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Abstract: Optical coherence tomography (OCT) has become the gold standard for ophthalmic
diagnostic imaging. However, clinical OCT image-quality is highly variable and limited
visualization can introduce errors in the quantitative analysis of anatomic and pathologic
features-of-interest. Frame-averaging is a standard method for improving image-quality, however,
frame-averaging in the presence of bulk-motion can degrade lateral resolution and prolongs total
acquisition time. We recently introduced a method called self-fusion, which reduces speckle
noise and enhances OCT signal-to-noise ratio (SNR) by using similarity between from adjacent
frames and is more robust to motion-artifacts than frame-averaging. However, since self-fusion
is based on deformable registration, it is computationally expensive. In this study a convolutional
neural network was implemented to offset the computational overhead of self-fusion and perform
OCT denoising in real-time. The self-fusion network was pretrained to fuse 3 frames to achieve
near video-rate frame-rates. Our results showed a clear gain in peak SNR in the self-fused images
over both the raw and frame-averaged OCT B-scans. This approach delivers a fast and robust
OCT denoising alternative to frame-averaging without the need for repeated image acquisition.
Real-time self-fusion image enhancement will enable improved localization of OCT field-of-view
relative to features-of-interest and improved sensitivity for anatomic features of disease.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) has become ubiquitous in ophthalmic diagnostic imaging
over the last three decades [1,2]. However, clinical OCT image-quality is highly variable
and often degraded by inherent speckle noise [3,4], bulk-motion artifacts [5—7], and ocular
opacities/pathologies [8,9]. Poor image-quality can limit visualization and introduce errors in
quantitative analysis of anatomic and pathologic features-of-interest. Averaging of multiple
repeated frames acquired at the same or neighboring locations is often used to increase signal-
to-noise ratio (SNR) [10-12]. However, frame-averaging in the presence of bulk-motion can
degrade lateral resolution and prolongs total acquisition time, which can make clinical imaging
challenging or impossible in certain patient populations.

Many computational techniques for improving ophthalmic OCT image-quality have been
previously described, including compressed sensing, filtering, and model-based methods [13].
One compressed sensing approach creates a sparse representation dictionary of high-SNR images
that is then applied to denoise neighboring low-SNR B-scans [14]. However, this method requires
a non-uniform scan pattern to slowly capture high-SNR B-scans to create a sparse representation
dictionary, which limits its robustness in clinical applications. A different dictionary-based
approach obviates the need for high-SNR B-scans and frame-averaging by utilizing K-SVD
dictionary learning and curvelet transform for denoising OCT [15]. Various well-known image
denoising filters, such as Block Matching 3-D and Enhanced Sigma Filters combined with the
Wavelet Multiframe algorithm, have also been evaluated for OCT denoising [16]. However,
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these aforementioned methods are computationally expensive, particularly when combined
with wavelet-based compounding algorithms. Patch-based approaches, such as the spatially
constrained Gaussian mixture model [17] and non-local weighted group low-rank representation
[18], have also been proposed for OCT image-enhancement but have similar computational
overhead and are, thus, unsuitable for real-time imaging applications.

Deep-learning based denoising has gained popularity in medical imaging [19-21] and OCT
[22,23] applications. In addition to producing highly accurate results, these methods also
overcome the computational burden of traditional methods and enable real-time processing once
a model is trained. Convolutional Neural Networks (CNNs) for OCT denoising have included
a variety of network architectures such as GANS [11,24-28], MIFCN [29], DeSpecNet [30],
DnCNN [10,31], Noise2Noise [32], GCDS [33], U-NET [34-37], and intensity fusion [38,39].
The critical barrier to translating deep-learning methods to clinical OCT is the lack of an ideal
reference image to be used as the ground-truth. To overcome this limitation, some CNN-based
methods use averaged frames as the ground-truth to mimic frame-averaging image-quality.
Recently, a ground-truth free CNN method was demonstrated that uses one raw image as the
input and a second raw image as the ground-truth [40]. Here, the image-enhancement benefit
was sacrificed in favor of faster processing rates. This trade-off highlights the limitations of
current-generation deep-learning based OCT denoising methods, which require a large number
of repeated input images to compute the ground-truth and a small number of input images to
achieve real-time processing rates but can result in artifactual blurring (Table 1).

