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Abstract

Background: The advent of direct-acting antiviral therapy for Hepatitis C (HCV) has made
using HCV-viremic donors a viable strategy to address the donor shortage in heart transplantation.
We employed a large-scale simulation to evaluate the impact and cost-effectiveness of using
Hepatitis C-viremic donors for heart transplant.

Methods: We simulated detailed histories from time of listing until death for the real-world
cohort of all adults listed for heart transplant in the United States from July 2014 to June
2019 (n = 19,346). These populations were imputed using historical data and capture “real-
world” heterogeneity in geographic and clinical characteristics. We estimated the impact of an
intervention in which all candidates accept HCV+ potential donors (n = 472) on transplant
volume, waitlist outcomes, and lifetime costs and quality-adjusted life years (QALYS).

Results: The intervention produced 232 more transplants, 132 fewer delistings due to
deterioration, and 50 fewer waitlist deaths within this five-year cohort and reduced wait times

by 3-11% (varying by priority status). The intervention was cost-effective, adding an average of
0.08 QALY:s per patient at a cost of $124 million ($81,892 per QALY). DAA therapy and HCV
care combined account for 11% this cost, with the remainder due to higher costs of transplant
procedures and routine post-transplant care. The impact on transplant volume varied by blood type
and region and was correlated with donor-to-candidate ratio (p = 0.71).

Conclusions: Transplanting HCV+ donor hearts is likely to be cost-effective and improve
waitlist outcomes, particularly in regions and subgroups experiencing high donor scarcity.
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Introduction

Methods

Overview

Analyses

Demand for heart transplant in the United States has outpaced the supply of donors,
prompting various proposed strategies to expand the donor pool.1# Direct acting antiviral
(DAA\) therapies against Hepatitis C have cure rates of ~95%,° which makes transplanting
hearts from HCV-viremic (HCV+) donors into HCV-negative recipients a tenable option.
Single-center trials suggest this strategy is safe and effective,5-11 but it involves a trade-off;
a patient willing to accept an HCV+ donor may receive transplant sooner, but with the
potential costs and morbidity associated with DAA therapy and chronic HCV infection.

A prior study estimates that, from the standpoint of an individual patient, these benefits
outweigh the costs and HCV+ donor heart transplant is cost-effective.12 HCV+ donors are
increasingly utilized nationwide, but with significant variation by region and program.13.14
Before recommending universal adoption of this strategy, one must also consider the impact
on a system-wide scale - noting that this impact would extend far beyond the minority of
individuals who receive an HCV+ heart. Increased utilization of HCV+ donor hearts may
lead to decreased organ scarcity and overall shorter wait times.1! The extent to which this
“indirect” benefit augments the impact and cost-effectiveness of HCV+ donor utilization is
unknown.

Our first aim was to assess the impact of universal acceptance of HCV+ donor hearts on
waitlist outcomes and overall survival in the US. Second, we estimated the cost-effectiveness
of universal HCV+ donor acceptance, accounting for both “direct” and “indirect” benefits

as characterized above. Third, we assessed the cost-effectiveness and impact of intermediate
strategies in which only patient subgroups utilize HCV+ donors.

We used data from the Scientific Registry of Transplant Recipients (SRTR) to characterize
our analytic cohort, which consists of adults (> 18 years at time of listing) newly listed

for heart transplant in the US from July 2014 through June 2019. Patients listed for
multiple organ transplant were excluded. HCV+ donor utilization strategies were evaluated
using a modified version of the Thoracic Simulated Allocation Model (TSAM), which has
been described and validated previously.1®16 The model and study population are further
described in Supplementary Appendix (S, S2) and Figure 1.

