
EMERGING TECHNOLOGIES

A validation study of a ballistocardiograph sleep tracker against
polysomnography
Mahnoosh Kholghi, PhD1; Irene Szollosi, PhD2; Mitchell Hollamby, B Clin Ex Sci2; DanaKai Bradford, PhD1; Qing Zhang, PhD1

1Health & Biosecurity, CSIRO, Brisbane, Queensland, Australia; 2Sleep Disorders Centre, The Prince Charles Hospital, Brisbane, Queensland, Australia

Study Objectives: Consumer home sleep trackers provide a great opportunity for longitudinal objective sleep monitoring. Nonwearable sleep devices cause little
to no disruption in the daily life routine and need little maintenance. However, their validity needs further investigation. This study aims to evaluate the accuracy of
sleep outcomes of EMFIT Quantified Sleep (QS), an unobtrusive nonwearable sleep tracker based on ballistocardiography, against polysomnography.
Methods: 62 sleep-lab patients underwent a single clinical polysomnography with measures simultaneously collected through polysomnography and EMFIT QS.
Resting heart rate, total sleep time, wake after sleep onset, sleep onset latency, and duration in sleep stages, collected from the 2 devices, were compared using
paired t-tests and their agreement analyzed using Bland-Altman plots. Additionally, continuous heart rate and sleep stages in 30-seconds epochs were evaluated.
Results: EMFIT QS data loss occurred in 47% of participants. In the remaining 33 participants (15 women, with mean age of 53.7 ± 16.5 years), EMFIT QS
overestimated total sleep time by 177.5 ± 119.4 minutes (p<0.001) and underestimated wake after sleep onset by 44.74 ± 68.81 minutes (P< .001). It accurately
measured average resting heart rate and was able to distinguish sleep onset latency with some accuracy. However, the agreement between EMFIT QS and
polysomnography on sleep-wake detection was low (kappa=0.13, P< .001), EMFIT QS failed to distinguish sleep stages.
Conclusions: A consensus between polysomnography and EMFIT QS was found in sleep onset latency and average heart rate. There was significant
discrepancy and lack of consensus in other sleep outcomes. These findings indicated that further development is necessary before using EMFIT QS in clinical and
research settings.
Clinical Trial Registration: Registry: Australian New Zealand Clinical Trials Registry; Name: Sleep parameter validation of a consumer home sleep
monitoring device, EMFIT Quantified Sleep (QS), against Polysomnography; URL: https://www.anzctr.org.au/ACTRN12621000600842.aspx; Identifier:
ACTRN12621000600842.
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INTRODUCTION

The increasing interest in monitoring and improving sleep
behaviors has urged the development of consumer-grade devi-
ces in recent years.1,2 These devices can be categorized into 2
main groups of wearables and nonwearables. They provide
objective measures of sleep, which have been shown to be less
biased than self-reported measures,3 and cheaper and less
labor-intensive to obtain compared to the current gold standard,
polysomnography (PSG). In research and clinical settings, there
is a growing need to measure sleep longitudinally in the natural
life environment, as it facilitates exploring the impact of sleep
changes on health and disease.4,5 This is not quite feasible in
the lab environment using PSG. While consumer-grade devices
provide a great opportunity for longitudinal monitoring of
sleep, validity of their measurements has not been fully investi-
gated in all population groups.

Wearable sleep trackers have been shown to estimate sleep
onset latency (SOL) within 10 minutes (level of agreement
between215.1 min to +23.2 min) and have a > 90% sensitivity
in detecting sleep in adolescent cohorts, healthy adults, and in
sleep-disordered patients.6–9 This group, however, has some

limitations for longitudinal monitoring, including limited bat-
tery life and the requirement to wear it continuously, which
might reduce its acceptability among some population groups.

Nonwearables, on the other hand, have been developed with
the aim of minimizing disruptions in daily life routines and natu-
ral sleep behaviors. Some examples are Doppler radar-based S+
from ResMed and mattress-based Beddit and EMFIT QS (Quan-
tified Sleep). In an evaluation study including 27 healthy adults,
S+ achieved about 87% accuracy in detecting sleep and wake
compared to PSG, overestimating total sleep time (TST) by at
least 20 minutes.10 However, it showed limited agreement of
65% on sleep stages estimation. Among mattress-based devices,
Beddit was found to be an unreliable device to track sleep when
compared to PSG within a cohort of 10 healthy young adults.11 It
showed poor agreement (kappa= 0.101) with PSG on estimating
sleep stages and also significantly underestimated wake after
sleep onset and overestimated total sleep time with mean differ-
ences of 32.6 minutes and 43.5 minutes, respectively.