Table 1. Summary of current-generation neural network architectures for OCT denoising.

Architecture Num. repeated Short description Ref.
images for ground
truth
U-net 128 U-net [34]
SM-GAN 100 Speckle-modulated GAN [11]
DRUNET 75 Dilated-Residual U-Net [35,36]
DnCNN 50 Feed-forward CNN with a perceptually-sensitive [10]
loss function
SiameseGAN 40 GAN with a siamese twin network 271
GCDS 40 Gated convolution—deconvolution structure [33]
DeSpecNet 20 Residue-learning-base deconvolution [30]
Caps-cGAN 20 Capsule conditional GAN [24]
c¢GAN 20 Edge-sensitive cGAN [25]
BRUNet 9 Branch Residual U-shape Network [37]
CNN-MSE, CNN-WGAN 6 MSE and Wasserstein GAN's [28]
SRResNet 1 Super-resolution residual network [40]

Oguz et al. [41] recently demonstrated robust OCT image-enhancement using self-fusion. This
method is based on multi-atlas label fusion [42], which exploits the similarity between adjacent
B-scans. Self-fusion does not require repeat-frame acquisition, is edge preserving, enhances
retinal layers, and significantly reduces speckle noise. The main limitation of self-fusion is its
computationally complexity due to the required deformable image-registration and similarity
computations, which precludes real-time OCT applications. Our inability to access image-
enhanced OCT images in real-time significantly limits the utility of self-fusion for evaluating
dynamic retinal changes. Similarly, because real-time image aiming and guidance is performed
using noisy raw OCT cross-sections, it is challenging to accurately evaluate image focus, whether
the field-of-view sufficiently covers features-of-interest, and image quality after self-fusion, thus
reducing yield of usable clinical datasets. In this study, we overcome processing limitations of



Research Article Vol. 13, No. 3/1 Mar 2022/ Biomedical Optics Express 1400 |

Biomedical Optics EXPRESS A

self-fusion by developing a CNN that uses denoised self-fusion images as the ground-truth [41].
This approach combines the robustness of self-fusion denoising and the high processing-speed of
neural networks. Here, we demonstrate integration and translation of optimized data acquisition
and processing for real-time self-fusion image-enhancement of ophthalmic OCT at ~ 22 fps for an
image size of 512 x 512 pixels. While potentially more prone to artifacts from implementation of
a neural network, our proposed approach enables real-time denoising of raw OCT images, which
can directly be used as an indicator of image quality following artifact-free offline self-fusion
processing of the acquired data. Similar strategies have been demonstrated in OCT angiography
applications to provide previews of volumetric vascular projection maps in real-time [43,44].
This real-time denoising technology can also enhance diagnostic utility in applications that
require immediate feedback or intervention, such as during OCT-guided therapeutics or surgery
[45.46].

2. Materials and methods
2.1. OCT system

All images were acquired with a handheld OCT system previously reported in [47,48] with a
200 kHz, 1060-nm center wavelength swept-source laser (Axsun) optically buffered to 400 KHz.
The OCT signal was detected using a 1.6 GHz balanced photodiode (APD481AC, Thorlabs) and
discretized with a 12-bit dual-channel 4 GS/s waveform digitizer board (ATS-9373, AlazarTech).
The OCT sample-arm beam was scanned using a galvanometer pair and relayed using a 2x
demagnifying telescope to a 2 mm diameter spot at the pupil. All human imaging data were
acquired under a protocol approved the Vanderbilt University Institutional Review Board.

2.2. Dataset

Volumetric OCT datasets of healthy human retina centered on the fovea and optic nerve head
(ONH) were acquired to train and test the self-fusion neural network. OCT optical power incident
on the pupil was attenuated (1-2 mW) to simulate different SNR levels. Each volume contained
2500 raw B-scans (500 sets of 5-repeated frames). The repeated frames were averaged and the
resulting 500-frame volume was self-fused with a radius of 3 frames (3 adjacent images before
and 3 after the current frame for total of 7 images) to achieve high quality ground-truth images to
train the neural network. The supplemental Fig. 1 shows the effect of self-fusion with different
radii. Sets of 3 raw and non-averaged B-scans (radius of 1) were used as self-fusion neural
network inputs to obtain one denoised image. Figure 1 shows examples of raw and corresponding
self-fused OCT B-scans used as ground-truth images.

