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Abstract

Purpose—The detection of clinically significant prostate cancer (PCa) is shown to greatly 

benefit from MRI–ultrasound fusion biopsy, which involves overlaying pre-biopsy MRI volumes 

(or targets) with real-time ultrasound images. In previous literature, machine learning models 

trained on either MRI or ultrasound data have been proposed to improve biopsy guidance and 

PCa detection. However, quantitative fusion of information from MRI and ultrasound has not been 

explored in depth in a large study. This paper investigates information fusion approaches between 

MRI and ultrasound to improve targeting of PCa foci in biopsies.

Methods—We build models of fully convolutional networks (FCN) using data from a newly 

proposed ultrasound modality, temporal enhanced ultrasound (TeUS), and apparent diffusion 

coefficient (ADC) from 107 patients with 145 biopsy cores. The architecture of our models is 

based on U-Net and U-Net with attention gates. Models are built using joint training through 

intermediate and late fusion of the data. We also build models with data from each modality, 

separately, to use as baseline. The performance is evaluated based on the area under the curve 

(AUC) for predicting clinically significant PCa.

Results—Using our proposed deep learning framework and intermediate fusion, integration of 

TeUS and ADC outperforms the individual modalities for cancer detection. We achieve an AUC 
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of 0.76 for detection of all PCa foci, and 0.89 for PCa with larger foci. Results indicate a shared 

representation between multiple modalities outperforms the average unimodal predictions.

Conclusion—We demonstrate the significant potential of multimodality integration of 

information from MRI and TeUS to improve PCa detection, which is essential for accurate 

targeting of cancer foci during biopsy. By using FCNs as the architecture of choice, we are able 

to predict the presence of clinically significant PCa in entire imaging planes immediately, without 

the need for region-based analysis. This reduces the overall computational time and enables future 

intra-operative deployment of this technology.
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Introduction

Prostate Cancer (PCa) is among the most commonly diagnosed cancers in men. Observation 

of an elevated prostate-specific antigen (PSA) is usually the first step of the diagnostic 

pathway for PCa. Recent studies [1] have suggested that acquiring multiparametric magnetic 

resonance imaging (mp-MRI) for diagnostic purposes would reduce unnecessary biopsies 

and associated potential harmful side effects for men with elevated PSA. Despite the 

diagnostic power of mp-MRI, the gold standard for PCa diagnosis has remained as 

transrectal ultrasound-guided biopsy (TRUS biopsy) in most centers due to the availability 

and lower costs of ultrasound. In contrast to mp-MRI, ultrasound lacks the sensitivity to be 

used as a primary diagnostic modality. The fusion of the pre-biopsy mp-MRI of the prostate 

with TRUS-guided biopsy promises to increase the yield of aggressive cancer [23,28,29]. 

In the literature and in clinical practice, MR-TRUS fusion biopsy refers to the alignment of 

pre-biopsy mp-MRI volumes with TRUS (acquired at the beginning of biopsy) and targeting 

of the lesions identified on mp-MRI. mp-MRI is projected and fused with TRUS images 

either through commercially available systems [28,29] or using cognitive co-location of 

targets in the TRUS imaging space [23]. Although registration techniques do not lead to 

an ideal true fusion of imaging spaces, providing the spatial information of the mp-MRI 

lesion delineations during real-time TRUS-biopsy has been shown to improve the detection 

of high-risk prostate cancer [23,28,29]. A significant missing piece of the puzzle and a 

natural question that follows is: In addition to the spatial information of the MR-identified 
lesions on TRUS, can a machine learn from the explicit integration of information in MRI 

and TRUS to improve detection of PCa, and reduce unnecessary biopsies?

In the past few years, advancements in Deep Learning (DL) have dominated the field of 

computer-assisted PCa detection using mp-MRI or ultrasound information, as individual 

modalities. Most of the research have utilized Convolutional Neural Networks (CNN) and 

various optimization strategies; achieving state-of-the-art performance in PCa detection. 

