that the FPM data can provide higher overall
image quality than DPC, with FPM images having high contrast and clearly visible fine details
not seen in the other modalities. We do note, however, that FPM image quality can vary spatially
within a single FOV, with edge regions in particular showing poor resolution and background
artifacts. Nevertheless, this did not significantly affect the counting accuracy for this cell type.

Upon inspection, the most common source of negative deviations from manual counts was
poor separation of closely neighboring cells. DPC appears to be particularly problematic in this
respect (see Figure S4A for a dramatic example). Segmentation of minute debris, some of which
appears similar in size to the T-cells, can also cause positive deviations, and this was the cause of
the outlying high FPM counts seen in well A1. The detection of faint objects that are visualized
more clearly in FPM data also contributed to the additional counts.

6.4. U2OS cell counting

Figure 4 illustrates the segmentation results from the different imaging modalities applied to the
same area in a high density U2OS sample (well A3). Optimization of analysis parameters in
Columbus (notably, thresholded cell area > 100 µm2) enabled effective segmentation for both



Research Article Vol. 13, No. 3 / 1 Mar 2022 / Biomedical Optics Express 1320

Fig. 3. Cell counting results from three different T-cell seeding densities and the different
imaging modalities. Each of these seeding densities includes two wells at the low (A1
and B1), medium (A2 and B2), and high (A3 and B3) cell densities defined in Section
4.1. Positive deviation indicates the segmentation method produced higher cell counts than
manual counts, whereas a negative deviation indicates the segmentation method produced
fewer cell counts than manual counts. The box plots on the right show the summarized
absolute deviations from manual counts for each of the different imaging modalities. The
notches for all three box plots overlap and thus the true medians do not differ with 95%
confidence. Overall average deviations for each imaging modality: fluorescence 3.5± 1.9%,
DPC 5.5± 6.1%, and FPM 3.0± 3.6%.

Fig. 4. Segmentation of U2OS cells (at high density) across the three imaging modalities,
SYTO 24 fluorescence, DPC, and FPM. Insets for the fluorescence and DPC images show
zoomed-in regions with segmentation overlays from Columbus (cyan inner: nucleus; outer:
cell). The inset for the FPM image shows a zoomed-in region with overlay from QPI
segmentation. Dashed lines are used in the FPM output to show the boundary-region
segmentation, while the Columbus output has these rendered as solid lines. All larger image
scale bars represent 100 µm. All inset scale bars represent 20 µm.

fluorescence and DPC images. For FPM, automatic volume threshold optimization was done
prior to final segmentation. High-spatial frequency band-pass filtering was enabled for FPM
artifact suppression. Boundary region segmentation was enabled, but note that boundary regions
only serve to display outlines for cell cytoplasm. We did not find it necessary to employ any of
the available metrics-based exclusion criteria for suppressing debris in these samples.

Figure 5 summarizes U2OS cell counting results from the analyses performed in Columbus
and the QPI segmentation method. All imaging methods (including automated fluorescence
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Fig. 5. Cell counting results from three different U2OS cell seeding densities and the
different imaging modalities. Each of these seeding densities includes two wells at the
low (A1 and B1), medium (A2 and B2), and high (A3 and B3) cell densities defined
in Section 4.2. Positive deviation indicates the segmentation method produced higher
cell counts than manual counts, whereas a negative deviation indicates the segmentation
method produced fewer cell counts than manual counts. The box plots on the right show
the summarized absolute deviations from manual counts for each of the different imaging
modalities. The notches for all three box plots overlap and thus the true medians do not differ
with 95% confidence. Overall average deviations for each imaging modality: fluorescence
14.4± 13.8%, DPC 13.1± 10.0%, and FPM 12.4± 10.7%.

counting) had considerable trouble with the high cell density cases (wells A3 and B3), consistently
underestimating cell counts. Evidently, none of the automated methods were able to discriminate
closely packed U2OS cells as effectively as human counters. Examples of densely packed cells
that posed some segmentation challenges for Columbus can be seen in both Fig. 4 and Supplement
1 Figure S4B.

