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ABSTRACT
Emerging reports uncover that long noncoding RNAs (lncRNAs) help regulate intervertebral disc 
degeneration (IVDD). Here, we probe the function of lncRNA nuclear receptor subfamily 2 group 
F member 1 antisense RNA 1 (NR2F1-AS1) in IVDD. Quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR) was applied to verify the expression of NR2F1-AS1 and miR-145-5p in 
nucleus pulposus (NP) tissues from IVDD patients or NP cells dealt with IL-1β or TNF-α. Flow 
cytometry or the TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to validate 
the apoptosis of NP cells with selective regulation of NR2F1-AS1 and miR-145-5p. ECM-related 
genes, FOXO1, Bax, and Bcl2 were evaluated by qRT-PCR or Western blot (WB). The targeted 
relationships between NR2F1-AS1 and miR-145-5p, miR-145-5p and FOXO1 were testified by the 
dual-luciferase reporter assay and the RNA immunoprecipitation (RIP) assay. Our outcomes sub
stantiated that NR2F1-AS1 was up-regulated, while miR-145-5p was down-regulated in interver
tebral disc tissues of IVDD patients or NP cells treated with IL-1β or TNF-α. Besides, overexpressing 
NR2F1-AS1 intensified ECM degradation and NP cell apoptosis induced by IL-1β, while knocking 
down NR2F1-AS1 or up-regulating miR-145-5p reversed IL-1β-mediated effects in NP cells. 
Meanwhile, NR2F1-AS1 choked miR-145-5p and abated its effects in NP cells. This study confirms 
that NR2F1-AS1 modulates IVDD progression by up-regulating the FOXO1 pathway through the 
sponge of miR-145-5p as a competitive endogenous RNA (ceRNA).
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1. Introduction

Intervertebral disc degeneration (IVDD) is caused 
by repetitive mechanical loads or wear, leading to 
backache[1]. IVDD is characterized by increased 
levels of the proinflammatory cytokines secreted 
by intervertebral disc cells[2]. Current treatments 
for IVDD and backache include analgesics or sur
gery, which aim to reduce symptoms rather than 
eradicate the latent pathology [3]. However, the 
progression mechanism of IVDD has not been 
well clarified [4]. Recent reports have testified 
that long noncoding RNAs (lncRNAs) are power
ful regulators of gene expression in IVDD [5]. 
Hence, studying the molecular mechanism of 
IVDD is expected to provide a novel option for 
its treatment.

LncRNAs have become vital modulators of multi
ple biological processes, including cell proliferation, 
apoptosis, inflammation, metabolic modulation, et al 
[6]. LncRNAs are abnormally expressed in tumors 
[7], inflammation[8], and cardiovascular diseases [9] 
and exert a unique role in different diseases by reg
ulating various downstream targets (such as chro
matin, RNA, and proteins). The latest research 
indicated that lncRNAs are implicated in the patho
logical processes of various bone diseases, including 
extracellular matrix (ECM) degradation, inflamma
tion, apoptosis, and angiogenesis [10–12]. Thus, 
lncRNAs contribute to IVDD. As a vital member of 
lncRNAs, lncRNA nuclear receptor subfamily 2 
group F member 1 antisense RNA 1 (NR2F1-AS1) 
is located at 5q15, with a length of 2814 bp. It is 
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reported that NR2F1-AS1 affects tumor progression 
as an oncogene [13–15]. However, the function of 
NR2F1-AS1 in IVDD is scarcely researched. 
Therefore, it is critical to make certain the expression 
and effect of NR2F1-AS1 in IVDD.

Evidence is mounting that microRNAs (miRNAs) 
subserve the development of IVDD. By reviewing 
previous studies, we concluded that miRNAs’ expres
sion is closely related to nucleus pulposus (NP) cell 
apoptosis and proliferation [16–20]. As a miRNA, 
miR-145-5p is confirmed to contribute to the progres
sion of inflammatory diseases such as myocardial 
infarction[21], spinal cord injuries[22], and chronic 
glomerulonephritis[23]. Additionally, miR-145-5p 
aggravates rheumatoid arthritis (RA) by activating 
the NF-κB pathway and enhances the secretion of 
matrix metalloproteinase-9 (MMP-9)[24]. 
Disappointingly, the mechanism of miR-145-5p in 
IVDD remains largely unknown.

The forkhead box protein O (FOXO) family, also 
known as forkhead proteins, has four subtypes in 
mammals, namely FOXO1 (FKHR), FOXO3 
(fkhrl1), FOXO4 (AFX) and FOXO6. FOXO1 plays 
a vital role in cell cycle control, apoptosis, metabolism 
and adipocyte differentiation[25]. Also, the FOXO1 
transcription network is critical in regulating home
ostasis and ECM, and it mediates the abnormal 
expression of these pathways observed in the patho
genesis of osteoarthritis (OA)[26]. Wang A et al. stated 
that MEG3 facilitates OA chondrocytes’ proliferation 
and hampers their apoptosis and ECM degradation 
through the miR-361-5p/FOXO1 pathway[27]. 
Nevertheless, the mechanism of FOXO1 in IVDD 
remains elusive.

This study seeks to characterize the function of 
NR2F1-AS1 in IVDD and to reveal its underlying 
mechanisms. Our findings imply that NR2F1-AS1 
was upregulated in the intervertebral disc tissues 
from IVDD patients, whereas miR-145-5p was 
downregulated. NRF2F1-AS1 overexpression pro
moted IL-1β-mediated NP cell apoptosis, up- 
regulates ECM-related genes, and inhibited miR- 
145-5p level. The bioinformatic analysis showed 
that NR2F1-AS1 acts as a potential ceRNA on 
miR-145-5p, which targets FOXO1. Thus, we 
guessed NR2F1-AS1 influences IVDD progression 
via the miR-145-5p/FOXO1 axis. We hope this 
study provides novel mechanisms and potential 
options for IVDD treatment.

