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Abstract

OBJECTIVE.—The purpose of this study was to evaluate in a multicenter dataset the 

performance of an artificial intelligence (AI) detection system with attention mapping compared 

with multiparametric MRI (mpMRI) interpretation in the detection of prostate cancer.

MATERIALS AND METHODS.—MRI examinations from five institutions were included in this 

study and were evaluated by nine readers. In the first round, readers evaluated mpMRI studies 
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using the Prostate Imaging Reporting and Data System version 2. After 4 weeks, images were 

again presented to readers along with the AI-based detection system output. Readers accepted 

or rejected lesions within four AI-generated attention map boxes. Additional lesions outside of 

boxes were excluded from detection and categorization. The performances of readers using the 

mpMRI-only and AI-assisted approaches were compared.

RESULTS.—The study population included 152 case patients and 84 control patients with 274 

pathologically proven cancer lesions. The lesion-based AUC was 74.9% for MRI and 77.5% for 

AI with no significant difference (p = 0.095). The sensitivity for overall detection of cancer lesions 

was higher for AI than for mpMRI but did not reach statistical significance (57.4% vs 53.6%, p 
= 0.073). However, for transition zone lesions, sensitivity was higher for AI than for MRI (61.8% 

vs 50.8%, p = 0.001). Reading time was longer for AI than for MRI (4.66 vs 4.03 minutes, p < 

0.001). There was moderate interreader agreement for AI and MRI with no significant difference 

(58.7% vs 58.5%, p = 0.966).

CONCLUSION.—Overall sensitivity was only minimally improved by use of the AI system. 

Significant improvement was achieved, however, in the detection of transition zone lesions with 

use of the AI system at the cost of a mean of 40 seconds of additional reading time.

Keywords

artificial intelligence; laparoscopic; MRI; multiparametric; prostate cancer; radical prostatectomy; 
robot-assisted

Prostate cancer is the most common noncutaneous cancer type among men [1]. Unlike most 

other cancers, prostate cancer is difficult to detect with conventional imaging techniques 

such as ultrasound and CT. Therefore, until recently, imaging has not been accepted as 

standard-of-care practice for prostate cancer detection. Over the last 2 decades, major 

advances in prostate MRI have led to considerable improvements in prostate cancer 

detection. Although initially the use of MRI was limited [2], with the development of higher 

magnetic field strengths, higher quality of imaging, and the combined use of anatomic and 

functional MRI sequences, multiparametric MRI (mpMRI) has emerged as an important 

method of detecting prostate cancer [3]. Reports in the current literature, however, indicate 

that 5–30% of prostate cancers are missed at mpMRI [4–6]. The causes of such misses may 

be related to the complex nature of the prostate tissues and the limited spatial resolution of 

MRI. One proposed solution is to use artificial intelligence (AI)-based detection systems.

With the help of machine learning, classification algorithms can be trained to predict results 

and outcomes, provided that enough training data are available. In 2017, we at the National 

Cancer Institute [7] proposed an AI system based on intensity and texture analysis and a 

random forest classification algorithm. This system was validated in a large multireader 

multicenter study in 2018 [8]. Results of that study revealed an increase in detection of 

transition zone lesions among moderately experienced readers only. Overall, however, the 

AI system was equivalent to conventional MRI interpretation [8]. In that study, color-coded 

prediction maps were used to draw attention to AI-detected lesions. Feedback from the 

study suggested that prediction maps compromised the interaction between the radiologists 

and the AI system with resultant decreased accuracy for some readers. To address this 
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issue a new AI detection system with more expert annotated data was designed. Instead of 

color-coded cancer probability maps as output, the new AI system provides attention map 

boxes encompassing areas of increased likelihood of prostate cancer. Herein we report the 

results of our multicenter multireader study of the AI system with this new user interface. 

The main objective of the study was to evaluate in a multicenter dataset the performance of 

an AI detection system with attention map boxes compared with mpMRI interpretation for 

detection of prostate cancer.