We compared a “primary intervention” in which all patients on the waitlist are willing to
accept HCV+ donor hearts with a “control” scenario in which none are willing to accept
HCV+ donors. We also evaluated intermediate strategies in which 1) only patients of higher
priority status at listing (Status 1-3) accept HCV+ donors and 2) only type O candidates
—who face the longest wait times (median 17 months) (2) - accept HCV+ donors. We
performed multiple complete simulations for each scenario and resulting outcome estimates
represent an average across all iterations. The number of simulations was determined using a
pre-specified “stopping rule” detailed in Supplementary Appendix (S9).
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We tested the sensitivity of the cost-effectiveness estimates for the primary intervention

to assumptions for all input parameters. The plausible range for each was informed by

prior studies as detailed in Table S5. We performed a probabilistic sensitivity analysis in
which all input parameters varied simultaneously. We also evaluated the cost-effectiveness
of the primary intervention under alternative scenarios in which, compared to base case
assumptions, waitlist outcomes are improved, the uptake of the intervention is incomplete,
and recipients of HCV+ donors experience an 50% absolute increase in the probability of
acute cellular rejection, as suggested by a prior study.}” These and other sensitivity analyses
are further detailed in Supplementary Appendix (S9).

For the analytic cohort, we calculated transplant rates, expected wait times, and numbers of
waitlist deaths, delistings, and transplants, stratifying each by status at listing. Additional
metrics included projected waitlist size (on June 30, 2024) and number of new chronic HCV
infections, defined as the presence of donor-derived HCV viremia beyond 6 months post-
transplant, despite treatment with initial and salvage courses of DAA therapy. We attached
health utilities to each disease state and estimated quality-adjusted life years (QALYSs) and
costs (from time of listing until death) for patients in the analytic cohort. We also stratified
QALYs and costs by disease state and setting.

Incremental cost-effectiveness ratios (ICERs) were calculated to compare policy strategies.
Costs (in 2018 US dollars) and QALY's were discounted at a rate of 3% per year. We defined
cost-effective or “efficient” strategies as those with an ICER of less than $100,000 per
QALY.18

Population characteristics

Characteristics of the patient and donor populations are detailed in Table 2. Our analytic
cohort included 19,346 candidates newly listed for transplant from July 2014 through June
2019 (an average of 3869 per year). HCV-viremia prevalence was 2.8% (n=472) over the
first five years of the model (July 2014 — June 2019), increasing from 0.7% in year 1 to 5.8%
in year 5; these figures reflect observed prevalence (by nucleic acid amplification testing)
among potential donors in SRTR over the same time period. By assumption, HCV-viremia
prevalence remained constant at 4.8% thereafter (July 2019 — June 2024). HCV-viremia
prevalence among potential donors by blood type was lowest for type AB (2.3%), highest
for type O (3.1%), and near average for type A (2.6%) and type B (2.8%). UNQOS regions
varied significantly in terms of HCV prevalence (0.9% to 7.7%) and the ratio of candidates
to potential donor hearts (0.9 to 2.1), as detailed in Figure S1. HCV+ donors were more
likely than average to have age under 50, white race, and history of smoking or cocaine use.

System-wide impact

We performed 10 model runs for all intervention and control scenarios, per pre-specified
stopping rules. The primary intervention (all patients accept HCV+ donors) resulted in
an additional 232 transplants (a 1.8% increase) among patients in our five-year analytic
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cohort compared to control. This net increase was composed of 325 additional transplants
using HCV+ donors (2.5% of total) and 103 fewer transplants using HCV- donors. The
intervention produced an estimated 0.65 new chronic HCV infections per year.

Waitlist deaths, delistings due to deterioration, and total delistings (due to deterioration or
improvement) each decreased by 3-4% in the intervention (vs. control) scenario. Expected
waiting times decreased by one month among patients at Status 4 and by 7.2 months in
Status 6, with only a marginal change (0.1 months) in Status 1-3. Among the (on average)
3869 patients added to the waitlist annually from July 2014 through June 2024, 2904
remained on the waitlist at the end of this period in the intervention scenario — a 7.5%
decrease compared to the control scenario (n = 3138). System-wide impact metrics are
summarized in Figure 2 and detailed in Table 3.