2. Methods and materials

2.1 Patients and sample collection

This research was granted by the Research Ethics 
Committee of the Zhongnan Hospital of Wuhan 
University Wuhan University (Approved number: 
WUZN-2019-0344). Human NP specimens were har
vested from patients with idiopathic scoliosis (non- 
IVDD, n = 21) and patients with IVDD (n = 35) (see 
Table 2 for specific information). The patients were 
diagnosed as lumbar disc herniation or lumbar disc 
herniation combined with spinal stenosis and were 
treated by discectomy via a posterior. Those patients 
were excluded if they have bone metabolic disease, 
congenital bone malformation, gout, renal dysfunc
tion, or hypercalcemia. Intervertebral disc tissues were 
collected during the surgery and immediately frozen 
in liquid nitrogen at −80°C. Immunohistochemistry 
(IHC) was performed for detecting Caspase3 (1:100, 
ab32351, Abcam, USA) in the intervertebral disc tis
sues [28]. IVDD patients with degenerative spinal 
stenosis, tumor, infection, or a prior lumbar disc sur
gery were excluded. All patients underwent routine 
preoperative lumbar MRI, and the degree of IVDD 
was analyzed with the modified Pfirrmann grade 
based on magnetic resonance imaging (MRI) T2 
weighted images and the severity of degeneration. 
Pfirrmann grade I indicates a normal, healthy disc as 
only found in children, whereas Pfirrmann grade 
V indicates the most severe degree of degeneration. 
When it is above Pfirrmann grade III, the pore struc
ture of bone endplate changes significantly and the 
number of pores decreases gradually [29–31].

2.2 Cell culture and treatment

Human denatured NP cells were extracted from 
NP tissues of IVDD patients. They were then 
resuspended in the RPMI-1640 complete culture 
medium comprising 10% fetal bovine serum and 
1% penicillin/streptomycin and incubated at 37°C 
with saturated humidity and 5% CO2. The med
ium was substituted once every 2 to 3 days. When 
the cells were about to confluence, 0.25% trypsin 
was used for trypsinization and sub-culture. To 
establish an in-vitro cell model of IVDD, normal 
NP cells were processed with 20 ng/mL of inter
leukin (IL)-1β for 48 hours. Untreated NP cells 
were used as control cells [32].
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2.3 Cell transfection

pcDNA empty vector (NC), pcDNA-lncRNA 
NR2F1-AS1 (lncRNA NR2F1-AS1), lncRNA 
NR2F1-AS1’s short hairpin RNA negative control 
(sh-NC), lncRNA NR2F1-AS1’s short hairpin 
RNA (sh-NR2F1-AS1), miRNA control (miR- 
NC), and miR-145-5p mimics were acquired 
from GenePharma Co., Ltd. (Shanghai, China). 
Human NP cells were seeded into 24-well plates 
(3 × 105 cells/well) and cultured at 37°C with 5% 
CO2 for 24 hours before the transfection. The 
above vectors were transfected into NP cells with 
Lipofectamine®3000 (Invitrogen; Thermo Fisher 
Scientific, Inc.) as per the supplier’s specifications. 
The transfection validity was determined by quan
titative reverse transcription-polymerase chain 
reaction (qRT-PCR). Finally, the cells were main
tained at 37°C with 5% CO2 for 24 hours for later 
use [33].

2.4 Quantitative reverse 
transcription-polymerase chain reaction 
(qRT-PCR)

The total RNAs cells or tissues were separated with 
the TRIzol reagent (Invitrogen, Carlsbad, CA, 
USA) and the concentration was examined, the 
miRNA and mRNA were subjected to reverse 
transcription into cDNA using the One Step 
PrimeScript miRNA cDNA synthesis kit (Bao 
Biological Engineering Co., Ltd., Dalian, China) 
and PrimeScript RT kit (Invitrogen, Shanghai, 
China), respectively. We then implemented qRT- 
PCR by utilizing SYBR®Premix-Ex-Taq™ (Takara, 
TX, USA) and the ABI7300 system. The expres
sion profiles of NR2F1-AS1, miR-145-5p and 

FOXO1 were assessed with the 2−ΔΔCt method 
(U6 served as a housekeeping gene for miR-145- 
5p, and GAPDH was a housekeeping gene for 
NR2F1-AS1, FOXO1, MMP3, MMP13, 
ADAMTS4, aggrecan, and Collagen II). The pri
mers were synthesized by Shanghai Sangon 
Biotech Co., Ltd. The primer sequences are exhib
ited inTable 1. qRT-PCR was conducted with 40 
cycles of pre-denaturation at 95°C for 30 s, dena
turation at 95°C for 5 s, and annealing/extension 
at 60°C for 30 s. The relative expression of the 
target gene was analyzed by the 2−∆∆CT method. 
∆CT = target gene – GAPDH, while ∆∆ = ∆CT 
experiment group -∆CT control group [34].

2.5 TdT-mediated dUTP nick end labeling 
(TUNEL)

Each group of cells in the plates were treated as 
described above. Then, the culture medium was 
discarded, and the cells were rinsed with PBS. 
Afterward, the cells were immobilized with immu
nostaining fixative solution for 30–60 minutes and 
flushed with PBS. Then, the immunostaining 
washing solution was added for ice incubation 
for 2 minutes. Next, 50 μL TUNEL detection solu
tion was added to the sample and maintained for 
60 minutes at 37°C in the dark. Subsequently, the 
cells were flushed 3 times with PBS. After mount
ing with the antifade mounting medium, the cells 
were reviewed under a fluorescence microscope. 
The excitation light was 450–500 nm, and the 
emission light was 515–565 nm (green fluores
cence). Five fields of view were randomly chosen 
for each sample, and the apoptotic rate = apoptotic 
cells/total cells×100%[35].