Materials and Methods

Patient Population

This HIPAA-compliant evaluation of multi-institutional data was approved by the National 

Cancer Institute ethics committee. Inclusion of anonymized data from the other institutions 

was approved in concordance with National Institutes of Health Office of Human 

Subjects Resources protocol 11617. Local ethics approvals to share data were obtained 

as needed. Patients from five institutions were included in this study. Those in the 

case group underwent mpMRI and had subsequent prostate biopsy results positive for 

adenocarcinoma and then underwent radical prostatectomy. Final histopathologic results for 

the prostatectomy specimens with lesion mapping were available for all case population 

patients. All participants in the control group underwent mpMRI with no visible lesions 

detected. Prostate cancer was ruled out by means of 12-core transrectal systematic biopsy. 

Three patients with missing final radical prostatectomy histopathologic lesion maps were 

excluded. The final study population included 152 case and 84 control subjects. The 

distribution of case and control subjects among institutions is summarized in Table 1.

Reader Profiles

To prevent bias, the case and control MRI data were obtained from five different 

institutions but were interpreted by nine readers from independent institutions. Readers 

ranged in experience in interpreting prostate mpMRI and were stratified into three levels 

of experience: low, moderate, and high. Determination was based on years of experience 

and number of prostate MRI studies read per year according to the following criteria: a low 

level of experience was less than 1 year or fewer than 100 examinations per year; moderate, 

1–3 years or 100–300 examinations per year; high, more than 3 years or more than 300 

examinations per year.

Study Design and Statistical Powering

Because it was unrealistic for every reader to read every case, each patient imaging 

examination was randomly assigned to three different readers to ensure balanced and 

unbiased distribution. Our primary hypothesis was that AI-assisted mpMRI can achieve 

higher lesion-based sensitivity than mpMRI without the benefit of AI. To test this 

hypothesis, nine readers read assigned cases according to the balanced incomplete block 

design, in which each randomly selected case stratified by patient disease status was 

assigned to each triple-wise combination of readers [9]. Among the 236 patients (152 with 

cancer, 84 without cancer), each reader evaluated a mean of 78 patients (range, 75–81). The 

primary endpoint was the difference in mean lesion-level reader-specific sensitivity between 
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AI-assisted detection and mpMRI alone. In the power analysis, sensitivity was set at 57% 

and the SD of the primary endpoint was estimated from previous studies [8, 10]. This study 

had 93% power to detect an 8% difference in sensitivity using the Z test at the two-sided 5% 

significance level.

MRI Acquisition Technique

All imaging examinations were performed at 3 T without an endorectal coil with equipment 

from a variety of vendors. Axial T2-weighted imaging, DWI with at least two b values, 

and dynamic contrast-enhanced imaging sequences were performed. Because DWI with a b 

value of 1500 mm/s2 was necessary for the AI processing, in cases in which this acquisition 

was not available, the high b value was calculated by use of a mono-exponential decay 

model. Image acquisition protocols were compliant with Prostate Imaging Reporting and 

Data System version 2 (PI-RADSv2) technical recommendations.

Patient Data Deidentification

In compliance with U.S. Office of Human Subjects Resources guidelines, all medical images 

were fully anonymized by provider centers before submission to our center (National Cancer 

Institute). For this purpose, standard scripts were used that remove all DICOM tags except 

for technical image acquisition–related information. When the data were received, a second 

deidentification was performed to ensure patient confidentiality at the highest standard.

Artificial Intelligence System

The AI system was based on a custom multitask random forest similar to the Hough forest 

and the regression forest [11]. Each random tree was trained on 3-T MR images of 161 

patients from five different institutions; an alternating information gain function was used 

that was either defined to optimize for classification accuracy or minimize the l2 residual 

of predicted bounding box extents. The training population was patients and institutions 

different from those of the test population in this study. This learning system entailed a 

combination of patch-based intensity and Haralick texture features and operated only on 

presegmented transition and peripheral zones.

Automatic segmentations were performed on T2-weighted images and manually corrected 

by an expert radiologist. Each zone had its own specialized AI model. The result was a 

collection of 10 random trees per zone that each evaluated an image patch from T2-weighted 

images, apparent diffusion coefficient maps, and b1500 images and predicted both the 

probability of clinically significant cancer and the bounding box width and height of the 

lesion. The predictions from all trees were averaged, and box candidates were postprocessed 

with nonmaximum suppression to choose the final predicted boxes (up to four were kept). 