The impact of the intervention — measured as a percentage increase in transplant volume —

is shown in Table 2. It varied significantly by blood type and region, but not significantly

by priority status at listing or demographic characteristics. The impact was above average
for patients of blood type O and below average for other blood types. Impact ranged from
0.5% in UNOS Region 5 to 6.1% in Region 1 and was correlated with region-specific HCV+
prevalence (p = 0.78) and candidate-to-donor ratio (p = 0.71).

Cost-effectiveness

A breakdown of total costs and QALY's by disease state and setting is shown in Figure

3. Within the five-year analytic cohort, total costs (from listing until death) were $11.48
billion in the primary intervention and $11.35 billion in the control scenario. The difference
($124 million) was mainly due to higher expenditures on transplant (increased by $63
million) and routine post-transplant care (increased by $85 million) unrelated to HCV. These
differences were partly offset by reductions in the costs of pre-transplant care (decreased
by $30 million), MCS implantation (decreased by $2.3 million), and care after delisting
(decreased by $5.8 million). Costs attributable to HCV (only present in the intervention
scenario) included $13.7 million for DAA therapy and $229,834 for chronic HCV care;
together these accounted for just 0.12% of total costs and 11.2% of the difference between
intervention and control.

Total QALY were 95,565 in the primary intervention and 94,047 in the control scenario, a
difference of 1519. Recipients of HCV+ donors contributed 3.0% of post-transplant QALYSs.
On an average per patient basis, the primary intervention led to 0.08 additional QALYSs at a
cost of $6428, with a resulting ICER of $81,892 per QALY.

Comparison of policy strategies

We compared the primary intervention (“all accept”) with intermediate strategies in which
HCV+ donor utilization is limited to status 1-3 candidates (“status 1-3 only”) and blood type
O candidates (“type O only™); total costs and QALY for each are displayed in Figure 4.
Both were cost-effective when compared to control scenario, with ICERs of $85,482 and
$82,235 per QALY, respectively. Moving from the lowest cost intervention ( “type O only™)
to the second-lowest (“all accept”) adds 485 QALYSs at an ICER of $81,162 per QALY. The
“Status 1-3 only” strategy is dominated, offering slightly fewer QALY than “all accept” at
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slightly higher cost. However, neither the difference in QALY (45) nor costs ($1.5 million)
was statistically significant (p > 0.05), as assessed using the two sample t-test. Of note,
“Status 1-3 only” resulted in 108 more non-local transplants than “all accept” (where organ
recovery and transplant occurred in different donor service areas).

Sensitivity analyses

Eight of the model’s 31 input parameters (listed in Table 1) exhibited a range of greater
than $5000 per QALY in corresponding ICERs (comparing primary intervention with
control). The range in ICERs for each is displayed in Figure 5. Increasing DAA cost

by 50% ($21k) resulted in an ICER of $86,024 per QALY. Imposing a 10% decrement

in survival among patients who receive HCV+ donor hearts (and do not acquire chronic
HCV infection) resulted in an ICER of $88,205 per QALY. Other HCV-related parameters
each produced less than $5k per QALY variation in ICER across their plausible range.
The alternative scenarios in which waitlist outcomes are improved, the uptake of the
intervention is incomplete, and HCV+ donors confer increased risk of acute cellular
rejection (further detailed in Supplementary Appendix (S9)) produced ICERs of $62,228,
$81,336, and $88,257 per QALY, respectively. Among 10,000 trials in our probabilistic
sensitivity analysis, the ICER was less than $100k per QALY in 76.8% of trials with a
standard deviation of $20,517 per QALY.

Discussion

Modeling a historical real-world cohort of transplant candidates and potential donors (July
2014 - June 2019), we found that universal HCV+ donor heart acceptance increased the
potential donor pool by 2.9% (n = 472) and overall transplant volume by 1.8% (n = 232),
with this impact varying by demographic, blood type, and region. There were larger effects
on adverse waitlist outcomes (3-4% decrease), expected wait times (4.5% decrease), and
the projected size of the waitlist (7.5% decrease), indicating that the benefits of HCV+
donor utilization extend beyond the small fraction of patients who actually receive HCV+
organs. Universal HCV+ donor utilization was cost-effective (ICER: $82k per QALY across
a wide range of parameter assumptions. The additional cost ($124 million) in the primary
intervention scenario is mainly attributable to that of additional transplant procedures and
post-transplant care unrelated to HCV. Costs and morbidity associated with chronic HCV
infection had minimal impact on cost-effectiveness and DAA cost was influential, but much
less so than other cost parameters.