Table 1. The primer sequences.
Gene name Forward primer Reverse primer

NR2F1-AS1 5’-AACATCTGCTGCTGCAACCTGTG-3’ 5’-AATGGCCACGCTGTATTGAC-3’
MiR-145-5p 5’-AACAAGGTCCAGTTTTCCCAGGA-3’ 5’-CAGTGCAGGGTCCGAGGT-3’
TNF-α 5’-GGATTATGGCTCAGGGTCCA-3’ 5’-ACATTCGAGGCTCCAGTGAA-3’
IL-1β 5’-GGCTCATCTGGGATCCTCTC-3’ 5’-TCATCTTTTGGGGTCCGTCA-3’
Collagen II 5’-GCTCCCAGAACATCACCTACCA-3’ 5’-ACAGTCTTGCCCCACTTACCG-3’
Aggrecan 5’-AGGTCGTGGTGAAAGGTGTTGTG-3’ 5’-TGGTGGAAGCCATCCTCGTAG-3’
ADAMTS4 5’-GTCCTCCACACCCTAGCTTT-3’ 5’-CAGGCAGGGAGAGACAAAGA-3’
MMP3 5’-AGTCTTCCAATCCTACTGTTGCT-3’ 5’-TCCCCGTCACCTCCAATCC-3’
MMP13 5’-CTTCTTCTTGTTGAGCTGGACTC-3’ 5’-CTGTGGAGGTCACTGTAGACT-3’
FOXO1 5’-GAGGAGCCTCGATGTGGATG-3’ 5’-CCGAGATTTGGGGGAACGAA-3’
GAPDH 5’-GCTCTCTGCTCCTCCTGTTC-3’ 5’-ACGACCAAATCCGTTGACTC-3’
U6 5’-CTCGCTTCGGCAGCACA-3’ 5’-AACGCTTCACGAATTTGCGT-3’

2748 L. DU ET AL.



2.6 Cellular immunofluorescence

miR-NC and miR-145-5p were transfected into 
NP cells according to the instructions. Then, the 
IL-1β-treated cells were seeded on 24-well plates, 

and the coverslip was prepared. After 48 hours, 
the cells growing on the coverslip were cleaned 3 
times with PBS, secured with 4% paraformalde
hyde for 30 minutes, and permeated with 0.1% 

Table 2. The clinical characteristics of IVDD patients and non-IVDD patients.
Type Sex Age Level diagnosis(MRI) Pfirrmann

non-IVDD 1 F 23 T3/T11 idiopathic scoliosis I
non-IVDD 2 M 26 L2/L5 idiopathic scoliosis I
non-IVDD 3 M 22 L1/L5 idiopathic scoliosis II
non-IVDD 4 M 21 T12/L4 idiopathic scoliosis I
non-IVDD 5 F 26 T6/T11 idiopathic scoliosis II
non-IVDD 6 F 25 T3/T11 idiopathic scoliosis I
non-IVDD 7 F 22 T8/L5 idiopathic scoliosis I
non-IVDD 8 F 25 T6/L2 idiopathic scoliosis II
non-IVDD 9 M 26 L1/L5 idiopathic scoliosis I
non-IVDD 10 M 20 T12/L4 idiopathic scoliosis II
non-IVDD 11 F 25 T6/T11 idiopathic scoliosis II
non-IVDD 12 M 24 T3/T11 idiopathic scoliosis II
non-IVDD 13 M 23 L2/L5 idiopathic scoliosis I
non-IVDD 14 M 21 T5/T11 idiopathic scoliosis I
non-IVDD 15 M 27 T5/T9 idiopathic scoliosis I
non-IVDD 16 M 19 T5/T11 idiopathic scoliosis II
non-IVDD 17 F 22 T2/T5 idiopathic scoliosis I
non-IVDD 18 M 21 L1/L5 idiopathic scoliosis I
non-IVDD 19 F 23 T2/T5 idiopathic scoliosis I
non-IVDD 20 M 72 T6/T4 idiopathic scoliosis II
non-IVDD 21 F 24 T12/L1 idiopathic scoliosis II
IVDD 1 M 61 C4/C5, C5/C6, C6/C7 IVDD III
IVDD 2 M 57 C5/C6 IVDD II
IVDD 3 F 44 C5/C6 IVDD II
IVDD 4 M 69 C5/C6, C6/C7 IVDD IV
IVDD 5 M 70 C4/C5, C5/C6 IVDD II
IVDD 6 F 52 C4/C5 IVDD V
IVDD 7 M 69 C5/C6 IVDD II
IVDD 8 F 72 C4/C5,C5/C6 IVDD III
IVDD 9 F 56 C4/C5, C5/C6 IVDD II
IVDD 10 F 72 C5/C6 IVDD IV
IVDD 11 M 73 C5/C6 IVDD V
IVDD 12 M 59 C6/C7 IVDD II
IVDD 13 F 57 C4/C5, C5/C6, C6/C7 IVDD IV
IVDD 14 M 45 C5/C6,C6/C7 IVDD III
IVDD 15 F 61 C6/C7 IVDD IV
IVDD 16 M 56 C5/C6, C6/C7 IVDD V
IVDD 17 M 78 C5/C6 IVDD II
IVDD 18 M 70 C6/C7 IVDD III
IVDD 19 F 53 C6/C7 IVDD II
IVDD 20 F 58 C4/C5, C5/C6, C6/C7 IVDD IV
IVDD 21 F 46 C4/C5, C5/C6 IVDD III
IVDD 22 F 51 C3/C4 IVDD II
IVDD 23 M 42 C4/C5, C5/C6 IVDD IV
IVDD 24 M 46 C5/C6 IVDD III
IVDD 25 F 49 C5/C6 IVDD V
IVDD 26 M 68 C4/C5, C5/C6, C6/C7 IVDD III
IVDD 27 M 73 C5/C6, C6/C7 IVDD III
IVDD 28 M 71 C6/C7 IVDD IV
IVDD 29 M 59 C5/C6, C6/C7 IVDD III
IVDD 30 M 67 C4/C5, C5/C6, C6/C7 IVDD V
IVDD 31 F 62 C4/C5, C5/C6 IVDD IV
IVDD 32 M 61 C5/C6 IVDD IV
IVDD 33 F 63 C4/C5, C5/C6 IVDD V
IVDD 34 M 72 C4/C5 IVDD V
IVDD 35 F 74 C5/C6 IVDD V