Additional OCT images from external datasets were added as test images. The first set of
images was taken from the dataset used to test the Sparsity Based Simultaneous Denoising and
Interpolation (SBSDI) method [49]. Two sets of images acquired with different OCT systems
(Cirrus: Zeiss Meditec; T-1000 and T-2000: Topcon) were taken from the Retinal OCT Fluid
Detection and Segmentation Benchmark and Challenge (RETOUCH) dataset [50].

2.3. Network architecture and training

The network was designed and implemented in PyTorch based on the multi-scale U-Net
architecture proposed by Devalla et al. [35]. The model was trained on 9 ONH volumes
with various SNR and validated on 3 fovea volumes to avoid information leakage (Fig. 2(A)).
Additionally, 3 ONH and 3 fovea volumes were used as test data. The self-fusion neural network
was trained on a RTX 2080 Ti 11GB GPU (NVIDIA) until the loss-function reached the plateau
(30 epochs). Parameters in the network were optimized using the Adam optimization algorithm
with a starting learning rate of le-3 and decay factor of 0.8 for every epoch. Batches of 3
adjacent registered OCT B-scans (radius of 1) were used as inputs to train the network. Here, the
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Fig. 1. Representative raw and self-fused OCT B-scans used for training for different optical
power levels incident on the pupil.

central frame was denoised based on information from the neighboring slices. The number of
requisite input B-scans is kept low to achieve video-rate self-fusion processing. Similarly, while
deformable image-registration is ideal for denoising and, in this case, used to get the ground truth
self-fused images (Fig. 1), a discrete Fourier transform (DFT) based rigid image-registration
[51] was adopted as the motion correction strategy to minimize computational overhead. The
computational cost of the original self-fusion method using rigid DFT registration or deformable
registration (Symmetric Normalization - SyN) ANTsPy [52] is compared in Table 2. The
computer used for this test had an 11th Gen IntelCore i7-11700 @ 2.50GHzx16 CPU.

Table 2. Average offline processing time of self-fusion using rigid
DFT registration and deformable registration.

3-Frame Registration 3-Frame Self-fusion with
registration
Rigid DFT Registration 0.004 s. 0.654 s. (1.52 fps)
ANTsPy Deformable 1.714 s. 2.392's. (0.42 fps)
Registration

2.4. Real-time implementation

Custom C++ software was used to acquire and process OCT images. TorchScript was used
to create a serializable version of the self-fusion neural network model that could be used in
C++ via LibTorch (C++ analog of PyTorch). The model was loaded in a LibTorch-based
module and executed to denoise and display self-fusion denoised OCT images (Fig. 2(B)). The
OCT acquisition and processing software consists of a main thread that controls the graphical
user interface and image visualization, and two sub-threads running asynchronously to control
data acquisition (DAQ) and processing. The DAQ module acquired 16-bit integer raw OCT
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Fig. 2. Self-fusion neural network. A) Training pipeline. B) Real-time self-fusion with the
pre-trained model integrated with OCT data acquisition.

data with 2560 pixels/A-lines and 512 A-lines/B-scan. Sets of three images were acquired and
copies of these images were loaded into 32-bit float LibTorch-GPU tensors. LibTorch-based
GPU-accelerated OCT processing pipeline includes: background subtraction, Hanning spectral
windowing, dispersion-compensation, Fourier transform, logarithmic compression, and image
cropping (Fig. 3). The resulting images were then intensity-normalized, motion-corrected using
DFT fast registration, denoised using the pretrained self-fusion neural network, and finally
contrast-adjusted using the 1st and 99th percentiles of the image data as lower and upper intensity
limits respectively.

