Table 6.
Algorithms | Accuracy | Precision | Sensitivity | F1 score | AUC |
---|---|---|---|---|---|
5-year BCSS | |||||
K-nearest neighbor | 0.879 | 0.882 | 0.98 | 0.928 | 0.70 |
Catboost | 0.905 | 0.892 | 0.974 | 0.932 | 0.69 |
Decision tree | 0.908 | 0.901 | 0.949 | 0.924 | 0.61 |
Random forest | 0.869 | 0.889 | 0.971 | 0.929 | 0.70 |
Gradient booster | 0.882 | 0.887 | 0.991 | 0.936 | 0.75 |
LightGBM | 0.882 | 0.887 | 0.991 | 0.936 | 0.75 |
Neural network model | 0.886 | 0.877 | 1.0 | 0.934 | 0.75 |
Support vector machine | 0.882 | 0.887 | 0.991 | 0.936 | 0.51 |
XGBoost | 0.879 | 0.892 | 0.98 | 0.934 | 0.70 |
5-year OS | |||||
K-nearest neighbor | 0.844 | 0.857 | 0.952 | 0.902 | 0.73 |
Catboost | 0.877 | 0.86 | 0.977 | 0.915 | 0.76 |
Decision tree | 0.882 | 0.869 | 0.940 | 0.903 | 0.69 |
Random forest | 0.837 | 0.864 | 0.954 | 0.907 | 0.72 |
Gradient booster | 0.849 | 0.855 | 0.985 | 0.916 | 0.80 |
LightGBM | 0.851 | 0.859 | 0.983 | 0.916 | 0.81 |
Neural network model | 0.86 | 0.877 | 0.949 | 0.911 | 0.79 |
Support vector machine | 0.854 | 0.854 | 0.994 | 0.919 | 0.70 |
XGBoost | 0.865 | 0.868 | 0.988 | 0.924 | 0.79 |
Abbreviation: AUC Area Under Curve