This finding - that costs related to HCV itself have little impact on the cost-effectiveness

of using HCV+ donors — may seem unintuitive. It is better understood by considering the
following: 1) DAA costs ($42k per patient) pale in comparison to other transplant-related
costs, including $303k for the transplant itself and $36k per year of routine post-transplant
care; 2) the rarity of chronic HCV (~3 new cases over 5 years) means that related costs

are negligible on aggregate relative to other transplant costs; and 3) pre-transplant care and
associated complications are expensive, particularly for patients at the highest priority status
($140K per year), in the ICU ($2728 per day), and/or requiring MCS ($341k per implant);
thus the payoff to transplanting more patients before they reach this point (by using HCV+
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donors) largely offsets the costs of HCV therapy. From this initially unintuitive finding, it
follows that the cost-effectiveness of HCV+ donor transplants is similar to that of HCV-
donor transplants.

Our findings support the hypothesis that subgroups facing higher donor scarcity and longer
wait times experience the most benefit from HCV+ donor utilization. This includes patients
of blood type O (2.8% increase in transplants) and in the Northeast (2.5 - 6.1% increase in
transplants in UNOS regions 1, 2, and 9). However, the benefits of HCV+ donor utilization
are not exclusive to these groups. Even where potential donors outnumber transplant
candidates (regions 3, 6, and 8), the intervention produced a ~1% increase in transplants

- suggesting that patients with “difficult-to-match” characteristics (e.g. large size, geographic
remoteness) experience an effective scarcity of organs and benefit from an expanded donor
pool. One would expect the intervention’s impact to depend on the availability of nearby
compatible HCV+ donors; consistent with this, both donor HCV prevalence and intervention
impact were highest for blood type O and for region 1.

We compared our primary intervention (all patients accept HCV+ donors) to alternative
policy strategies in which only selected subgroups accept HCV+ organs and found no
evidence to support the latter. For example, limiting HCV+ organs to type O recipients
produced an ICER (compared to control) of $82k per QALY. Limiting HCV+ organs to

the highest urgency patients (Status 1-3 only) did not significantly differ from the primary
intervention in terms of total QALY's or costs. However, a potential disadvantage of “Status
1-3 only” is that it entails more “long-distance” transplants of HCV+ organs to Status 1-3
candidates (in lieu of local Status 4 patients). That “long-distance” transplants entail higher
organ procurement costs, longer organ ischemic times, and potentially worse outcomes is
supported by prior analyses.1920 Had our model captured these disadvantages, “Status 1-3
only” would have appeared less efficient.

Policy Implications

Our study is the first to employ a large-scale simulation of heterogenous “real-world”
donor and patient populations to estimate the system-wide impact and cost-effectiveness
of using HCV+ donors for transplant. Our findings complement a prior study which, by
performing 1000 simulations and calculating costs and QALY for a typical patient in
isolation, answers the question: “From the standpoint of an /ndividual patient, is use of
HCV+ donors cost-effective?”.12 Our study answers a different question, more relevant for
policymakers: “From the standpoint of the entire transplant system, is use of HCV+ donors
cost-effective?”. Viewed in this context, it is not surprising that our reported ICER ($82k
per QALY) compares favorably with that previously reported ($86k per QALY).12 This
difference in ICERs may reflect the “indirect” benefits accrued by the rest of the waitlist
population (in the form of increased organ availability) when a single patient accepts an
HCV+ donor heart.