The result was a probability map for clinically significant cancer (Gleason score > 3 + 3) 

and a collection of attention map boxes for suspicious lesions, the latter of which were used 

in this study. The attention map boxes were picked by use of a threshold corresponding to a 

67% tumor detection rate at 2.71 false-positive results per patient.

A pixel-based cancer probability map was calculated, and for this study, the readers were 

provided with a maximum of four attention map boxes corresponding to regions of high 
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cancer probability, which were overlaid on the T2-weighted image from each case and 

control MRI examination. The idea behind this approach was to ensure that readers can 

uniformly focus on the most suspicious possible lesions on MRI studies without interfering 

with the actual image, as occurs with conventional probability maps, which usually cover 

the underlying image. These maps were termed attention maps to distinguish them from 

probability maps (Fig. 1).

Image Evaluation

All readers used a commercially available DICOM viewer (RadiAnt, Medixant) at their 

personal workstations. Readers were blinded to clinical and histopathologic outcomes.

In the first session, T2-weighted, DWI (apparent diffusion coefficient, b = 1500 mm/s2), and 

dynamic contrast-enhanced images were presented to the readers for tumor detection and 

evaluation. For each patient a database application (Access, Microsoft Office 365) readout 

form with a pseudoidentifier was provided for documentation and analysis. Readers could 

call up to four lesions per image and assign a PI-RADSv2 category for each detected lesion. 

In addition, the location of each lesion was documented in accordance with the PI-RADSv2 

recommendations, and a screen shot of the lesion was stored in the database document [12]. 

A timer recorded and saved the reading time for each reader per study.

After a 4-week washout period, a training package was sent to participants with three 

examples, so that they could become familiar with handling and interpretation of the AI 

system. Readers were instructed to read the AI images first and assess each attention box. 

Thereafter, the location of the boxes was annotated on the corresponding mpMR images. 

During the AI-assisted readout session, the participants accepted a lesion if its PI-RADSv2 

category within the attention box was 3 or greater or rejected it if the PI-RADSv2 category 

was less than 3. The readers were prohibited from evaluating lesions detected on mpMR 

images other than those in attention boxes provided by the AI system. This stringent 

approach, defined as first-reader design workflow, would theoretically simulate the raw 

performance of AI as used by radiologists [13]. The results of the reading session were 

stored in a database readout form similar to that used in session 1.

Histopathologic Assessment

The genitourinary pathologist at each provider center was blinded to the mpMRI results. For 

each case patient’s specimen, cancer lesions were mapped, and a corresponding Gleason 

score according to the International Society of Urological Pathology 2014 consensus 

guidelines was assigned [14].

Statistical Analysis

Patient-based sensitivity and specificity were calculated at each PI-RADSv2 threshold, and 

AUC was estimated for each reader; the maximum PI-RADSv2 category assigned by a 

given reader represented each patient’s outcome. The comparison between AI and mpMRI 

was made at PI-RADSv2 1 or greater representing all detected lesions and PI-RADSv2 3 

or greater representing suspicious lesions. For lesion-based analysis, reader sensitivity and 

free-response ROC analysis was performed [15]. Reader statistics were averaged across all 
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readers and by experience level. Reader agreement on lesion detection in the same location 

was assessed by the index of specific agreement [16]. Statistical inference was obtained by 

the bootstrap resampling procedure with 2000 bootstrap samples drawn at the patient level. 

The 95% confidence limits were the 2.5% and 97.5% percentiles of the bootstrap resampling 

distribution. All test statistics were based on two-sided Wald test and bootstrap standard 

error. Values of p < 0.05 were considered statistically significant.

Results

Study Population and Lesion Characteristics

The final study population consisted of 152 case and 84 control subjects. Except in 38 

case patients, the final histopathologic result was grade group 2 or higher. There were 274 

pathologically proven cancer lesions with 188 of the 274 in the peripheral zone, 77 in the 

transition zone, and nine spanning both zones. Among all 274 lesions, 38 were assigned 

grade group 1, 130 group 2, 45 group 4, and 15 group 5 at final histopathologic analysis.