For the low and medium U2OS cell density cases, automated fluorescence counting was
satisfactory and results from FPM and DPC were generally consistent with each other, though
both demonstrated a tendency to over-count, by at most 20%. A qualitative comparison of FPM
and DPC images did not show any systematic over-segmentation effects or debris, suggesting
that a small fraction of cells with minimal fluorescence are present in the sample. Inspection did,
however, reveal multiple examples where DPC failed to capture cells that were readily identified
by FPM. These are illustrated in Supplement 1 Figure S4B and C, and can be attributed, at least
in part, to cell morphology/thickness. Though qualitatively observed, this discrepancy was not
significant enough to manifest in cell count results.

6.5. iPSC-CM cell counting

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) show a large diversity
of shapes and features. Segmentation results from the different imaging modalities for iPSC-CM
cells seeded at medium density are shown in Fig. 6. When seeded at non-confluent densities,
iPSC-CM cells can become especially flat. DPC imaging has significant difficulty in detecting
the cytoplasmic regions of these cells (Figure S4D) and depending on the position or thickness
of their nuclei, DPC can fail altogether to provide sufficient signal for cell counting.

For the fluorescence and DPC data, several of the available analysis building blocks and input
parameters in Columbus were explored in order to obtain satisfactory segmentation. As with
the U2OS cells, applying an area threshold (> 200 µm2 in this case) enabled the removal of
debris and also assisted in excluding some of the small, non-flat cells and debris (i.e., the smaller

https://doi.org/10.6084/m9.figshare.19102208
https://doi.org/10.6084/m9.figshare.19102208
https://doi.org/10.6084/m9.figshare.19102208
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Fig. 6. Segmentation of iPSC-CMs, at medium seeding density, for the three imaging
modalities, SYTO 24 fluorescence, DPC, and FPM. Insets for the fluorescence and DPC
images show zoomed-in regions with segmentation overlays from Columbus (cyan inner:
nucleus; outer: cell). The inset for the FPM image shows a zoomed-in region with overlay
from QPI segmentation. All larger image scale bars represent 100 µm. All inset scale bars
represent 20 µm.

bright objects visible within the larger images shown in Fig. 6) often found ‘clinging’ to the more
spread, adherent iPSC-CMs.

For the FPM data, automated vth detection was not able to identify a clear discontinuity in the
fraction of large to small cells with changing vth (see Supplement 1 Section 4), possibly due to
the lack of a clear underlying distribution of a uniform cell type in this sample. Therefore, we
relied on inspection of output segmentations by unbiased experts and found a threshold of 250
units to be most appropriate for this cell type.

Initial inspection of QPI segmentation results showed over-segmentation to be the primary
problem. A contributor to this was the variation in background signal level across independent
FPM reconstructions. Moreover, the segmentation technique is quite aggressive in identifying
cell candidates which are only slightly brighter than the background. This results in a tendency to
over-segment, regardless of the volume threshold used. The variation in the background level is
particularly notable with the high cell density images, where background-level pixels constitute a
smaller percentage of the pixels in the image.

We found it necessary to employ three of the available discrimination metrics to obtain
satisfactory segmentation. Careful manual tuning of the limits based on observation of the
segmentation output and metric histograms gave a qualitatively accurate segmentation. Any
candidate falling within any discrimination criteria eliminated a candidate cell (an OR condition).
Some candidates (such as large debris) often triggered more than one discrimination criteria.
The discrimination metrics used are shown in Fig. 7 and included:

1. A simple filter based on the total integrated phase (phase volume) for each candidate.
This eliminates rare instances of very large and very small outliers, which are generally
insignificant particulate or large debris. Only a small fraction of candidates (< 0.3%), fall
within this criteria, but it does serve to improve visual clarity.