Notably, our reported ICER also compares favorably with the most recent estimates for
destination left ventricular assist device therapy ($103k per QALY),2! a potential alternative
to transplant for much of our population of interest.22 This comparator may carry more
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practical weight for policymakers than the abstract “$100k per QALY” standard, which
remains subject to debate.18

Our analysis evaluates the costs of HCV+ donor utilization on a healthcare system
perspective, it does not address the critical question of who bears these costs. For DAA
therapy, the answer currently depends on payor and context and out-of-pocket costs are
likely to be prohibitively high for some patients.2324 Unless insurers provide adequate
DAA coverage, then widespread adoption of this high-value, lifesaving intervention will be
limited and inequitable.

Study Limitations

Our model’s population and assumptions are based on a historical cohort of transplant
candidates and donors. Accordingly, our findings answer the question, “what would have
happened if HCV+ donors were utilized from 2014 to 2019?”. Indeed the more policy-
relevant question is “how would HCV+ donor utilization would affect future cohorts?”.
However, any effort to explicitly forecast the effects of HCV+ donor utilization in a future
cohort would be prohibitively uncertain, due to unforeseeable changes in allocation policy
and the composition of the waitlist population. We could have addressed the latter issue and
improved our generalizability by repeating all analyses for a range of “pseudo-populations”,
but the model’s computational time made this infeasible.

Our sensitivity analyses show that HCV+ donor utilization remains cost-effective allowing
for foreseeable changes including 1) improving waitlist outcomes (e.g. following the 2018
allocation policy change?®) 2) decreasing DAA prices, 3) increasing MCS utilization, and
4) incomplete intervention uptake. We also show that the intervention remains cost-effective
even if DAA efficacy is lower than previously reported and if HCV+ donors confer higher
risk of acute cellular rejection or marginally (-10%) worse long-term survival. While quality
of life weights and future costs are uncertain, the wide range for each input used in our
sensitivity analyses renders our findings robust to this uncertainty. Beyond DAA therapy,
there are HCV therapy-related activities that our model does not capture (e.g. viral load
monitoring). That the intervention remains cost-effective even allowing for a $21k increase
in DAA costs suggests that a more granular accounting of these activities would not change
our results.

We use registry data to characterize the potential donor population, in which HCV+
prevalence is 1.3% during the first three years of the model and 4.8% thereafter. If the

latter persists, the future impact of HCV+ donor utilization would exceed that reported in
our study. Conversely, increased use of DAA therapy to treat hepatitis C in the general
population could reduce the size of the HCV+ donor pool and thus the intervention’s
aggregate impact.28 Disparities by region in donor scarcity and HCV prevalence will likely
change over time, affecting regional variation in the impact of using HCV+ donors. Yet
while the costs and benefits of the intervention will depend on unpredictable geographic and
temporal variation in the composition of the donor pool, our sensitivity analyses suggest that
its cost-effectiveness is robust to such variation.
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In conclusion, our findings suggest that transplanting HCV+ donor hearts is cost-effective,
improves population-level outcomes, and should thus be part of a multi-faceted strategy to
address the donor shortage in heart transplantation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Transplanted
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J
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Figure 1. Model schematic showing simulated patient history from time of listing until death on

waitlist, delisting, or transplant.

The caliber of solid lines connecting waitlist states (Status 1-3, Status 4, Status 6,

and temporarily inactive) is proportional to the corresponding transition probabilities.
Concurrently, patients in any waitlist state can transition to the terminal states “delisted” or
“died on waitlist”, with probabilities varying by waitlist state. Transitions to "transplanted"
are possible for all waitlist states except for “temporarily inactive”. The probability of
transitioning to “transplanted” is endogenous to the model and will vary by waitlist state, by
individual patient characteristics, and by the availability of acceptable donors (which in turn

varies by intervention/policy scenari
Table S1.
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Figure 2. Summary of outcomes in primary intervention (all patients accept HCV+ donors)

compared to control (no patients accept HCV+ donors) scenarios.

Outcomes and costs include those accrued by all patients listed for transplant during a
five-year period (July 2014 — June 2019). The shaded grey area represents five fewer patients
remaining on the heart transplant waitlist at the end of the model’s time horizon (June 2024).
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Figure 3. Distribution of total costs and quality-adjusted life years (QALYS) in intervention (all
accept HCV+ donors) and control (hone accept HCV+ donors) scenarios.