Similar to Beddit, EMFIT QS12 is a mattress-based sleep
tracker, developed and manufactured by Emfit, Finland. The
EMFIT QS is a pressure sensor built from electromechanical
film, which measures mechanical chest wall movements from
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heartbeat and respiration, from which sleep stage and time are
inferred. It also includes a cloud-based analysis platform that
provides overnight sleep summary and sleep stage estimation.
The heart rate (HR) and respiration rate of the EMFIT QS were
validated against references derived from the simultaneous
electrocardiogram and respiratory inductive plethysmography,
as part of clinical overnight polysomnography. The analysis of
data from 33 patients showed that 95% limits of agreement for
HR were 24.4 and 4.4 beats/min, whereas for the respiration
rate, these limits were22.5 and 2.2 respirations/min.13 There is
no validation study available for the EMFIT QS sleep stages
and duration.

In this study, we evaluated the accuracy of the EMFIT QS in
estimating the sleep outcomes and distinguishing sleep stages
against PSG. TST, wake after sleep onset (WASO), SOL, sleep
stages’ duration and time, and average resting and continuous HR
were assessed. Additionally, we investigated the effect of other
factors such as arousals and demographic factors on the discrepan-
cies between PSG-derived and EMFIT QS-derived measures.

METHODS

Participants and data collection
Sixty-two adult patients (> 18 years old) were recruited from
the Sleep Disorders Centre of The Prince Charles Hospital in
Brisbane, Australia. The study was approved by The Prince
Charles Hospital Human Research Ethics Committee, and a
written informed consent was obtained prior to the study.

All participants underwent standard overnight PSG as per
American Academy of Sleep Medicine 2020 guidelines (Com-
pumedics Profusion PSG4, Abbotsford, Australia). The follow-
ing channels were recorded: electroencephalogram (C4-M1,
F4-M1, O2-M1), left and right electro-oculogram, electrocar-
diogram, submental electromyogram, diaphragmatic electro-
myogram, left and right anterior tibialis electromyogram, body
position, oronasal airflow via thermocouple (Ambu A/S, Ball-
lerup, Denmark), nasal pressure (Salter Labs, El Paso, TX), tho-
racic and abdominal movement via respiratory inductance
plethysmography (Compumedics, Abbotsford, Australia), pulse
oximetry (Massimo Radical, Irvine, CA) and sound level (Tec-
pel 332, New Taipei City, Taiwan).

PSG analysis was performed manually, as per American Acad-
emy of Sleep Medicine 2020 Guidelines with hypopnea scoring
according to definition 1A (≥ 30% drop in baseline with ≥ 3%
desaturation or arousal). In addition to standard report metrics,
data were exported in 30-second epochs to allow epoch-by-epoch
(EBE) analysis. EBE data included epoch number, sleep stage,
and average heart rate. Average epoch heart rate was derived from
the R to R interval of the electrocardiogram channel.

The EMFIT QS’s thin strip was placed under the mattress or
mattress topper to simultaneously collect heart (ballistocardio-
graph), respiration, and gross body movements. The HR and
respiration rate were calculated in real-time with a short
dynamic window that automatically discards artifacts. The vital
values were transferred to a cloud-based analysis platform in 4
second resolution to derive overnight activity summary and
sleep stage estimation.

The following measures of EMFIT QS and PSG equivalent
were evaluated in this study:

� Average (avg) HR: whole night (presence period) aver-
age of heart rate, beats per minute;

� Minimum (min) HR: minimum 3 min average heart rate
from whole night, beats per minute;

� Maximum (max) HR: maximum 3 min average heart rate
from whole night, beats per minute;

� TST: the sum of minutes spent in any stage of sleep
(light, deep, rapid eye movement [REM]);

� SOL: time from presence-in-bed period start to fall asleep
in minutes;

� WASO: the sum of minutes spent awake after sleep
onset;

� Light: the sum of minutes spent in stage N1 and N2 sleep;
� Deep: the sum of minutes spent in stage N3 sleep;
� HR and sleep stages in 30-second epochs.