2. An adaptive filter which removes cell candidates based on their average signal level relative
to the background signal level (determined with Yen’s method [24]) for the given FPM
reconstruction tile. Candidates where the average signal extended less than 20% above the
local background level constituted 37% of candidate cells, and a visual analysis showed
almost all of the candidates in this category to be the result of over-segmentation of
background regions.

https://doi.org/10.6084/m9.figshare.19102208
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3. A filter which removed cell candidates in which the ratio of material identified in the
nucleus to that in the bound cytoplasm region was unrealistic. This ratio is unity when
no distinction between a cytoplasm and nucleus is possible, indicating debris rather than
real cellular structure. Very low values of the ratio are also unrealistic, typically these are
indicative of weak but detectable cytoplasm which causes the segmentation to extend the
boundary region to a very large area. Candidates with either a low (< 0.1) or high (> 0.85)
ratio constituted 6.7% and 6.0% of the sample, respectively.

Fig. 7. Histograms of relevant cell metrics with exclusion brackets as applied in the QPI
segmentation analysis of CM data.

Figure 8 summarizes the cell counting results from the analyses performed in Columbus and
the QPI segmentation method. Overall, iPSC-CMs were a challenging case for all the modalities
with relatively large counting deviations.

Fig. 8. Cell counting results from three different iPSC-CM cell seeding densities and the
different imaging modalities. Each of these seeding densities includes two wells at the
low (A1 and B1), medium (A2 and B2), and high (A3 and B3) densities, as defined in
Section 4.3. Positive deviation indicates the segmentation method produced higher cell
counts than manual fluorescence-based counts, whereas a negative deviation indicates fewer
cell counts than manual fluorescence-based counts. The box plots on the right show the
summarized absolute deviations from manual counts for each of the different imaging
modalities. The notches for all three box plots overlap and thus the true medians do not differ
with 95% confidence. Overall average deviations for each imaging modality: fluorescence
20.8± 11.2%, DPC 31.7± 14.5%, and FPM 44.4± 54.5%. Excluding the outlying deviation
from well B1, the average deviation for FPM improves to 23.9± 23.1%.
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The DPC and fluorescence modalities generally performed quite similarly, especially with the
low and medium density samples. At higher density, DPC analysis had a tendency to over-count
by as much as 50%, where more of the small, rounded cells were present and detected in the
Columbus segmentation. QPI segmentation showed a tendency to over-count in the low density
cases. Detailed inspection of these cases, including the outlying well B1, revealed an abundance
of cellular debris that is detected as cellular objects by FPM analysis; such debris is less prevalent
with increasing density, and ultimately, over-counting is not observed in high density samples.
Notably, the high density case with FPM yielded highly accurate cell counts, showing deviations
at <10%. This is particularly encouraging for this cell type, which is commonly seeded at higher
densities as a monolayer to promote more physiological function, i.e. propagation of electrical
conduction and wave-like contractions, in cellular assays [25].

7. Conclusion

In this study, we have demonstrated label-free cell segmentation and counting in three different
cell types, Jurkat T-cells, U2OS, and iPSC-CMs, using an FPM-based QPI system (SimulPhi-6)
and a DPC imaging system (Opera Phenix). The same six samples for each of the three cell types
were used across the imaging modalities and each cell type was seeded at three different densities.
We compared each label-free imaging system along with its associated cell segmentation tools to
provide automated cell counts. To accurately establish ground truth for cell counts, imaging of a
fluorescent nuclear marker was also performed. The automated cell counts were compared to the
gold-standard of expert manual cell counts based on the fluorescent imaging.

This study serves as a proof of concept (POC) demonstrating the utility and accuracy in
applying FPM to count cells, and while only a handful of cell types were successfully counted
here, the breadth of characteristics represented by these cell types suggests straightforward
extensibility to a wide variety of commonly cultured cell types. Furthermore, our POC suggests
that our results are not exclusive to the SimulPhi-6 system and that similar methodology could be
applied broadly across other FPM implementations and to higher sample density plates (with
hardware modifications) to enable higher throughput [12].