F:Female M:Male 
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Triton X-100 for 10 minutes. After the cells were 
rinsed 3 times with PBS, they were kept with 3% 
H2O2 for 10 minutes and blocked with 10% goat 
serum + 3% bovine serum albumin for 30 minutes. 
Afterward, they were maintained with the pri
mary antibody of p-FOXO1 (Proteintech, USA; 
1:100) at 4°C overnight and goat anti-rabbit IgG 
(H + L) (1:500) for 1 hour at room temperature 
(RT). The nucleus was dyed with DAPI, and the 
cells were viewed after mounting and photo
graphing [36].

2.7 Annexin V-FITC-PI apoptosis detection assay

Annexin V-FITC-PI apoptosis detection kit 
(Cat:40,302, Yeasen, Shanghai, China) was used 
for evaluating apoptosis. NP cells were trypsinized 
with 0.25% trypsin, then collected by centrifuga
tion (1000 rpm, 5 min). PBS was used for washing 
the cells three times, and the cells were incubated 
with containing 200 μL Annexin V-FITC and 
maintained in the dark for 10 minutes. They 
were then flushed with 200 μL PBS, and 10 μL PI 
was added. Cell apoptosis was examined by flow 
cytometry (FCM) (Beckman Coulter) [37].

2.8 RNA fluorescence in situ hybridization (FISH)

NP cells were grown on 4-chamber glass slides for 
48 hours. After rinsing with PBS, the cells were 
immobilized with 3.7% paraformaldehyde, perme
ated with 70% ethanol, and then rehydrated in 
2× SSC and 50% formamide for 5 minutes. The 
cells were hybridized with biotin-labeled NR2F1- 
AS1 and miR-145-5p probe mixture overnight at 
42°C. The mixture contained 10% dextran sulfate, 
5× Denhardt reagent, 2× SSC, 50% formamide and 
100 μg/mL denatured and fragmented salmon 
sperm DNA. Nonspecific probes were removed 
by 0.5× SSC comprising 50% formamide at 37°C. 
The anti-biotin monoclonal antibody and the sec
ondary antibody conjugated to AlexaFluor®647 
were utilized to detect biotin-labeled NR2F1-AS1 
and miR-145-5p. The cells were cleaned with PBS 
and then put on the coverslip with a reagent con
taining DAPI (Cell Signaling Technology, Boston, 
MA, USA) [38].

2.9 Protein isolation and Western blot (WB)

After the cells were processed with varying factors, 
the primary culture medium was discarded. The 
RIPA (containing 1% PMSF) lysis buffer was 
employed to lyse the cells, which were collected 
through low-speed centrifugation to isolate the 
total protein. Then, the protein quantification 
was made with the Bradford method, and the 
samples were boiled for 5 minutes and centrifuged 
for 30 s after ice-cooling. Afterward, the super
natant was taken for polyacrylamide gel electro
phoresis, and 30 μg of total protein was loaded 
onto a 10% SDS-PAGE gel and transferred to 
PVDF membranes (Millipore, USA). After being 
sealed with 10% skim milk powder solution for 
two hours, the membranes were maintained with 
the primary antibodies of FOXO1 (Abcam, 1:1000, 
ab52857, MA, USA), p-FOXO1 (1:1000, 
ab259337), Bax (1:1000, ab32503), Bcl2 (1:1000, 
ab182858), and GAPDH (ab9485, 1:1000) over
night. After that, the membranes were flushed 
with TBST twice and kept with the fluorescein- 
labeled secondary antibody at RT for 1 hour. 
Finally, the membranes were flushed 3 times, 
exposed with the ECL chromogenic agent, and 
imaged with the membrane scanner [39].

2.10 Dual-luciferase reporter assay

TargetScan software indicated that FOXO1 was an 
underlying target of miR-145-5p, while miR-145- 
5p was that of NR2F1-AS1. The reporter plasmids 
of wild-type and mutant NR2F1-AS1 and SAMD3- 
3’UTR were constructed, and miR-145-5p mimics 
and their negative controls were transfected into 
NP cells. The experiment was carried out 48 hours 
later as per the dual-luciferase reporter assay 
instructions (Promega, Madison, WI, USA). The 
relative fluorescence intensity of different treat
ment groups was estimated following the ratio of 
firefly fluorescence intensity/renilla fluorescence 
intensity detected by the microplate reader [40].

2.11 RNA immunoprecipitation (RIP)

RIP was conducted with the Magna RIP Kit (EMD 
Millipore, Billerica, MA, United States) as per the 
manufacturer’s instructions. Following cell lysis 
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with the RIP lysis buffer, the human anti-Ago-2 
antibody (microporous) or the control antibody 
(normal mouse immunoglobulin, micropores) 
was added and maintained overnight at 4°C. The 
expression of NR2F1-AS1 and FOXO1 was 
assessed by qRT-PCR [41].