Data analysis
PSG and equivalent EMFIT QS sleep outcomes were compared
using paired t-tests or the Wilcoxon signed-rank test, depending
on the distribution of the sleep outcome assessed by Shapiro-
Wilk test. In both cases, P< .05 indicated a statistically signifi-
cant difference between the 2 devices’ estimation. The overall
agreement between PSG and equivalent EMFIT QS sleep out-
comes was analyzed using Bland-Altman plots. Bland-Altman
plot biases (EMFIT QS mean differences in sleep outcomes),
standard deviation (SD) and ± 95% confidence interval (CI) of
the biases, and lower and upper agreement limits (mean differ-
ence ± 1.963 SD) were calculated. A positive and negative bias
indicate that EMFIT QS underestimated and overestimated the
PSG sleep outcome, respectively. EBE analysis included a
comparison of 30-second EBE HR of PSG and EMFIT QS. A
4-stage classification (awake, light, deep, and REM) was used
to evaluate the sleep stages estimation. EMFIT outcome meas-
ures (as predicted labels) were compared against the one
from PSG (as true labels) using an error matrix. We also derived
sensitivity ðTP=TP1FNÞ, specificity ðTP=TN1FNÞ, and accu-
racy ðTP1TN=TP1TN1FP1FNÞ from the overall error
matrix, where TP= true positive, TN= true negative, FP= false
positive, FN=false negative. Additionally, linear regression
models were built to analyze the effect of total arousals, arousal
index, apnea-hypopnea index (AHI), and periodic limb move-
ments (PLM) arousal index as independent variables (x), on the
discrepancies between PSG-derived and EMFIT QS-derived
measures (y : jPSG measure – EMFIT QS measurej), as a depen-
dent variable. Discrepancy in TST, WASO, light, deep, and
REM were investigated and age, sex, body mass index (BMI),
weight, and sleep study type (diagnostic vs continuous positive
airway pressure) were used as covariates.

RESULTS

Sample demographics
EMFIT QS failed to capture data from 29 out of 62 participants
(47% data loss). The sensor’s analysis platform requires bed
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entry and exit times to provide sleep summary outcomes for
each episode, and most of the data loss was due to failure in
identifying the bed exit time.

Sample demographics of the entire study population (n = 62)
and those whose data were correctly collected by EMFIT QS
(n = 33) are provided in Table 1.

PSG and EMFIT QS sleep summary outcomes
A pairwise comparison of PSG and EMFIT QS sleep outcomes
are provided in Table 2. Bland-Altman plots for the main sleep
outcomes are provided in Figure 1, and biases, SD, 95% CI of
the biases, and upper and lower agreement limits are provided
in Table 3.

Among the three measures of HR, only maximum HR was
significantly (P= 7.8e-05) overestimated by 23.22 ± 26.3 beats/
min. Biases for minimum and average HR were small (1.79 and
4.9, respectively, in Table 3) and nonsignificant (P > 0.05 in
Table 2).

EMFIT QS significantly (P= 9.3e-10 in Table 2) overesti-
mated TST by 177.5 ± 119.4 minutes and significantly
(P= 0.0007) underestimated WASO by 44.74 ± 68.81 minutes.
However, there was no significant difference between the 2
devices’ estimation of SOL, which was slightly underestimated
by 5.62 minutes. There was 1 participant whose TST and
WASO estimation exceeded the agreement limits, and 3 partici-
pants with almost perfect estimation (the red solid line as no
bias) (Figure 1). Also, a considerable number of participants
had perfect estimation of SOL, with only 2 exceeding the agree-
ment limits.

Light sleep and REM were significantly (P= 1.13e-06 and
6.2e-12) overestimated (around 94 and 75 minutes) by EMFIT
QS. However, EMFIT QS slightly overestimated deep sleep
time by 8.3 minutes, which was not statistically significant

(P= 0.13), and the estimation for all participants were in the
agreement limit.

EBE analysis outcomes
PSG and EMFIT EBE HR are summarized as 2 box plots per
individual, as depicted in Figure 2. There was a significant dif-
ference in measuring EBE HR between 2 devices for 3 out of 33
participants (ID: 10006, 10052, 10056).

The error matrix in Table 4 and the classification evaluation
measures in Table 5 allow assessment of the performance of
EMFIT QS in discriminating sleep stages. EMFIT QS misclas-
sified awake, deep sleep, and REM as light sleep in 53%, 49%,
and 46% of the epochs, respectively. These errors were also
reflected in the evaluation measures in Table 5. EMFIT QS had
the lowest specificity (0.49) and accuracy (0.55) in detecting
light sleep. Light sleep had the highest rate of TP cases (63%),
which led to the highest sensitivity (0.63). While the specificity
and accuracy of 3 other states of awake, deep, and REM are rea-
sonable, their sensitivity is low as they were mostly misclassi-
fied as light sleep.