2.5. Quantitative evaluation

The two most commonly used quantitative metrics for assessment of noise reduction were adopted
to evaluate the performance of the self-fusion neural network:
Peak-signal-to-noise ratio (PSNR):

ey

2

max(lf)2
9%

NR =10 Logo (

where max(Ir) denotes the maximum foreground intensity and o7, denotes the standard deviation
of the background.
Contrast-to-noise ratio (CNR):

CNR = |uy = ol /{[0.5(a7 = 7)) @

where py and py, are the mean of the foreground and background, and oy and o%. are the standard
deviation of the foreground and background, respectively.
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Fig. 3. Real-time self-fusion neural network processing pipeline. Three OCT B-scans were
acquired and loaded into LibTorch-GPU tensors. The LibTorch-based OCT processing
that included background subtraction (-BG), Hanning spectral window (Hann), dispersion-
compensation (Disp), Fourier transform (FFT), logarithmic compression (Log), and image
cropping (Crop). The input images for self-fusion neural network were then normalized
(Norm), motion-corrected (MC), processed with the pretrained self-fusion neural network
(SFNN), and contrast-adjusted (CA) before being displayed (ID).

3. Results

Figure 4 depicts a representative set of images of the fovea processed with the self-fusion neural
network. All images were contrast-adjusted using the same percentiles.

Raw OCT 3-Frame Average 3-Frame Self-fusion NN

Fig. 4. Representative raw, average, and self-fusion neural network denoised OCT images
of the fovea taken using different laser powers on the pupil.
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The CNR and PSNR were calculated for the raw, 3-frame average, and 3-frame self-fusion
neural network denoised OCT B-scans. The quantitative comparison of frame-averaging and
self-fusion with respect to the original raw OCT image is summarized in Fig. 5. Experimental
results showed CNR improved by ~50% and ~100% for frame-averaging and self-fusion over raw
OCT B -scans, respectively. Likewise, self-fusion outperformed frame-averaging by improving
PSNR by ~90% and ~20%, respectively. The contrast of retinal layers and vessels was improved,
which facilitates the identification of anatomical and potentially pathological features.
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Fig. 5. Quantitative evaluation for OCT images acquired with different laser power on the
pupil (¥** P <0.001).

Self-fusion neural network processing time was also compared to off-line processing (Table 3).
The average of individual processing time and frame-rate for the OCT processing, DFT registration,
and self-fusion neural network was quantified using 100 frames an OCT testing dataset. The
CPU and GPU used for benchmarking were a XEON E5-2630 v4 2.2 GHz (Intel) and GeForce
RTX 2080 Ti (NVIDIA), respectively. The results showed that self-fusion neural network can
achieve near video-rate performance at ~22 fps (Visualization 1 in supplemental material).

Table 3. Average processing time and frame-rate for OCT processing and
self-fusion neural network denoising on CPU and GPU.

3-Frame OCT 3-Frame DFT 3-Frame 3-Frame
Processing Registration Self-fusion NN SFNN Total
Python/CPU 0.048 s 0.060 s 1.630 s 1.741 5 (0.58
fps)
Python/GPU 0.009 s 0.004 s 0.055 s 0.068 s (15.85
fps)
C++/GPU 0.008 s 0.003 s 0.033 s 0.044 s (22.49

fps)
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The total processing time was calculated as the sum of the three most critical processing
blocks (OCT processing, DFT registration, and self-fusion NN) plus trivial memory-to-memory
data transfer time. For real-time processing, DFT registration was selected over deformable
registration to reduce computation time. The results reported in Tables 2 and 3 demonstrate the
image processing advantage of the self-fusion neural network over original self-fusion method. As
expected, the image quality of self-fused images increases with the use of deformable registration
at the expense of increased processing time.