2.12 Statistical analysis

The SPSS17.0 statistical software (SPSS Inc., 
Chicago, IL, USA) was adopted for analysis. 
Measurements were presented as mean ± standard 
deviation (x ± s). Pearson analysis was adopted to 
determine the correlation between NR2F1-AS1 
and miR-145-5p in NP tissues. StarBase (https:// 
starbase.sysu.edu.cn/) was utilized to predict the 
miRNA targets of lncRNAs [42]. The multi-factor 
comparison was made by one-way analysis of 

variance, and t test was utilized for comparison 
between the two groups. P< 0.05 signified statisti
cal significance.

3. Results

3.1 LncRNA NR2F1-AS1 was up-regulated, and 
miR-145-5p was down-regulated in NP tissues of 
IVDD patients

To figure out the expression of LncRNA NR2F1- 
AS1 in NP cells, we harvested human interverteb
ral disc tissues from IVDD patients and non- 
IVDD patients. IHC was performed for detecting 
Caspase3 in the tissues. We found that interver
tebral disc tissues from non-IVDD patients had 
low expression of Caspase3, whereas Caspase3 
was gradually increased with the increasing of 
Pfirrmann grades (Figure 1a). The NR2F1-AS1 

Figure 1. NR2F1-AS1 was up-regulated, and miR-145-5p was down-regulated in NP tissues of IVDD patients.
A: IHC was performed for detecting Caspase3 in the intervertebral disc tissues from IVDD or non-IVDD patients. Scale bar = 50 μm. 
B. The NR2F1-AS1 expression in intervertebral disc tissues from IVDD or non-IVDD patients was compared by qRT-PCR. C: The lncRNA 
NR2F1-AS1 level in intervertebral disc tissues IVDD patients with different Pfirmann grades. D: The miR-145-5p level in intervertebral 
disc tissues from IVDD or non-IVDD patients was determined by qRT-PCR. E: The miR-145-5p level gradually decreased with the 
deterioration of IVDD. F: Pearson analysis showed that NR2F1-AS1 was reversely related to miR-145-5p. R2 = 0.4022, P< 0.0001. 
*P < 0.05, ** P< 0.01, *** P< 0.001 (vs. Non-IVDD or II group). G-H. NP cells were dealt with TNF-α (5–20 ng/ml) or IL-1β (5–20 ng/ml) 
for 48 hours. *P < 0.05, ** P< 0.01, *** P< 0.001 (vs. control group). N = 3. 
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expression was detected by RT-PCR. NR2F1-AS1 
was confirmed to be up-regulated in intervertebral 
disc tissues from IVDD patients compared with 
that in the non-IVDD patients (Figure 1b). The 
expression level of NR2F1-AS1 was strengthened 
with the deterioration of IVDD (Figure 1c). The 
miR-145-5p expression was examined by qRT- 
PCR, and it was confirmed to be down-regulated 
in intervertebral disc tissues from IVDD patients 
compared with that in the non-IVDD patients 
(Figure 1d) and gradually decreased with the dete
rioration of IVDD (Figure 1e). Linear regression 
analysis showed that NR2F1-AS1 was reversely 
related to miR-145-5p (figure 1f). To probe the 
correlation between inflammation and the expres
sion of NR2F1-AS1 and miR-145-5p, we treated 
normal NP cells with TNF-α (5, 10, 20 ng/mL) and 
IL-1β (5,10, 20 ng/mL) for 24 hours. As a result, 
TNF-α or IL-1β dose-dependently induced up- 
regulation of NR2F1-AS1 and down-regulation of 
miR-145-5p in NP cells versus the Con group 
(Figure 1g, h). These outcomes disclosed that 
NR2F1-AS1 and miR-145-5p were abnormally 
expressed in IVDD and contributed to its 
pathogenesis.

3.2 NR2F1-AS1 facilitated extracellular matrix 
denaturation and apoptosis in human NP cells

To make certain the impact of NR2F1-AS1 on NP 
cells, NP cells were separated from NP tissues of 
IVDD patients and transfected with NR2F1-AS1 
overexpression plasmids. qPT-PCR verified that 
NR2F1-AS1 was up-regulated in NP cells 
(Figure 2a). IL-1β was adopted to treat the trans
fected NP cells, and NP cell apoptosis was verified 
by FCM and TUNEL staining. The outcomes illu
strated that by contrast with the control group, the 
apoptotic rate and TUNEL-positive cell number in 
IL-1β-treated NP cells increased significantly, and 
the increase was strengthened after NR2F1-AS1 
overexpression (Figure 2b, c). The profiles of 
Collagen II, aggrecan, ADAMTS4, MMP3, and 
MMP13 were examined by qRT-PCR. Notably, 
compared with the control group, ADAMTS4, 
MMP3, and MMP13 were highly expressed, while 
collagen II and aggrecan were down-regulated in 
IL-1β-treated NP cells. After NR2F1-AS1 overex
pression, Collagen II, and aggrecan was 

downregulated, and ADAMTS4, MMP3, and 
MMP13 were further upregulated (compared 
with IL-1β+vector group, Figure 2d). 
Additionally, we transfected IL-1β-treated NP 
cells with sh-NR2F1-AS1 to reversely verify the 
influence of NR2F1-AS1 on NP cells. As testified 
by qPT-PCR, NR2F1-AS1 was down-regulated in 
NP cells (vs. IL-1β+sh-NC group, Figure 2e). NP 
cell apoptosis was lower in the IL-1β+NR2F1-AS1 
group than that of the IL-1β+sh-NC group 
(Figure 2f, g). Followed by NR2F1-AS1 downregu
lation, the expression of ADAMTS4, MMP3, and 
MMP13 was decreased, while collagen II and 
aggrecan were up-regulated (p < 0.05 vs.the IL-1β 
+sh-NC group, Figure 2h). Thus, NR2F1-AS1 
intensifixed apoptosis and ECM degeneration in 
NP cells, while inhibiting NR2F1-AS1 had the 
reverse effect.