Effect of arousals, AHI, and PLM on EMFIT QS and
PSG discrepancies
There was no association between total arousals and the dis-
crepancy in sleep outcome measures. Arousal index, however,
had a significant direct effect on WASO discrepancy
(R2 = 0.318, P= 0.006) and TST discrepancy (R2 = 0.377,
P= 0.036), as shown in Figure 3. Since high AHI and PLM
arousal are 2 contributing factors to high arousal index,14,15 we
investigated their effect on sleep outcomes discrepancy, and
found that AHI is directly correlated with WASO (R2 = 0.265,
P= 0.02) and TST (R2 = 0.379, P= 0.049) discrepancies, but
PLM arousal index was found to have no effect. We also found

Table 1—Sample characteristics.

Consented EMFIT Data Received

Females/males, n/n 27/35 15/18

Age (years): mean ± SD [range] 56.2 ± 15.2 [18–81] 53.7 ± 16.5 [18–80]

Weight (kg): mean ± SD [range] 97 ± 20 [60.5–138] 96.4 ± 21.3 [60.5–138]

BMI (kg/m2): mean ± SD [range] 33.9 ± 7.4 [19.9–48.4] 33.8 ± 8.3 [21.4–46.6]

Diagnostic/CPAP, n/n 31/31 17/16

AHI (events/h) 9.6 ± 15.2 [0–74.8] 7.6 ± 12.5 [0–62.1]

PLM arousal index (events/h) 2 ± 4.9 [0–32.3] 1.7 ± 3.7 [0–19.1]

Arousal index (events/h) 20.5 ± 15 [4.3–72.8] 18.2 ± 12.5 [5.2–59.1]

Polysomnographic diagnosis (ratio by 100) 24% normal 30% normal

19% OSA–mild 21% OSA–mild

19% OSA–moderate 21% OSA–moderate

34% OSA–severe 21% OSA–severe

10% PLMa 6% PLMb

aThere were 2 PLM cases, 1 with OSA–mild and 1 with OSA–moderate. bThere were 6 PLM cases, 1 with OSA–mild, 2 with OSA–moderate, and 3 with
OSA–severe. AHI = apnea-hypopnea index, BMI = body mass index, CPAP = continuous positive airway pressure, OSA = obstructive sleep apnea,
PLM = periodic limb movements, SD = standard deviation.
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Table 2—Pairwise comparison of PSG and EMFIT QS sleep measures.

Variable

PSG EMFIT QS

t/w PMean ± SD 95% CI Mean ± SD 95% CI

Avg HR 64.3 ± 13.9 59.5, 69.2 62.8 ± 7.3 60.3, 65.3 209 .45

Min HR 50.3 ± 12.4 46.03, 54.6 45.6 ± 3.8 44.2, 46.9 147 0.08

Max HR 79.3 ± 21.2 72, 86.7 102.5 ± 17.4 96.6, 108.5 40.5 7.8e-05*

TST 303 ± 95.1 270.6, 335.5 480.5 ± 97.9 447.1, 513.9 34 1.1e-05*

SOL 33.6 ± 43.8 18.7, 48.5 28 ± 11.9 23.9, 32 201 .16

WASO 102.2 ± 66.1 79.6, 124.7 57.4 ± 19.2 50.9, 64 3.7 .0007*

Light sleep 184.9 ± 74.8 159.3, 210.4 279.1 ± 59.5 258.8, 299.1 25.98 1.1e-06*

Deep sleep 77.3 ± 44 62.3, 92.4 85.6 ± 27.4 76.3, 95 197.5 .13

REM 44.5 ± 26.5 28.2, 60.95 106.5 ± 32.1 86.6, 126.4 210.5 6.2e-12*

All times are in minutes. *Represents statistical significance. Avg = average, CI = confidence interval, HR = heart rate, Max =maximum, Min =minimum,
QS = quantified sleep, REM = rapid eye movement, SD = standard deviation, SOL = sleep onset latency, t = paired t-test, TST = total sleep time, w =Wilcoxon
signed-rank, WASO =wake after sleep onset.

Figure 1—Bland-Altman plots for HR and main sleep outcomes.

