Skip to main content
. 2022 Apr 1;2022:4096950. doi: 10.1155/2022/4096950

Table 1.

Performance characteristics of ML techniques on COVID-19 symptoms.

S. no Model Accuracy Recall Precision F1 score Kappa
1 Logistic regression 0.7391 0.503 0.7536 0.7195 0.5995
2 AdaBoost classifier 0.7324 0.549 0.7433 0.7093 0.5908
3 CatBoost classifier 0.7166 0.601 0.7159 0.7136 0.5817
4 Light gradient boosting machine 0.7041 0.557 0.7031 0.6997 0.561
5 Gradient boosting classifier 0.6968 0.483 0.7052 0.6816 0.537
6 Extreme gradient boosting 0.6935 0.473 0.7037 0.6757 0.5303
7 Extra trees classifier 0.6928 0.562 0.6929 0.6908 0.5494
8 Decision tree classifier 0.6909 0.59 0.697 0.6922 0.5501
9 Random forest classifier 0.6909 0.558 0.6898 0.6884 0.5459
10 SVM-linear kernel 0.6733 0.449 0.703 0.639 0.4971
11 K-neighbor classifier 0.6534 0.495 0.6474 0.6461 0.485
12 Ridge classifier 0.6487 0.345 0.4885 0.5572 0.4365
13 Quadratic discriminant analysis 0.5182 0.426 0.5352 0.5067 0.3164
14 Naive Bayes 0.4943 0.493 0.6474 0.5279 0.3152