Multiparametric MRI and Artificial Intelligence Performance at Patient Level

The overall AUCs were 81.6% for MRI and 78% for AI (p = 0.053). Readers with a low 

experience level had AUCs of 80.9% for MRI and 73.3% for AI (p = 0.018); moderate 

experience, 80% for MRI and 76.9% for AI (p = 0.28); and a high level of experience, 

83.8% for MRI and 83.6% for AI (p = 0.95).

Sensitivity and specificity plotted against PI-RADSv2 thresholds are shown in Figure 2. 

For the detection of all ground truth lesions (threshold, PI-RADSv2 ≥ 1), no significant 

difference in sensitivity was observed between MRI and AI (89.6% vs 87.9%, p = 0.364). 

However, in the subgroup of experienced readers, sensitivity of AI was significantly greater 

than that of MRI (95.5% vs 89.0%, p = 0.013). For lesions considered suspicious with MRI 

(threshold, PI-RADSv2 ≥ 3) no significant differences in sensitivity were observed in the 

whole group (81.7% vs 83.5%, p = 0.453). This finding held true for all subgroups of reader 

experience.

For the detection of all ground truth lesions (threshold, PI-RADSv2 ≥ 1), specificity was 

significantly lower for AI (30.0% vs 51.5%, p < 0.001) in the whole group. This finding 

held true for all subgroups of reader experience. For lesions considered suspicious on MRI 

studies (threshold, PI-RADSv2 ≥ 3), specificity was significantly lower for AI in the whole 

group (51.4% vs 60.7%, p = 0.01). Although it was observed in all subgroups of reader 

experience, this result did not reach statistical significance in the groups of readers with 

moderate and high experience levels.

Multiparametric MRI and Artificial Intelligence Performance at Lesion Level

The free-response ROC AUCs were 74.9% for MRI and 77.5% for AI (p = 0.095). Readers 

with a low experience level had AUCs of 76.6% for MRI and 78.4% for AI (p = 0.095); 

moderate experience, 78.1% for MRI and 78.6% for AI (p = 0.747); and a high experience 

level, 76.9% for MRI and 81.1% for AI (p = 0.003).
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Lesion-level sensitivity and positive predictive value for all PI-RADSv2 thresholds are 

shown in Table 2 for MRI and AI. Sensitivity plotted against PI-RADSv2 thresholds for the 

whole prostate, peripheral zone, and transition zone are shown in Figure 3. For the detection 

of all ground truth lesions (threshold, PI-RADSv2 ≥ 1), sensitivity was higher for AI than 

for MRI but did not reach a statistical significance (57.4% vs 53.6%, p = 0.073). However, 

in the subgroup of highly experienced readers, AI had significantly greater sensitivity than 

MRI did (62.7% vs 54.1%, p = 0.002). There were no statistically significant differences 

between AI and MRI in the subgroups of readers with low and intermediate experience 

levels. For lesions considered suspicious on MRI studies (threshold, PI-RADSv2 ≥ 3), there 

was no significant difference in sensitivity between AI and MRI (50% vs 51%, p = 0.65). 

This was also true among all subgroups of reader experience.

Lesion-level sensitivity and positive predictive value for all PI-RADSv2 thresholds for MRI 

and AI in the peripheral are shown in Table 3 and in the transition zone in Table 4. 

There was no statistically significant difference in sensitivity between AI and MRI in the 

peripheral zone for any PI-RADSv2 threshold. In the transition zone, for the detection of all 

ground truth lesions (threshold, PI-RADSv2 ≥ 1), sensitivity was significantly higher for AI 

than for MRI (61.8% vs 50.8%, p = 0.001). In the subgroup of highly experienced readers, 

sensitivity was also significantly higher for AI than for MRI (70% vs 54.1%, p = 0.003). 

For lesions considered suspicious on MRI studies (threshold, PI-RADSv2 ≥ 3), there was 

no significant difference in sensitivity between AI and MRI (53% vs 49.4%, p = 0.238). 