PSG-EMFIT QS discrepancies for sleep outcomes (y-axis) are plotted as a function of the PSG outcomes (x-axis) for each individual. Circles represent individuals.
Biases are marked as a solid blue line. The blue dotted lines refer to the upper and lower Bland-Altman plots agreement limits, and the red solid line indicates no
bias. HR = heart rate, max = maximum, min = minimum, PSG = polysomnography, QS = quantified sleep, rem = rapid eye movement, SD = standard deviation.
TST = total sleep time, WASO = wake after sleep onset.
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that TST discrepancy was significantly higher in continuous pos-
itive airway pressure studies compared to diagnostics
(R2 = 0.379, P=0.03). Among other covariates, BMI (coef=
2463.6, P=0.005) and weight (coef=2154.6, P=0.007) was
inversely associated with TST discrepancy, and no association
was found between age, sex, and sleep measures discrepancy.

DISCUSSION

This study investigated the reliability of EMFIT QS against
PSG in measuring summary outcomes of HR and sleep and also
evaluated the EMFIT QS continuous HR in 30-second epochs
and sleep stage classification performance.

Table 3—Bland-Altman plots biases, SD and 95% CI of the biases, and upper and lower agreement limits for PSG and equivalent
EMFIT QS.

Variable Bias ± SD 95% CI of the Bias Lower Agreement Limit Upper Agreement Limit

Avg HR 1.79 ± 8.98 23.8, 7.4 215.53 19.11

Min HR 4.9 ± 12.96 23.1, 12.9 220.1 29.91

Max HR 223.22 ± 26.3 239.5, 26.9 273.96 27.52

TST 2177.5 ± 119.4 2251.5, 2103.5 2407.9 52.96

SOL 5.62 ± 46.39 223.1, 34.4 283.92 95.16

WASO 44.74 ± 68.81 2.1, 87.4 288.06 177.55

Light sleep 294.2 ± 90.4 2150.2, 238.2 2268.67 280.28

Deep sleep 28.3 ± 39 232.5, 15.9 283.61 66.98

REM 274.95 ± 40.87 2100.3, 249.6 2153.83 3.92

Avg = average, CI = confidence interval, HR = heart rate, Max =maximum, Min =minimum, QS = quantified sleep, REM = rapid eye movement, SD = standard
deviation, SOL = sleep onset latency, TST = total sleep time, WASO =wake after sleep onset.

Figure 2—Epoch-by-epoch HR.

A comparison of the summarized PSG (orange) and EMFIT QS (blue) epoch-by-epoch HR (heart rate in the vertical axis) per participant (participant identification
in the horizontal axis). HR = heart rate, PSG = polysomnography, QS = quantified sleep.
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Our findings suggested that while there was a consensus
between 2 devices in SOL, average HR, and minimum HR,
there was a significant discrepancy in the estimation of other
summary sleep outcomes. EMFIT QS starts recording a sleep
period from the time an individual is present in bed until they
leave the bed, whereas PSG uses a manual light-off and light-on
approach. While this might affect the time in bed, it cannot

explain the significant overestimation of TST and underestima-
tion of WASO by EMFIT QS. Other nonwearables, such as
S+10 and Beddit,11 were also found to underestimate WASO
and overestimate TST, however, with significantly less bias. It
should be noted that these studies evaluated healthy popula-
tions, which could mitigate sleep outcome discrepancies and
make the bias negligible. We also found that EMFIT QS had

Table 4—Error matrix.

PSG Stage

EMFIT QS Stage

Awake Light Sleep Deep Sleep REM

Awake 10% 53% 11% 26%

Light sleep 1% 63% 19% 17%

Deep sleep 0% 49% 39% 12%

REM 0% 46% 8% 46%

Each cell indicates the percentage of epochs that EMFIT QS correctly classified (bold) or misclassified when compared to PSG. QS = quantified sleep,
REM = rapid eye movement.

Table 5—Sleep stage classification outcome.

Sensitivity Specificity Accuracy

Awake 0.104 0.991 0.711

Light sleep 0.631 0.493 0.55

Deep sleep 0.389 0.858 0.775

REM 0.457 0.808 0.776

REM = rapid eye movement.

Figure 3—The association of arousal index with TST and WASO discrepancy.