Several groups have taken advantage of the multisequence nature of the mp-MRI data by 

stacking each modality as input channels similar to RGB images [3,14], and integrating their 

information early in the training. Mehrtash et al. [17] used 3D CNNs on images of apparent 

diffusion coefficient (ADC), high b-value and KTrans for PCa diagnosis. Kiraly et al. [12] 
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used fully convolutional networks (FCN) for localization and classification of prostate 

lesions and achieved area under the curve (AUC) of 0.83 by training on 202 patients. In a 

recent study, Schelb et al. [25] proposed a U-Net architecture on biparametric prostate MRI 

(T2-Weighted and ADC), and achieved performance similar to that of Prostate Imaging–

Reporting and Data System (PI-RADS), the clinical standard of mp-MRI scoring [31]. 

Several ultrasound-based methods have been proposed for the detection of PCa including 

the analysis of spectral features in a single frame of ultrasound [6], analysis of tissue 

elasticity in the presence of external excitation [4], and more recently, temporal enhanced 

ultrasound (TeUS) for analysis of radio frequency (RF) time series [11,18]. Although 

analysis of a single frame of ultrasound has been studied in the past [6,7], a consistent 

yet differentiable tissue property has not been derived, as a result of heterogeneity of PCa 

and its variability across patients. TeUS has emerged as a promising imaging modality 

for tissue characterization, within a deep learning framework. It involves acquisition and 

analysis of a sequence of ultrasound data from a stationary tissue location without explicit 

excitation. Previous in vivo [9,10] and ex vivo [19] studies have shown promising results for 

differentiating PCa from healthy tissue. Azizi et al. [2] used a deep belief network (DBM) 

and achieved AUCs of as high as 0.84. Sedghi et al. [27] used an unsupervised learning 

approach to capture representations of TeUS signals associated with variations of PCa. No 

studies to date have attempted to quantitatively fuse the information from the two modalities.

Fusion of information has been studied in computer vision and medical imaging literature 

in the context of early, intermediate, and late fusion. The most common approach 

involves concatenating information from multiple modalities (early fusion) prior to learning. 

There are challenges with early fusion of information. As mentioned before, image 

registration often does not result in perfect alignment between modalities; thus, finding 

the corresponding information between different modalities is challenging. In addition, 

without any post-processing or latent space extraction, the relationships between modalities 

are highly complex, and hard for machines to learn in the case of early fusion. In late 
fusion, different models are independently learned from different modalities and the outputs 

of models are combined (either averaging, or weighted sum) to make a final decision. 

A shortcoming of this approach is that it is possible to miss the low-level interactions 

between different data types [20]. As a result, intermediate fusion (fusion of information at 

some point between data inputs and model prediction) has been pursued as an appropriate 

strategy in the literature [8,13,20,32]. In segmentation literature, Havaei et al. [8] proposed 

heteromodal network architecture for multimodal brain MRI segmentation. In their study, 

they learned an embedding of each modality in a shared common space as well as an 

average value for this space, and performed segmentation using the fused information. 

In another study, Valindria et al. [32] used different encoder–decoder architectures for 

segmentation of MRI and CT of liver. They evaluated different strategies for information 

fusion and demonstrated that learning from multimodal data increased accuracy compared 

to single modality. In computer vision, Kuga et al. [13] proposed a multimodal, multitask 

encoder–decoder network with shared latent and skip connection for simultaneous learning 

from RGB and depth images. They also demonstrated improved performance using all 

modalities.
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To the best of our knowledge, integration of imaging information for improving TRUS-

guided biopsies have not been studied yet. The motivation for integration of mp-MRI 

and ultrasound is the complementary nature of information in each modality and their 

individual limitations. We demonstrate the improved performance of detecting PCa by 

utilizing both sources of information to provide cancer likelihood maps that can augment 

biopsies. Although rule-based addition of MR-identified labels for lesions with TeUS has 

shown promise [10], the explicit incorporation of the information content of each modality 

has not been investigated yet. In this work, for the first time, we propose an application 

of multimodality FCN for information fusion between MRI and TeUS. Our work lays the 

foundation for effective utilization of all available imaging data for improving targeting of 

biopsies, and reducing the need for unnecessary biopsies.