3.3 miR-145-5p hindered extracellular matrix 
degeneration and apoptosis in human NP cells

The above study revealed that miR-145-5p was 
down-regulated in NP tissues of IVDD patients, 
but it is not clear about the role of miR-145-5p in 
IVDD. Hence, NP cells were transfected with miR- 
145-5p mimics, and then qRT-PCR revealed that 
145–5p was up-regulated in NP cells (vs.IL-1β 
+miR-NC group, Figure 3a). Meanwhile, in com
parison to the IL-1β+miR-NC group, up- 
regulating miR-145-5p reduced the apoptotic rate 
of NP cells and the TUNEL-positive cell number 
(Figure 3b, c). Subsequently, qRT-PCR manifested 
that ADAMTS4, MMP3, and MMP13 were signif
icantly down-regulated following the transfection 
of miR-145-5p mimics, but the expression of col
lagen II and aggrecan were increased (Figure 3d). 
These results manifested that up-regulating miR- 
145-5p repressed NP cell apoptosis and ECM 
degradation.

3.4 NR2F1-AS1 targeted miR-145-5p

We searched the target genes of NR2F1-AS1 on 
StarBase (http://starbase.sysu.edu.cn/index.php), 
which revealed that miR-145-5p was targeted by 
NR2F1-AS1 (Figure 4 A). The dual-luciferase 
reporter assay was performed to affirm the 
association between the two. Notably, miR- 
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Figure 2. NR2F1-AS1 enhanced ECM degeneration and human NP cell apoptosis.
NR2F1-AS1 overexpression plasmids were transfected into the denatured human NP cells dealt with IL-1β (20 ng/ml) for 48 hours. A: 
The NR2F1-AS1 expression was evaluated by qRT-PCR. B: FCM gauged the apoptotic rate of human NP cells. C: TUNEL assessed the 
number of TUNEL-positive cells. D: qRT-PCR monitored the expression of collagen II, aggrecan, ADAMTS4, MMP3, and MMP13 in 
human NP cells.The sh-LncRNA NR2F1-AS1 was transfected into denatured human NP cells. A: qRT-PCR examined the level of NR2F1- 
AS1. B: The apoptotic rate of human NP cells was measured by FCM. C: TUNEL checked the number of TUNEL-positive cells in human 
NP cells. D: The expression of collagen II, aggrecan, ADAMTS4, MMP3, and MMP13 in human NP cells was determined by qRT-PCR. ** 
P< 0.01, ***P< 0.001 (vs. control group), && P< 0.01, &&& P< 0.001 (vs.IL-1β+vector or sh-NC). (N = 3, one-way ANOVA followed by 
Tukey post hoc test). 
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145-5p overexpression weakened the luciferase 
activity of NP cells transfected with NR2F1-AS1 
-WT, while it had little impact on that of NP 
cells transfected with the NR2F1-AS1-mut vec
tor (Figure 4b). Furthermore, the RIP experi
ment was implemented to clarify the 
association between the two. It turned out that 
after the miR-145-5p transfection, the amount 
of NR2F1-AS1 precipitated in the Ago2 anti
body group was more than that in the IgG 
group, hinting that NR2F1-AS1 bound to 
Ago2 via miR-145-5p (Figure 4c). The FISH 
experiment exhibited that NR2F1-AS1 and 
miR-145-5p were expressed in the cytoplasm 
(Figure 4d). Finally, we observed that overex
pressing NR2F1-AS1 reduced the miR-145-5p 
expression, while knocking down NR2F1-AS1 
exerted opposite effects (Figure 4e-f). The 

above results verified that NR2F1-AS1 targeted 
miR-145-5p.

3.5 NR2F1-AS1 strengthened extracellular 
matrix degradation and apoptosis in human NP 
cells through miR-145-5p/FOXO1

The above data corroborated that NR2F1-AS1 tar
geted miR-145-5p. Next, we probed whether 
NR2F1-AS1 exerted a pro-apoptotic effect on NP 
cells via miR-145-5p. We transfected NP cells with 
miR-145-5p mimics with, or without NR2F1-AS1 
overexpression plasmids to determine whether 
NR2F1-AS1 enhanced NP cell apoptosis and 
ECM degradation by targeting miR-145-5p. qRT- 
PCR data illustrated that compared with the miR- 
145-5p+vector group, miR-145-5p was down- 
regulated after overexpressing NR2F1-AS1 

Figure 3. miR-145-5p dampened ECM degeneration and NP cell apoptosis.
We transfected the miR-145-5p mimics into NP cells dealt with IL-1β (20 ng/ml) for 48 hours. A: The miR-145-5p expression was 
verified by qRT-PCR. B: The apoptotic rate of human NP cells was monitored by FCM. C: TUNEL tested the number of TUNEL-positive 
cells in human NP cells. D: qRT-PCR monitored the expression of collagen II, aggrecan, ADAMTS4, MMP3, and MMP13 in human NP 
cells. ** P < 0.01, *** P < 0.001 (vs. control group). && P< 0.01 (vs. IL-1β+miR-NC group). (N = 3, one-way ANOVA followed by Tukey 
post hoc test). 
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(Figure 5a). Besides, NR2F1-AS1 overexpression 
led to strengthened NP cell apoptosis versus the 
IL+1β+miR-145-5p+vector group (Figure 5b, c). 
qRT-PCR confirmed that ADAMTS4, MMP3, 
and MMP13 were up-regulated, while collagen II 
and aggrecan were down-regulated following 
NR2F1-AS1 overexpression versus the IL+1β 
+miR-145-5p+vector group (Figure 5d). These 
outcomes uncovered that NR2F1-AS1 increased 
ECM degradation and apoptosis in human NP 
cells by down-regulating miR-145-5p.