This was also true among all subgroups of reader experience. The mean numbers of region 

proposals not corresponding to reportable findings according to PI-RADSv2 guidelines were 

2.53 (range, 0–4) for control patients and 1.76 (range, 0–4) for case patients.

Interreader Agreement

There was moderate interreader agreement in the whole group for AI and MRI with no 

statistically significant difference (58.7% vs 58.5%, p = 0.966). This was also true of 

readers with low (55.2% vs 48.5%, p = 0.403) and moderate (55.7% vs 55.5%, p = 0.993) 

experience levels. Among highly experienced readers, interreader agreement was substantial 

for AI and MRI with no statistically significant difference (0.644 vs 0.645, p = 0.959).

Image Interpretation Times

The overall reading time was significantly longer for AI than for MRI (4.66 vs 4.03 minutes, 

p < 0.001). This was particularly pronounced among moderately (5.41 vs 4.68 minutes, p = 

0.001) and highly (4.22 vs 3.33 minutes, p < 0.001) experienced readers, but there was no 

statistically significant difference among readers with a low level of experience (4.33 vs 4.1 

minutes, p = 0.289).

Discussion

In this study an AI detection system entailing region-based attention mapping showed 

little or no improvement over conventional interpretation of prostate MRI across multiple 

readers of various experience levels. The notable exception was overall improvement in the 

detection of transition zone lesions, which are more difficult to diagnose. This result agrees 
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with those of other AI studies, which to date have not shown dramatic improvements in 

performance over conventional interpretation. Interestingly, the AI system did not improve 

interreader variability or improve the performance of readers with a low level of experience, 

which are features commonly touted for AI systems.

This study revealed some interesting findings in subset analysis. For instance, among 

highly experienced readers, sensitivity was significantly higher for AI than for MRI for all 

lesions; this difference was not observed for lesions deemed suspicious for prostate cancer 

with MRI. In other words, the AI system increased the sensitivity of highly experienced 

radiologists in detecting invisible (PI-RADS 1) and low-category (PI-RADS 2) lesions, 

whereas it was not as contributory for clearly visible lesions (PI-RADS ≥ 3).

One possible explanation for the more pronounced effect on highly experienced readers 

could be the different output format of our AI system. Although our previous and most other 

AI systems use color-coded cancer probability maps, we chose an attention-based mapping 

box to decrease distraction and subjectivity caused by background noise and false-positive 

lesions on AI maps and focus the reader’s attention on the areas of highest likelihood of 

cancer. It is possible that highly experienced readers benefitted most from this approach 

because they were more confident in detecting cancer-suspicious lesions and could spend 

additional time on the regions highlighted by the AI derived boxes, whereas less experienced 

readers might be less confident and not weight the AI data as strongly.

The AI system performed differently in different zones of the prostate. The peripheral 

and transition zones have very different radiologic and histopathologic properties. As 

a consequence, the PI-RADS consensus guidelines recommend different criteria for the 

assignment of risk categories in the peripheral and transition zones [12]. The transition 

zone usually has a heterogeneous signal-intensity pattern on T2-weighted images, especially 

in patients with benign prostatic hyperplasia. This complicates the detection of prostate 

cancer lesions, which therefore can be easily overlooked. As a result, the sensitivity of 

mpMRI in general is lower for transition zone than for peripheral zone lesions [17]. In the 

subgroup analysis of peripheral and transition zone lesions in our study, the AI system had 

significantly higher sensitivity for all MRI-detected transition zone lesions than did mpMRI. 

This may represent an important contribution of this detection system.

Current AI systems are not fully automated detection systems but rather adjunct tools to 

aid radiologists reading prostate mpMRI studies. Therefore, the AI information along with 

prostate mpMRI findings can be considered an additional parameter potentially increasing 

complexity for no benefit. Our study did not show significant improvement in interreader 

agreement among readers. Reading time was slightly longer (mean, 40 seconds) with the 

AI detection system. This is understandable because the nature of an attention box is that it 

requires additional time to evaluate. Some AI systems reduce the time needed to diagnose. 