Experience with DPC image acquisition on the Opera Phenix has shown that, compared to
other modalities, DPC image acquisition settings are particularly sensitive to cell thickness and
overall cell density. Default settings can often be inappropriate for a cell type, leading to images
as seen in Figure S4B-D, where cell interiors show too dimly to enable effective segmentation.
This often requires additional setup and fine-tuning of settings during image acquisition, and thus
requires re-imaging if initial settings are deemed inadequate based upon subsequent segmentation
results. Furthermore, optimization of segmentation settings can help with poorly imaged cells,
but this often comes at the expense of failing to capture other cells, and/or including unwanted
noise or imaging artifacts.

A qualitative comparison of the FPM images and DPC images reveals many examples across
all cell types in which FPM provides higher contrast and makes visible fine details and thin cells,
which simply do not show up in DPC. Operationally, FPM does not require settings adjustments
at the acquisition stage and the practical advantages to acquiring a single large image as opposed
to stitching multiple images together are clear.

The successful application of FPM enables accurate counting of various cell types across a
range of densities in a label-free manner. This obviates the need to sacrifice cells in order to
accurately measure cell density (otherwise achieved using a hemocytometer or automated cell
counter) as required for proliferation analysis and other downstream assays. The SimulPhi-6
system provides parallel imaging and a large FOV to enable rapid counting of a much greater
fraction of the sample population relative to that sampled by a conventional hemocytometer or
automated cell counter.
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Quantitative comparison of our cell counts following segmentation showed comparable
performance between FPM and DPC for T-cell counting. In U2OS samples, FPM provided
slightly more accurate results over DPC, at 12.4% and 13.1% respectively, in terms of the absolute
deviation from the reference counts. All of the imaging modalities struggled with the high density
U2OS samples, including the automated segmentation of fluorescence in Columbus.

Automated cell count results for the most difficult case of iPSC-CM cells varied greatly relative
to manual counts, with FPM counting an excess of cells in the low density samples. This FPM
result is primarily a consequence of small cells present in this sample which did not show
detectable fluorescence. With this cell type, however, FPM demonstrated examples of some of
the most accurate cell counts and achieved this with the particularly challenging case of high
density iPSC-CM seeding, yielding less than a 10% deviation from reference counts.

It is notable, however, that obtaining our results with FPM on the SimulPhi-6 system required
enhancements to the associated QPI segmentation algorithm, specifically to mitigate the effects
of known artifacts. While successful, this stands somewhat in contradiction to the purported
advantages of FPM. The underlying quantitative nature of the data should make for easy
segmentation with little or no post-processing steps, or subjective tuning of segmentation
parameters, necessary. Automated optimization of the important volume threshold parameter
used in quantitative phase segmentation can support an automated workflow without the possibility
of bias introduced by the selection of segmentation parameters [19]. This was demonstrated
here with the U2OS samples but was found impractical with the more complex iPSC-CM cells.
Nevertheless, with the appropriate manual establishment of this parameter, high accuracy can
readily be achieved.

Label-free imaging frequently presents challenges for accurate, automated, and user-friendly
cell segmentation. The emergence of convolutional neural networks (CNNs) and deep learning
approaches are now routinely providing adaptable solutions to this problem [26,27]. However, for
the best results in applying CNNs to label-free cell segmentation, a very large, high-quality dataset
is paramount [28]. Our FPM imaging provides an alternative approach, utilizing specialized
hardware, to generate high-quality images amenable to traditional cell segmentation. Further, our
QPI segmentation approach does not require an extensively large dataset nor does it require the
time and effort spent in optimizing hyperparameters to establish a well-trained, cell-type specific
CNN. By using a volume threshold instead of learning image features (textures, intensities, shapes,
etc.), we are able to help ensure segmentation decisions avoid cell-type bias and thus anticipate
that unique volumetric thresholds could even be applied to segment mixed cell populations.

Nevertheless, deep learning workflows could greatly complement our approach to FPM
employed here to help improve image correction and analysis throughput. A SimulPhi-6 system
could be devised to integrate deep learning to massively accelerate the steps and requirements
for multi-well, parallel FPM imaging. Deep learning could assist in compensating for optical
aberrations [29], offer a dramatic speedup in ptychographic phase image acquisition and
reconstruction [30], and ultimately provide for more comprehensive cell analysis [31].
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