Materials and method

Data

The data used in this study consist of mp-MRI and TeUS from patients who underwent 

prostate MR-TRUS fusion biopsy. All patients provided informed consent to participate 

in the institutional review board (IRB)-approved study. Patients cohort include those with 

at least one suspicious lesion visualized on mp-MRI acquired on a 3-T MR scanner 

(Achieva-TX, Philips Medical Systems, Best, NL) with an endorectal coil (BPX-30, 

Medrad, Indianola, PA). T2-weighted MRI (T2), diffusion-weighted MRI (DWI) and 

dynamic contrast-enhanced MRI (DCE) were acquired for each patient. Two independent 

radiologists with 6 and 13 years of experience evaluated the mp-MRI through a criteria 

based on the number of positive parameters on T2, ADC, and DCE. More details about the 

mp-MRI scoring approach used for this data is available in [33]. Subsequently, subjects 

underwent MR-TRUS fusion-guided biopsy using commercial UroNav system (Invivo, 

Philips Healthcare, Gainesville, FL). More specifically, MR-identified suspicious lesions 

were imported into the UroNav and were displayed on triplanar images as biopsy targets. 

Patients had 12-core sextant biopsy, and two (axial and sagittal) targeted MR-TRUS fusion 

biopsy per identified MRI lesion. Prior to needle firing for the targeted MR-identified 

lesion, the ultrasound transducer was held steady freehand for 5 s to capture 100 frames 

of beam-formed radio frequency (RF) data. More specifically, an endocavity curvilinear 

probe (Philips C9–5ec) with frequency of 6.6 MHz was used. Finally, tissue samples were 

examined under microscope, and histopathology information was provided, which included 

the length and type of the tissue.

Our dataset consists of 107 patients with a total of 145 biopsy cores. Of the three mp-MRI 

sequences acquired from patients, we only had access to T2-weighted and ADC images 

(biparametric MRI). All patients had TeUS from their TRUS-imaging plane. In our dataset, 

51 cores have cancer and 94 are benign. The average Tumor in Core Length (TIL) in cores 

with cancer is 6.2 mm. We use stratified sampling on both TIL and the ratio of cancerous to 

benign cores to split the data into 65% training and validation and 35% testing. As a result, 

training and validation set consists of 59 benign cores and 31 cancerous cores with average 

TIL of 6.5 mm for cancerous cores, and test set consists of 35 benign and 20 cancerous cores 

with average TIL of 6.3 mm. Throughout the study, we use the biopsy-proven MR-identified 
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targets as ground truth for our labels. An example of our TeUS and mp-MRI data is shown in 

Fig. 1.

Preprocessing

MRI—We start preprocessing of mp-MRI images by correcting the signal inhomogeneity 

as a result of endorectal coil using N4 algorithm in 3D Slicer [5]. We then resample all 

MRI images to 0.25×0.25×3 mm voxel spacing. To segment the prostate gland, we use a 

publicly available deep learningbased segmentation tool, DeepInfer [16]. Next, exploratory 

data analysis is utilized to find the largest bounding box (size 256×256 pixels) containing 

the prostate gland in our dataset. The reported location of the biopsy is utilized to select the 

256 × 256 image patch from the axial planes of MRI. To overcome overfitting to the data, 

we augment the images 10 times via intensity augmentation with additive Gaussian noise 

of σ = 10. In addition, images are flipped left-to-right to increase the size of the dataset. 

Overall, the training data size is increased by a factor of 20. Finally, the intensity values 

are normalized to 0–1 range. As previous studies [17] demonstrated superior performance 

of deep models trained on ADC images compared to T2-weighted images, we utilize the 

preprocessed ADC images as our main MRI data.

TeUS—For every biopsy core, TeUS data are available from the entire imaging frame. Due 

to consistency in imaging acquisition, the prostate gland and biopsied areas are always in 

the first half of the full-image data; therefore, we crop and analyze only the 2560 samples 

along the axial direction in TeUS. As previous studies in TeUS [2,9] have shown promising 

results with learning from frequency domain signals, we compute the frequency components 

of each RF time series. More specifically, we first remove the DC component from the 

signal, followed by fast Fourier transform (FFT) with 128 samples to compute the frequency 

response. Similar to previous studies [2,18], we average FFT signals (every 50 samples with 

step size of 10) along the axial direction of the RF for smoothing.

Unsupervised dimensionality reduction of TeUS—As a result of the preprocessing 

step, the dimensionality of TeUS data reduces to 256 × 256 × 128 pixels, representing 

number of samples, number of RF lines and number of frequency features, respectively. 