3.6 miR-145-5p targeted FOXO1

By searching the miRanda, PicTar, miRmap, and 
Targetscan websites, we discovered that miR-145- 
5p has a total of 152 potential mRNA targets, 
including FOXO1 (Figure 6a). Starbase software 
revealed that miR-145-5p had binding sites with 
FOXO1 (Figure 6b). To make certain whether 
miR-145-5p is bound to the predicted target site 
in FOXO1, we constructed wild-type and mutant 
(it was assumed that the binding site of miR-145- 
5p was mutated) FOXO1 luciferase reporter 

vectors. As expected, miR-145-5p overexpression 
distinctly abated the luciferase activity of NP cells 
transfected with FOXO1-WT, but it had no influ
ence on the that of FOXO1-MUT (Figure 6c). 
Additionally, RIP analysis signified that FOXO1 
and miR-145-5p were rich in Ago2 microribonu
cleoprotein complexes, indicating that Ago2 is 
directly bound to FOXO1 and miR-145-5p in NP 
cells (Figure 6d). miR-145-5p mimics were trans
fected into NP cells, and qRT-PCR confirmed that 
the FOXO1 mRNA expression was suppressed 
versus the control group (Figure 6e). In addition, 
we conducted qRT-PCR, which displayed that up- 
regulation of NR2F1-AS1 uplifted the mRNA 
expression of FOXO1 versus the Vector group 
(figure 6f). Then miR-145-5p mimics were trans
fected into IL-1β-processed NP cells. As testified 
by qRT-PCR, FOXO1 was notably up-regulated in 
IL-1β-induced NP cells versus the Con group, and 
up-regulation of miR-145-5p reduced FOXO1 
expression in NP cells (Figure 6g). Cellular immu
nofluorescence showed that the fluorescence 
intensity of p-FOXO1 in NP cells transfected 
with miR-145-5p was weaker than that of the IL- 

Figure 4. NR2F1-AS1 targeted miR-145-5p.
A: The binding site between NR2F1-AS1 and miR-145-5p was analyzed by the Starbase database. B: Dual-luciferase reporter assay 
illustrated that miR-145-5p enhanced the luciferase activity of NR2F1-AS1-WT. C: RIP showed that NR2F1-AS1 bound to miR-145-5p. 
D: FISH manifested that NR2F1-AS1 co-localized with miR-145-5p in the cytoplasm. E and F: Overexpressing NR2F1-AS1 reduced miR- 
145-5p expression, while inhibiting NR2F1-AS1 had the opposite effect. NSP>0.05, ***P< 0.001 (vs. miR-NC) (N = 3, by Student’s 
t-test or one-way ANOVA followed by Tukey post hoc test). 
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1β+miR-NC group (Figure 6h). IL-1β-treated NP 
cells were transfected with NR2F1-AS1, sh-NR2F1 
-AS1, and miR-145-5p. WB results illustrated that 
by contrast with the IL-1β+vector group, NR2F1- 
AS1 increased p-FOXO1, total FOXO1 and the 
expression of the pro-apoptotic protein Bax, and 
repressed the expression of the anti-apoptotic pro
tein Bcl2. On the contrary, down-regulating 
NR2F1-AS1 or up-regulating miR-145-5p exerted 
the opposite effects (Figure 6 I-K). The above 
results verified that FOXO1 was the target of 
miR-145-5p. miR-145-5p was negatively correlated 
with FOXO1, and NR2F1-AS1 was positively cor
related with FOXO1 (Figure 7).

4. Discussion

IVDD is one primary reason for backache, which 
is a serious socio-economic burden. IVDD is 
usually defined by changes in tissue function and 

structure, including excessive ECM degradation 
and increased intervertebral disc cell senescence 
and death [43]. Inflammatory processes exacer
bated by TNF-α, IL-1, and IL-6 are key mediators 
of IVDD and backache [44]. Therefore, the asso
ciation between lncRNAs, ECM degradation and 
inflammation was studied in this paper. The pos
sible mechanism was that NR2F1-AS1 increases 
the FOXO1 expression by down-regulating miR- 
145-5p, thus facilitating inflammation-mediated 
NP cell apoptosis and ECM degradation 
(Figure 7).

Emerging evidence shows that noncoding RNAs 
exert an essential role in the biological process of 
IVDD [5,6]. For example, the ectopic expression of 
LINC00958 promotes NP cell proliferation, dam
pens the expression of collagen II and aggrecan, 
and facilitates the expression of MMP-2 and 
MMP-13[45]. Overexpressing lncRNA RMRP 
enhances NP cell growth, elevates the expression of 