In a study by Greer et al. [18], both interreader variability and readout times improved 

when AI was used. In that study, however, the mpMR images were acquired at one site 

with one set of acquisitions, whereas the current study included MRI studies from multiple 

institutions. It is possible that such a heterogeneous collection of MRI data may require 

more time to evaluate even with an AI detection system. Additionally, spending extra time 
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to carefully search for suspicious lesions within the four attention boxes in each patient may 

also have increased readout time.

Limitations

Our study had several limitations. First, the output of the AI detection system always 

presented four attention boxes to the reader even if there were no lesions. This was done 

because PI-RADS allows evaluation of up to four lesions and there was no method for 

varying the number of boxes for each case. This likely resulted in more false-positive 

readings, resulting in significantly lower specificity on the patient level compared with prior 

AI detection systems.

Second, the training of the algorithm was based on a fairly small patient population. This 

might have negatively affected the performance of the model because larger and more 

diverse patient populations improve generalizability of classification algorithms.

Third, our classification algorithm was based on a random forest classifier. With advances in 

computational resources, big data, and more sophisticated deep neural network algorithms, 

deep learning is gaining popularity in medicine. In particular, convolutional neural networks 

appear to be superior to classic machine learning techniques and other deep neural network 

architectures in performance and generalization in imaging-related tasks [19–21]. As a 

result, we are currently working on procuring and annotating larger imaging datasets and 

developing deep neural network architectures for designing a stronger prostate cancer AI 

detection system.

Conclusion

The AI detection system had significantly higher sensitivity than mpMRI for the detection 

of transition zone lesions, especially those not visible to readers using the raw images alone. 

Overall, there was no significant gain from the AI detection system compared with MRI 

alone, and it did not improve the performance of readers with a low experience level or 

reduce interreader variability. AI did, however, improve the performance of radiologists in 

evaluating transition zone lesions. These results suggest a need for further work on deep 

learning convolutional neural networks in larger datasets to improve the performance of 

radiologists interpreting mpMRI of the prostate.
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Fig. 1—. 
55-year-old man with prostate-specific antigen level of 4.68 ng/mL and Prostate Imaging 

Reporting and Data System category 5 lesion in left anterior transition zone correctly 

detected by artificial intelligence system. Final histopathologic result was Gleason 3 + 4 

prostate cancer.

A, T2-weighted MR image.

B, Apparent diffusion coefficient map.

C, DW image (b = 2000 mm/s2).

D, Dynamic contrast-enhanced MR image.

E, T2-weighted MR image with attention box produced by means of artificial intelligence.

F, Photomicrograph of radical prostatectomy specimen. I = index lesion.
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Fig. 2—. 
Graphs show sensitivity and specificity of artificial intelligence (AI) and MRI for different 

Prostate Imaging Reporting and Data System (PI-RADS) category thresholds at patient 

level. Asterisk denotes p < 0.05; double asterisk, p < 0.01.

A, Sensitivity for all readers.

B, Sensitivity for readers with low level of experience.

C, Sensitivity for readers with moderate level of experience.

D, Sensitivity for readers with high level of experience.

E, Specificity for all readers.
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F, Specificity for readers with low level of experience. G, Specificity for readers with 

moderate level of experience.

H, Specificity for readers with high level of experience.
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Fig. 3—. 
Graphs show sensitivity of artificial intelligence (AI) and MRI for different Prostate Imaging 

Reporting and Data System (PI-RADS) category thresholds at lesion level for whole 

prostate, peripheral zone, and transition zone. Asterisk denotes p < 0.05; double asterisk, 

p < 0.01.
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A, Whole prostate, all readers.

B, Whole prostate, readers with low level of experience.

C, Whole prostate, readers with moderate level of experience.

D, Whole prostate, readers with high level of experience.

E, Peripheral zone, all readers.

F, Peripheral zone, readers with low level of experience.

G, Peripheral zone, readers with moderate level of experience.

H, Peripheral zone, readers with high level of experience.

I, Transition zone, all readers.

J, Transition zone, readers with low level of experience.

K, Transition zone, readers with moderate level of experience.

L, Transition zone, readers with high level of experience.
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