Since the dimensionality of data in TeUS still imposes complexity in training and 

information fusion, we use 1D convolutional astronomers (AE) to compress the information 

in the feature space. AEs are trained in a way that they learn to nonlinearly reduce the 

dimensionality of the input, while preserving the reconstructability of the latent space to the 

original input. We use TeUS signals from all the pixels of training and validation set for 

training the AE. The input to the AE has a shape of 128 × 1, which is the same for the 

output. Our AE architecture is composed of an encoder with 6 blocks of 1D convolutions 

with kernel size of 3, ReLU activation function, and max-pooling. After the final block, 

we flatten the filters to feed into a dense neural network with 8 nodes. Correspondingly, 

we utilize a symmetric architecture for decoder with 6 blocks of 1D convolutions with 

upsampling modules (instead of max-pooling) to reconstruct the input again. The AE is 

optimized with mini-batch stochastic gradient descent with Adam update rule with initial 

learning rate of 10−4. After training, we use the latent features with the most variability in 
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training and validation to convert the feature space to the final size of 256 × 256 × 1, similar 

to ADC images.

Label generation—Since the groundtruth in our dataset comes from biopsy, we do not 

have access to the whole imaging plane labels. To overcome this issue for training deep 

models, we consider a Region of Interest (ROI) in the shape of a disk with a radius of 

3.5 mm centered at biopsy location to assign biopsy-proven labels to the region. For the 

tumor cores in our training set, we increased the disk radius proportional to the TIL to 

artificially increase our labeled data. We mask this ROI with the extracted prostate boundary 

to avoid out of gland regions for training. The generated labels are one-hot vector for each 

pixel representing its class. More specifically, the label for pixels representing biopsy-proven 

cancer is z = [0, 1 ], and for biopsy-proven normal tissue is z = [1, 0 ]. As a result of 

label generation for both TeUS and MRI, our outputs have the same size as inputs with two 

channels (normal, cancer).

Model architecture and training

Prior works in TeUS have used deep models for learning the characteristics of cancer 

from each ROI. As a result of this strategy, to generate class-specific labels of the whole 

imaging plane in TRUS-biopsy, every ROI needs to be fed into the model for prediction 

which is time-consuming. More recently, semantic segmentation by FCNs and their variants 

(U-Nets) has emerged as the de facto standard for image segmentation in medical imaging 

[15,24]. FCNs are composed of contraction (encoder) and expansion (decoder) paths. During 

encoding, the model extracts and propagates spatially invariant features by convolutional 

layers and downsampling. As a result, it understands the what but at the cost of losing the 

where. Correspondingly, the decoder uses upsampling to expand the shrunk feature maps 

to their original resolution to recover lost spatial location. Training FCNs requires dense 

labeling of each pixel, which is not available for the biopsy data in our case. Here, we 

first introduce our model architectures, and then we propose to use a sparse loss function 

evaluated only on the biopsy-proven locations for training.

Model architecture

We employ a two-dimensional U-Net architecture for assigning class-specific probabilities 

to each pixel in our data. Skip connections from intermediate-low level features of encoder 

to decoder are shown to be beneficial for semantic segmentation since upsampling is 

a sparse operation. Additionally, we perform experiments with attention-based U-Nets 

[22,26]. Oktay et al. proposed Attention U-Nets by incorporating attention gates into 

a standard U-Net architecture and performed pancreas segmentation [22]. An attention 

mechanism is often utilized to allow the decoder to automatically identify and focus 

on relevant information from the lower-level encoder feature maps. As stated in the 

preprocessing section, our input size and output size for both modalities are 256 × 256 

× 1 and 256 ×256 × 2, respectively.

Unimodal architecture—For training on each modality alone, we use five blocks in the 

encoding path of our U-Net. Each block includes 2D convolutions with kernel size of 3 × 

3, followed by Batch Normalization (BN) and ReLU activation. Before moving to the next 
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block, the features are down-sampled by 2 × 2 max-pooling to extract spatially invariant 

features. The number of convolutional filters for our encoder stage is 14, 28, 56, 112, and 

at the last scale 224. Correspondingly at the decoding stage, we replace max-pooling in 

each block with upsampling layers to expand the features. Intermediate features from the 

encoder are concatenated with the upsampled features, and mixed with 2D convolutions 

after. Finally, we use a SoftMax layer at the end to generate class probability distribution 

for Normal and Cancer for each pixel. Using our unimodal structures trained on TeUS and 

mp-MRI separately, we experiment late fusion strategy for integrating the information in 

both modalities. More specifically, we average the output of each modality for the defined 

ROI around the target location.