Costs are expressed in millions of US dollars and QALY are expressed in tens of QALY's
(to allow for a consistent axis for both charts). Cost and QALY s estimates are based on a
cohort of patients listed for transplant between July 2014 and June 2019 and discounted at
a rate of 3% per year (see Methods for details); both are tabulated from the date of listing
until death. Complete costs/QALYSs across all categories are shown in panel (A). A smaller
segment of this chart is shown in panels (B) and (C) to better detail differences between the
two scenarios.

@ excludes one-time cost of MCS implantation

b includes patients who are temporarily delisted

¢ refers to patients who are delisted without undergoing transplant

d excludes cost of DAA therapy

€ excludes care associated with HCV infection and its sequelae
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DAA: direct acting antiviral; HCV: Hepatitis C; MCS: mechanical circulatory support;
QALY: quality-adjusted life year
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Additional costs (millions of US dollars)

Figure 4. Cost-effectiveness frontier comparing the primary intervention (all accept HCV+
donors) and selected intermediate HCV+ donor acceptance strategies.

Intermediate strategies are those in which HCV+ donor acceptance is limited to a specific
blood type (“Type O only”) or priority strata (“Status 1-3 only™) at listing. "Additional"
costs and QALY s represent the difference between a selected intervention strategy and

the control scenario (none accept HCV+ donors). Each scenario’s outcomes represent the
average across ten model iterations. Overlaying the figure are incremental cost-effectiveness
ratios (ICERs; calculated as difference in costs divided by difference in QALYS) comparing
neighboring strategies on the cost-effectiveness frontier. On average, the “status 1-3 only”
strategy is dominated by “all accept” (conferring fewer QALYSs at higher total costs).
However, the differences in both costs and QALY's between the “all accept” and “status

1-3 only” scenarios were not statistically significant (p > 0.05 in two sample t-test).

HCV: Hepatitis C; ICER: incremental cost-effectiveness ratio; QALY: quality-adjusted life
year
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Input variable [range’

Annual cost of care for patients post-transplant (+/- 50%)**

Cost of heart transplant (+/- 50%)*

Qol weight, post-transplant (+/- 25%)**

Annual cost of care for patients listed at status 4 (+/- 50%)

Cost of DAA therapy, per HCV+ donor transplant (+/- 50%)

Survival decrement for recipients of HOV+ heart with SVR (0-10%)

% of status 1-3 patients admitted to ICU (+/- 33%)

Cost per ICU day (+/- 50%)

$50,000

- Base case ICER: $81,892 / QALY

560,000

570,000 580,000 $90,000 $100,000

Incremental cost-effectiveness ratio (US dollars per QALY)

$110,000

Figure 5. Tornado diagram of the results of sensitivity analyses.
For plausible ranges of each input variable (shown in parentheses), the range of ICER

estimates for the primary intervention (all accept HCV+ donors) versus control scenario
(none accept HCV+ donors) is shown. The chart includes all input variables for which the
corresponding range in ICERs is greater than $5000 per QALY.

* Includes the cost of early post-transplant care as detailed in Table S5

** Applies to post-transplant patients without chronic HCV infection

DAA.: direct acting antiviral; HCV: Hepatitis C; ICER: incremental cost-effectiveness ratio;
ICU: intensive care unit; QALY: quality-adjusted life year
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Table 1.

Model parameterization for base case and sensitivity analyses.

A detailed rationale for each assumption is provided in Table S5.