Sleep measure (TST and WASO) discrepancy is the absolute difference of the measure obtained from PSG and EMFIT QS. Circles represent individuals.
PSG= polysomnography, QS= quantified sleep, TST = total sleep time, WASO=wake after sleep onset.
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difficulty in differentiating awake and sleep with a level of
agreement with the gold standard below minimal (kappa = 0.13,
P< 0.001). The agreement between the 2 devices on REM and
light sleep was also poor. This is aligned with studies demon-
strating the inability of these commercial sleep trackers in accu-
rately quantifying and discriminating sleep stages.10,11,16

Further analysis of the effect of arousals on discrepancies
between the 2 devices showed that the more fragmented the
sleep and the higher the AHI were, the less reliable the EMFIT
became in detecting sleep and awake time. According to
Table 1, around 70% of the participants whose data were
included in our analysis were diagnosed with obstructive sleep
apnea (mild, moderate, and severe) and around half of the stud-
ies included in our analysis were continuous positive airway
pressure. Our findings suggested that sleep-disordered breath-
ing adversely affected the accuracy and reliability of EMFIT in
detecting sleep and awake. However, no association was found
between PLM arousal index and PSG-EMFIT discrepancies. It
should be noted that only a small portion (6%) of the cohort we
studied was diagnosed with PLM, indicating further investiga-
tion is warranted before conclusions can be drawn.

We also found that the higher the BMI and weight, the less the
TST discrepancy. We speculate that EMFIT is better in distin-
guishing bigger movements generated by heavier individuals
rather than smaller movements from lighter individuals. Failure
in identifying smaller movements can be happen either when 1)
capturing signals, 2) preprocessing and filtering noise from sig-
nals, or 3) analyzing signals using their algorithm. To better
understand the main reason behind this, access to raw signal and
EMFIT algorithm is required. Also, the average BMI and weight
in our study was quite high (33.8 kg/m2), and further investiga-
tion on a cohort with lower BMI could help to clarify this.

There was a significant difference in maximum HR and
some of the EBB HR comparisons. It was not possible to inves-
tigate the reason behind this due to lack of access to EMFIT QS
raw signals in this study; however, we speculate that the low
sampling rate (100 Hz) in high ballistocardiographic frequency
band in 62 16 Hz could be a potential explanation.

This study has some limitations: 1) the sample size is rela-
tively small, 2) recruitment was only done through sleep lab
patients, and 3) study population was not filtered based on his-
tory of neurological or psychiatric diagnoses or an online
screening with the Pittsburgh Sleep Quality Index.

Overall, EMFIT QS was found to be less sensitive, specific,
and accurate than PSG. EMFIT QS performance in estimating
summary sleep outcomes and classifying sleep stages was poor.
Sleep fragmentation, common in a number of sleep disorders,
was found to contribute to unreliable and inaccurate detection of
sleep and wake by EMFIT QS, which makes it unsuitable for
clinical studies in its current form. While the outcome of this
study is not generalizable to all population groups, further devel-
opment on sleep monitoring and the analysis platform is neces-
sary before using EMFIT QS in clinical and research settings.

ABBREVIATIONS

AHI, apnea-hypopnea index
BMI, body mass index
CI, confidence interval
EBE, epoch-by-epoch
HR, heart rate
PLM, periodic limb movements
PSG, polysomnography
QS, quantified sleep
REM, rapid eye movement
SD, standard deviation
SOL, sleep onset latency
TST, total sleep time
WASO, wake after sleep onset
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EDITOR'S NOTE

The Emerging Technologies section focuses on new tools and techniques of
potential utility in the diagnosis and management of any and all sleep disorders.
The technologies may not yet be marketed, and indeed may only exist in prototype
form. Some preliminary evidence of efficacy must be available, which can consist of
small pilot studies or even data from animal studies, but definitive evidence of
efficacy will not be required, and the submissions will be reviewed according to this
standard. The intent is to alert readers of Journal of Clinical Sleep Medicine of
promising technology that is in early stages of development. With this information,
the reader may wish to (1) contact the author(s) in order to offer assistance in
more definitive studies of the technology; (2) use the ideas underlying the
technology to develop novel approaches of their own (with due respect for any
patent issues); and (3) focus on subsequent publications involving the technology in
order to determine when and if it is suitable for application to their own clinical
practice. The Journal of Clinical Sleep Medicine and the American Academy of
Sleep Medicine expressly do not endorse or represent that any of the technology
described in the Emerging Technologies section has proven efficacy or
effectiveness in the treatment of human disease, nor that any required regulatory
approval has been obtained.
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