The self-fused images from the external datasets are illustrated in Fig. 6. A set of three raw OCT
images from each dataset was registered and self-fused with the neural network. Improvements
in image quality and reduction in speckle noise in the SBSDI images self-fused with the neural
network show enriched visualization of blood vessels and retinal layers in the fovea. The images
taken with the Cirrus system show the retina with improved visualization of macular edema.
The images acquired with the Topcon system show abnormal RPE, where drusenoid deposits
are clearly seen in the denoised image as a smooth dome-shaped elevation. In all cases, the
self-fusion neural network outperformed averaging in terms of CNR and PSNR enhancing
retinal features. Therefore, the images self-fused with the neural network provided enhanced

Raw OCT 3-Frame Average 3-Frame SFNN

SBSDI Dataset

CNR: 1.60 CNR: 2.47 CNR: 2.49
PSNR: 11.90 PSNR: 15.49 PSNR: 30.90

RETOUCH - Cirrus

CNR: 2.21 CNR: 2.80 CNR: 3.14
PSNR: 16.36 PSNR: 17.59 PSNR: 34.21

RETOUCH - Topcon

CNR: 2.19 CNR: 3.77 CNR: 4.61
PSNR: 14.06 PSNR: 14.39 PSNR: 32.51

Fig. 6. Raw, average, and self-fusion neural network denoised OCT images of external
datasets. Images from the SBSDI dataset (first row) and RETOUCH dataset (Cirrus: middle
row; Topcon: bottom row).
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visualization of diagnostic-relevant pathological features in images with different image-quality
and limited visualization.

4. Discussion

Noise and poor image-quality can limit accurate identification and quantitation of pathological
features on ophthalmic OCT. While robust denoising methods are well-established, these
are limited to off-line implementations due to long processing times and high computational
complexity. Real-time OCT image-enhancement is critical for clinical imaging to ensure patient
data is of sufficient quality to perform structural and functional diagnostics in post-processing.
These benefits are even more critical for OCT-guided applications, such as in ophthalmic surgery
where image-quality is degraded by ocular opacities [53-55].

Deep-learning methods have shown potential for real-time image denoising. However, existing
methods have shown a tradeoff between preserving structural details and reducing noise that
can result in over-smoothing and loss of resolution. More importantly, deep-learning based
methods require robust training data of ocular pathologies to avoid inclusion of unwanted
artifacts. In this study, we implemented real-time OCT image-enhancement at near video-rates
based on self-fusion. Self-fusion is more robust to motion-artifacts as compared to frame-
averaging and overcomes the need for extensive training by using similarity between adjacent
OCT B-scans to improve image-quality. These benefits were confirmed experimentally with our
video-rate self-fusion implementation, and we show significant advantages in CNR and PSNR
over frame-averaging.

We demonstrated the ability of the self-fusion neural network to denoise OCT images not
only from our research grade systems but also from external datasets acquired with different
commercial OCT technology. Although the neural network was trained on images from healthy
human retina, the denoised external OCT images present relevant pathological features that were
enhanced with the neural network such as vascularization, layer detachment, macular holes, and
drusenoid deposits.

While the proposed self-fusion neural network outputs suffer from a slight image-smoothing
effect produced by convolution and rigid registration when compared to self-fusion, better
generalization of the data by using more images, more robust network architectures, data
augmentation, a larger training database, and more images as input channels for the neural
network may help to preserve features [35]. In addition, the use of more powerful GPUs will
enable increasing the number of input images, which can reduce smoothing artifacts without
sacrificing processing speed. The proposed method may also be directly applied to OCT variants
such as OCT angiography, Doppler OCT, OCT elastography, and polarized-sensitive OCT to
improve image-quality and diagnostic utility.

Our results showed a significant improvement in CNR and PSNR in the self-fused B-scans over
the frame-averaged and raw B-scans, where reduced speckle noise and improved contrast benefit
identification of anatomical features such as retinal layers, vessels, and potential pathologic
features. The proposed approach delivers a fast and robust OCT denoising alternative to
frame-averaging without the need for multiple repeated image acquisition at the same location.
While we expect a few image artifacts from our neural-network implementation, conventional
offline self-fusion may be directly applied to corresponding datasets that require quantitative
analyses or precision diagnostic feature extraction in post-processing. Real-time self-fusion
image enhancement will enable improved localization of OCT field-of-view relative to features-
of-interest and improved sensitivity for anatomic features.

Funding. National Institutes of Health (RO1-EY030490, RO1-EY031769); Vanderbilt Institute for Surgery and
Engineering (VISE); NVIDIA Applied Research Accelerator Program.
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Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the corresponding author upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.
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