Multimodal architecture—Considering the significant differences in the tissue 

appearance in MRI and TeUS, instead of fusing the information as channels in the input, we 

used a dual-stream U-Net structure to implement an intermediate fusion of the information 

between modalities. Inspired by [13], our multimodal architecture for the integration of 

TeUS and MRI employs a two-stream of 2D U-Nets, which share the final encoding layer as 

depicted in Fig. 2. More specifically, each modality is fed into a separate encoder network. 

After four scales of separate convolutional and maxpooling layers (similar to unimodal 

architecture explained earlier), both streams share weights at the last scale of encoder. This 

can be interpreted as a shared (intermediate) representation between MRI and TeUS (shared 

what). Next, this shared representation is fed into separate decoders to recover spatial 

localization of where for each modality separately. We used separate decoders in particular 

since the field of view in each modality is different; using the same decoder will result in an 

undesirable mixture of spatial information between modalities at output.

Training

As explained, training FCNs requires pixel-level class labels, which is missing in the biopsy 

data. Calculating the loss for labeled data only is referred to as partial cross-entropy, in the 

segmentation literature [30]. Tang et al. [30] showed that using partial cross-entropy, more 

than 80% of the performance can be achieved, compared to using the full labeled data for 

training. Here, we explain our strategy for training FCN models on biopsy data. We consider 

a supervised training problem for segmentation of the cancer with data: D = {(I i , Si , 
zi ), ...}, where I is a collection of voxel intensities, Si denotes the sparse locations in the 

image (biopsy targets) for which we have label z j ∈ 0, 1 representing the histopathology 

result (healthy or cancer).

Let p(z j = 1 I,θ) be the probability of cancer tissue at location j for image I parameterized 

by θ . A standard classifier can be trained by maximum likelihood (ML) parameter 

estimation, which is also known as cross-entropy (CE) in machine learning:

θ = argmax
θ i j ∈ Si

ln p zji Ii, θ
(1)

Here, the location of the biopsy targets j in the dataset is considered as known values, and 

includes the biopsy target and an approximated vicinity of it (see “Preprocessig” section). 

In summary, we utilize a partial CE loss and optimize the weights of the network based on 
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the loss calculated only at the locations that we have label for. The model is trained with 

mini-batch stochastic gradient descent with Adam update rule. The initial learning rate is set 

to 10−3 and exponentially decayed to reach its 0.75 value every 10 epochs. Networks are 

trained in an end-to-end manner. For multimodality training, final loss is the summation of 

each modality loss function.

Final label for a biopsy location is calculated by averaging the probability of cancer in the 

defined ROI around the biopsy target. We perform quantitative analysis of the performance 

of models by calculating AUC for each experiment.

Results and discussion

Our qualitative results are shown in Fig. 3 depicting the cancer likelihood maps for a benign 

(two right columns of Fig. 3) and cancer target (two left columns of Fig. 3) based on 

U-Net predictions (top row) and Attention U-Net predictions (bottom row). The range of the 

colormap is from blue to red, representing the likelihood of benign and cancer, respectively. 

We observe that for the biopsy-proven cancer core, the multimodality trained network with 

intermediate fusion of information in TeUS and MRI has successfully identified the location 

of the cancerous region in each space (red means higher cancer likelihood). Moreover, as 

shown for the biopsy-proven benign core, the target location in MRI has been predicted 

as benign, and on TeUS, we can observe the majority benign near the target. It should be 

noted that although the clinician performing the biopsy was aiming for the axial plane in 

ultrasound in order to match pre-biopsy mp-MRI, there is no guarantee that the two imaging 

planes depicted in Fig. 3 are exactly aligned. The images of the two modalities have the best 

alignment at the biopsy target locations.