Figure 5. NR2F1-AS1 strengthened the ECM denaturation and apoptosis in human NP cells via miR-145-5p/FOXO1.
The miR-145-5p mimics and, or NR2F1-AS1 overexpression plasmids were transfected into NP cells dealt with IL-1β (20 ng/ml) for 
48 hours. A: qRT-PCR monitored the miR-145-5p expression. B: FCM was adopted to verify the apoptotic rate of human NP cells. C: 
TUNEL estimated the number of TUNEL-positive cells in human NP cells. D: The profiles of collagen II, aggrecan, ADAMTS4, MMP3, 
and MMP13 in human NP cells were monitored by qRT-PCR. *** P< 0.001 (vs. control group), &&P< 0.01, &&&P< 0.001 (vs. IL-1β 
+vector group), ##P< 0.01, ###P< 0.001 (vs. IL-1β+miR-NC+vector group) (N = 3, one-way ANOVA followed by Tukey post hoc test). 
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Figure 6. miR-145-5p targeted FOXO1.
A: By searching the miRanda, PicTar, miRmap, and Targetscan websites, we discovered that miR-145-5p had 152 binding sites, 
including FOXO1. B: Bioinformatics analysis predicted the binding site between miR-145-5p and FOXO1. C: The dual-luciferase report 
assay testified that miR-145-5p facilitated the luciferase activity of FOXO1-WT. D: RIP showed that FOXO1 is bound to miR-145-5p. 
NSP>0.05, **P< 0.01, ***P< 0.001 (vs. miR-NC). E: After up-regulating miR-145-5p, the FOXO1 profile decreased. F: qRT-PCR tested 
FOXO1 expression after overexpressing NR2F1-AS1. G: IL-1β treatment up-regulated FOXO1 in NP cells, and up-regulating miR-145- 
5p abated the FOXO1 expression. H: Cellular immunofluorescence detection revealed that the fluorescence intensity of p-FOXO1 was 
weakened after up-regulating miR-145-5p. I-K: WB detected the phosphorylation of FOXO1 and the expression of Bax and Bcl2 after 
up-regulating NR2F1-AS1, down-regulating NR2F1-AS1, and overexpressing miR-145-5p in IL-1β-treated NP cells. ***P< 0.001, 
&&P< 0.01 (vs.IL-1β+miR-NC) (N = 3, by Student’s t-test). 
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collagen II and aggrecan, and abates the expression 
of MMP13 and ADAMTS4[46]. Besides, MALAT1 
[47], lncRNA TRPC7-AS1[48], and lncRNA-RP11 
-296A18.3 [49] all contribute to IVDD. The role of 
lncRNA NR2F1-AS1 in tumors has been extensively 
studied [50,51]. Here, we confirmed that NR2F1- 
AS1 was up-regulated during IVDD progression. 
NR2F1-AS1 overexpression increased IL-1β- 
mediated NP cell apoptosis and ECM degradation, 
suggesting NR2F1-AS1 is a potential biomarker in 
IVDD evolvement and treatment.

miRNAs have been confirmed to contribute to 
diversified pathological processes of IVDD, such as 
apoptosis, ECM degradation, cell proliferation and 
inflammation[52]. For instance, Zhao K et al. found 
that miRNA-143 enhances NP cell apoptosis by 
directly targeting BCL2, providing an underlying 
treatment option for IVDD[53]. Wang J et al. stated 
that the miR-154 level is elevated in NP cells in IVDD 
patients. Besides, the inhibition of miR-154 strength
ens the protein profile of collagen II and aggrecan and 
reduces the mRNA expression of MMP13 and 
ADAMTS4, while miR-154 overexpression reverses 
the effect[54]. Also, Zhang et al. confirmed that miR- 
222 is uplifted in IVDD tissues and LPS-treated 
nucleus pulposus cells, and miR-222 significantly pro
motes the generation of TNF-α, IL-1β, and IL-6[55]. 
Moreover, miR-98, miR-149, miR-27b, and miR-133a 
are all related to the degree of IVDD [56–59]. 
Nevertheless, the function of miR-145-5p in IVDD 
remains elusive. Here, we testified that miR-145-5p 

was downregulated in IVDD patients and overexpres
sing miR-145-5p relieved IL-1β induced NP cell apop
tosis and ECM degradation. As a downstream target 
of NR2F1-AS1, miR-145-5p was inhibited by the lat
ter. The rescue experiments indicated that the NR2F1- 
AS1/ miR-145-5p has a potential role during IVDD 
progression.

A previous report indicates that FOXOs are 
key regulators of IVDD homeostasis during 
aging. Maintaining or restoring FOXO expres
sion can be used as a therapeutic strategy to 
delay the onset of IVDD [60,61]. FOXO3, one 
member of FOXO families, has potent effects in 
protecting nucleus pulposus cells against apop
tosis by repressing inflammation, ECM degra
dation, oxidative stress. [62–64] In addition, 
studies by Chai X et al. showed that FOXO1 is 
up-regulated in LPS-treated NP cells, and over
expressing FOXO1 aggravates LPS-induced NP 
cell damages [65]. Previous studies have found 
that FOXO1, a vital transcription factor in cells, 
promotes inflammatory reactions and oxidative 
stress [66,67]. FOXO1a also gets involved in 
IVDD progression by driving annulus fibrosus 
(AF) cells apoptosis through mitochondrial- 
related pathway[68]. which is consistent with 
our study. Here, we substantiated that FOXO1 
was up-regulated in degenerated human NP 
cells, and miR-145-5p mimics could down- 
regulate FOXO1. At the same time, the expres
sion of NR2F1-AS1 and FOXO1 was positively 

Figure 7. The mechanistic diagram.
NR2F1-AS1 was overexpressed during IVDD progression. Tthe lncRNA NR2F1-AS1/miR-145-5p/FOXO1 axis in regulating the apoptosis 
and ECM degradation. 
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correlated in NP cells, suggesting that NR2F1- 
AS1 and miRNA-145-5p targeted and regulated 
FOXO1 to affect IVDD progression.

5. Conclusion

Collectively, this study demonstrated that NR2F1- 
AS1 modulates the FOXO1 axis by sponging miR- 
145-5p as a ceRNA, thus regulating NP cell apoptosis 
and ECM degradation. This research reveals the 
mechanism of the lncRNA NR2F1-AS1/miR-145- 
5p/FOXO1 axis in NP cell damage in in-vitro experi
ments, providing potential therapeutic targets for 
IVDD. However, further experiment should be con
ducted for confirming the role of lncRNA NR2F1- 
AS1/miR-145-5p/FOXO1 axis in IVDD animal 
model.
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