Parameter

HCV-related parameters

Probability of sustained virologic response after DAA therapy

Survival reduction post-transplant for recipients of HCV+ heart with sustained virologic response
Survival reduction post-transplant for recipients of HCV+ heart without sustained virologic response
Decrement in quality of life weight due to chronic HCV infection

Other epidemiologic parameters

% of Status 1-3 patients admitted to the ICU

% of Status 1-4 patients listed who receive MCS >
Survival after delisting due to improvement (years)
Survival after delisting due to deterioration (months)
% delisted due to deterioration, by highest status prior to delisting:
Status 1-3
Status 4
Status 6
temporarily inactive
Quality of life weights
HT waitlist, Status 1-3
HT waitlist, Status 4
HT waitlist, Status 6
HT waitlist, temporarily inactive
Post- heart transplant
Delisted due to deterioration

Delisted due to improvement

Cost parameters *
Fixed (one-time) costs of care/interventions

DAA therapy, per HCV+ donor transplant
MCS implantation

Heart transplant

End-of-life care, patients delisted for deterioration
Annual costs of care by disease state

HT waitlist, Status 1-3

HT waitlist, Status 4

HT waitlist, Status 6

HT waitlist, temporarily inactive

Post- heart transplant

Delisted due to improvement

Base case value
(plausible

range*)

99% (97% - 99%)
0% (0% - 10%)

20% (10% - 40%)
30% (20% - 40%)

30% (20% - 40%)
51% (26% - 76%)
15.8 (11.8 - 19.6)
3(1-6)

76% (68% - 83%)
72% (65% - 80%)
46% (42% - 51%)
83% (75% - 91%)

0.4(0.3-0.5)

0.6 (0.53t00.74)
0.74 (0.56 - 0.93)
0.57 (0.43 - 0.71)
0.76 (0.67 - 0.85)
053 (0.4100.6)
0.78 (0.74 t0 0.94)

$42,083

$340,727 f

$303,1907

$64,251

$140,347
$67,963
$31,466
$31,466
$35,985
$27,000
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Base case value

(plausible
Parameter range*)
Cost per day of ICU care (while on waitlist) ¥ $2,728
Additional annual cost of care, post-transplant patients with chronic HCV infection $8,730

*
All cost parameters were assumed to have a plausible range of +/= 50% in sensitivity analyses

HAA
MCS represents all forms of mechanical circulatory support including temporary and durable ventricular assist devices, intra-aortic balloon

pump, and extracorporeal membrane oxygenation.

fFixed costs of transplant and MCS incorporate the costs of early post-HT and post-MCS care, as detailed in Table S5
’tCost of ICU care is specifically tabulated only during the time on the waitlist; for post-transplant patients, the costs of ICU care are built into the
fixed cost of transplant (which includes early post-HT care, as described above).

DAA Direct-acting antiviral; HCV: Hepatitis C; HT: Heart transplant; ICU: Intensive care unit; MCS: Mechanical circulatory support
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Table 2.

Characteristics of the potential donor and heart transplant candidate populations and intervention impact by
subgroup (July 2014 - June 2019)

All HCV- % increase in
All poten}cial F;/(:{:g:ii; All newl-y Iisteg* i;;gpjsﬁi%tﬁ i/r;
(r?:o rllggSZO) donors* HT(?linfglgigs control scenarTio by

Variable (n=472) subgroup
Age > 50 years (%) 6.2% 2.3% 65.2% 1.9%
Race (%)

White 62.6% 83.1% 62.8% 1.9%

Black 17.0% 7.2% 23.7% 1.9%

Hispanic 16.3% 7.4% 8.9% 1.6%

Asian / Pacific Islander 2.0% 0.2% 3.8% 1.2%

Other 2.1% 2.1% 0.7% 4.1%
Female (%) 27.3% 29.9% 26.5% 1.6%
Blood Type (%)

A 35.7% 32.6% 36.9% 1.3%

B 11.1% 10.8% 14.4% 1.3%

AB 2.4% 1.9% 4.7% 0.8%

O 50.8% 54.7% 43.9% 2.8%
UNOS region (%)