Results in Table 1 provide an overview of different experiments performed with U-Net and 

Attention U-Net architectures for uni- and multimodality training. The experiments on the 

multimodal training with both TeUS and MRI suggested improvement over training with 

each modality alone for the U-Net and Attention U-Net. As seen in Table 1, the AUC 

of the late fusion model with U-Net is closer to the AUC of the ADC model since the 

final results are averages of the unimodality probabilities in this approach. Moreover, the 

increased performance of Attention U-Net model on unimodality training led to an increased 

late fusion performance compared to U-Net experiment. We also performed a grid search 

over the possible weighting combinations of the MRI and TeUS outputs in our validation 

set; however, no significant improvements were found based on weighted averaging.

We performed statistical analysis with bootstrapping (n = 1000) and calculated the 95% 

confidence intervals (CI) for the AUCs in intermediate fusion experiments for both U-Net 

and Attention U-Net architectures. The results are shown in Fig. 4. As seen, due to the 

limited number of samples in the training set, the width of CIs are large. While AUC 

values increased for all TIL, improvements were more pronounced for smaller TIL. Our 

hypothesis is that with a larger dataset for training, the differences between the performance 

of unimodal and multimodal techniques will be further increased.
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Further research needs to be performed to investigate the full potential of multimodal 

training to improve targeting of biopsy in PCa. For instance, in practice, many patients 

may have missing data from one modality. Several groups [20,21] have proposed different 

strategies for training that can deal with missing data from one of the modalities at test-time. 

Given that TRUS-guided biopsy is the current standard-of-care, these strategies could have 

significant potential for centers that do not include pre-biopsy mp-MRI in their care plan.

Finally, as mentioned previously, our deep FCN model structure in both unimodal and 

multimodal training enables fast and computationally efficient prediction at test time. As 

an example, the computation time for our most complex model (multimodal intermediate 
fusion) is 44 ms on NVIDIA GTX 1080 Ti GPU.

Conclusion and future directions

In this paper, we demonstrated that we can improve targeting of PCa biopsies through 

generation of cancer likelihood maps using information fusion between MRI and TeUS. We 

utilized different FCN architectures to train models for PCa detection using sparse biopsy 

data. We investigated strategies for information fusion between TeUS and MRI, and showed 

superior performance of using the two-stream U-Net architecture with shared representation. 

Our approach is computationally efficient and can predict cancer likelihoods for each pixel 

of ultrasound in near real time. Future directions of this study include investigation of the 

transfer-learned networks from publicly available mp-MRI data, and different strategies in 

training for handling missing modalities. Additionally, alternative late fusion mechanisms, 

e.g., nonlinear modeling of outputs, will be investigated in the future.
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Fig. 1. 
Examples of temporal enhanced ultrasound (TeUS) (a) and Bi-parametric MRI (b) in our 

dataset. Green dots and arrows correspond to biopsy target
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Fig. 2. 
Our multimodal U-Net architecture consists of a modality-specific encoder and a modality-

specific decoder with shared latent representation
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Fig. 3. 
Color maps of cancer prediction from our intermediate fusion models overlaid on ultrasound 

and MRI for a biopsy-confirmed cancerous case (on the left) and a biopsy-confirmed normal 

case (on the right). The first and second rows for each case depict the prediction of the 

U-Net and Attention U-Net models, respectively. The locations of green arrows for each 

image show the corresponding fusion biopsy target between MRI and TeUS. The image 

registration accuracy should be the highest at the biopsy target
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Fig. 4. 
AUC of unimodal TeUS, and ADC models along with AUC of multimodal fusion 
experiments for U-Net (left) and Attention U-Net (right). The 95% confidence interval 

region is depicted for the intermediate fusion experiments. The results represent the 

significant improvement of multimodal training
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Table 1

Quantitative results of the area under the curve (AUC) for different experiments for all the test set (All), and 

for filtered test set including benign subjects + cancerous subjects with Tumor in Core Length (TIL) greater 

than 2 (TI L > 2) and 4 (TI L > 4), respectively

Experiments Area under the curve (AUC)

All TIL > 2 mm TIL > 4 mm

U-Net

 Unimodal

  ADC 0.69 0.78 0.88

  TeUS 0.66 0.73 0.80

 Multimodal

  Late fusion 0.70 0.80 0.89

  Intermediate fusion 0.76 0.82 0.88

Attn U-Net

 Unimodal

  ADC 0.70 0.79 0.89

  TeUS 0.70 0.75 0.77

 Multimodal

  Late fusion 0.73 0.79 0.89

  Intermediate fusion 0.75 0.83 0.89
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