1 3.6% 9.7% 4.7% 6.1%

2 11.2% 22.5% 10.9% 2.5%

3 15.2% 13.1% 11.9% 1.1%

4 11.0% 3.8% 11.0% 1.2%

5 16.3% 8.7% 15.3% 0.5%

6 4.0% 3.2% 3.2% 0.8%

7 7.5% 3.0% 9.2% 2.3%

8 7.3% 2.3% 6.1% 0.6%

9 3.7% 3.2% 6.6% 4.3%

10 8.6% 12.1% 7.8% 1.8%

11 11.4% 18.4% 12.0% 2.6%
Status at listing (%)

1-3 27.4% 1.6%

4 43.2% 1.8%

6 26.0% 2.4%

Temporarily inactive 3.4% 2.2%
Donor risk factors

Diabetes Mellitus 3.2% 2.1%

Smoking (past or current) 9.2% 17.2%

Cocaine use (past or current0 20.6% 55.3%

CMV-seropositive 59.2% 57.0%

Cause of death: Anoxia 37.6% 73.3%
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All HCV- % increase in
All potential ~ viremic All newly listed transplants in
* tential . kel intervention vs.
donors po « HT candidates :
(n=16520)  donors (n= 19346) control Sce”aﬁr'o by
Variable (n=472) subgroup

Cause of death: Cerebrovascular 14.6% 6.4%
Positive Hepatitis B core antibody 1.6% 5.7%
7 27.8% 87.9%

CDC “increased risk”

*

Includes potential donors available from July 2014 through June 2019, defined as those used for transplant in real-life and unused donors with
the absence of selected comorbidities (further detailed in Supplementary Appendix (S2)). Applying these exclusion criteria resulted in a potential
donor sample with very low (<1%) rates of other comorbidities not listed above (e.g. prior myocardial infarction, reduced left ventricular ejection
fraction) and none with HIV infection or Hepatitis B viremia.

*:

*
Includes patients newly listed for transplant from July 2014 through June 2019

Intervention scenario: all patients are willing to accept HCV+ donors; control scenario: no patients are willing to accept HCV+ donors (see
Methods for details). Calculated by comparing average transplant volume across all model runs of the intervention scenario with average transplant
volume across model runs of the control scenario.

’tPer Centers for Disease Control (CDC) criteria, defined by the presence of one or more social behaviors (e.g. intravenous drug use) designated as
high-risk for HIV

Bold/italics indicates a significant (p < 0.05) difference as assessed by z-score, when comparing 1) % increase in transplants by subgroup vs. %
increase across the entire recipient population or 2) prevalence of each variable among HCV-viremic donors with prevalence across the entire donor
population.

CDC: Centers for Disease Control; CMV: cytomegalovirus; HCV: Hepatitis C; HIV: Human Immunodeficiency Virus; HT: Heart Transplant;
UNOS: United Network for Organ Sharing
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System-wide impact metrics in the primary intervention (all accept HCV+ donors) vs.

control scenario (none accept HCV+ donors).

Each outcome represents the number of each event occurring among patients listed during a five-year year

period (July 2014 — June 2019) averaged across 10 model runs.

Intervention (all
Outcome accept HCV+ donors)

Transplants

Status 1-3 6,344

Status 4 6,197

Status 6 452

Total 12,994
# HCV+ donor transplants 325

*
Transplant rate per 100 waitlist years (Expected wait time, months)

Status 1-3 463 (2.6)
Status 4 86 (14.1)
Status 6 20 (62.1)
Status 1-6 (combined) 120 (10.2)
Waitlist deaths 1,478
Delistings 4,823
Delistings due to deterioration 3,174
Waitlist deaths + delistings due to deterioration 4,652

Control (none accept
HCV+ donors)

6,354
5,997
411
12,762

451 (2.7)
81 (15.1)
18 (69.3)
114 (10.7)
1,528
5,000
3,306
4,834

Difference

200
42

232
325

11.4 (0.1)
55 (1.0)
20(7.2)
5.4 (0.5)
-50
-177
-132
-182

*
Transplant rate calculated as: (# of transplants among patients at status x) divided by (aggregate # of patient years spent at status x). Expected wait
time at status x represents the expected time to transplant for a hypothetical patient who is fixed at status x.

HCV: Hepatitis C
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