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Early detection of autism spectrum disorder (ASD) is highly beneficial to the health sustainability of children. Existing detection
methods depend on the assessment of experts, which are subjective and costly. In this study, we proposed a machine learning
approach that fuses physiological data (electroencephalography, EEG) and behavioral data (eye fixation and facial expression) to
detect children with ASD. Its implementation can improve detection efficiency and reduce costs. First, we used an innovative
approach to extract features of eye fixation, facial expression, and EEG data. +en, a hybrid fusion approach based on a weighted
naive Bayes algorithm was presented for multimodal data fusion with a classification accuracy of 87.50%. Results suggest that the
machine learning classification approach in this study is effective for the early detection of ASD. Confusion matrices and graphs
demonstrate that eye fixation, facial expression, and EEG have different discriminative powers for the detection of ASD and
typically developing children, and EEG may be the most discriminative information. +e physiological and behavioral data have
important complementary characteristics. +us, the machine learning approach proposed in this study, which combines the
complementary information, can significantly improve classification accuracy.

1. Introduction

Autism spectrum disorder (ASD) is a neurological devel-
opmental disorder involving behavioral and cognitive im-
pairment, and it usually begins in early childhood [1].
However, the cause of ASD is unclear, and no effective
medical measures could be used [2]. +e Centers for Disease
Control and Prevention of the United States reported that
the number of children diagnosed with ASD has dramati-
cally increased over the past decade, reaching 1 in 54 in the
USA [3]. ASD has become a worldwide medical problem and
a tremendous economic and mental burden to society. An
emerging view is that the atypical behavior of ASD children
may be caused by early brain adaptation to an adverse
environment, rather than a result of ongoing neural pa-
thology [4]. Children’s brains are rapidly developing in early
childhood. Hence, early detection and intervention could
prevent the brain adaptation to an adverse environment and

significantly improve the prognosis. Previous studies have
shown children’s neural plasticity degeneration with in-
creasing age, and the early intervention of children can
effectively improve their language and cognitive abilities in
the onset of behavioral problems [5]. +erefore, the early
detection of ASD is of great significance.

Unfortunately, most ASD detection tools in use today
produce diagnosis by manual observation, which are time-
consuming and difficult to apply. For example, the Modified
Checklist for Autism in Toddlers [6], which is a standard
questionnaire for parents, is administered by specialists in
rigorously controlled clinical settings, usually taking hours
to complete [7].+us, an intelligent automatic detection tool
is needed to improve detection efficiency and operability.

Many physiological and behavioral data have been
demonstrated useful in ASD detection in typically devel-
oping (TD) children [8]. Children with ASD have disorders
in social interaction, especially in nonverbal behaviors, such
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as eye contact and facial expression imitation, lacking
common attention, social interaction, and emotional shar-
ing. Considerable literature related to the study of eye fix-
ation in children with ASD exists. For instance, Wang et al.
[9] examined 31 children with ASD and 51 TD peers and
asked them to scan emotional faces. +e children with ASD
highlighted multiple differences in gaze patterns compared
with the TD children. +e results suggested that fixation
count, fixation duration, and average saccade velocity may
be used as indicators for the early identification of ASD.
Sassoon et al. [10] discovered that, when presented with
social and nonsocial objects, children with ASD paid con-
siderable attention to nonsocial objects, whereas TD chil-
dren paid considerable attention to social objects. In
consideration of the atypical gaze-scanning patterns in ASD,
machine learning has been used to detect children with ASD.
For example, Liu et al. [11] developed a machine learning
algorithm based on face-scanning patterns for classification
and identified children with ASD with an accuracy of
82.51%, indicating promising evidence for applying machine
learning algorithms to identify children with ASD. Jiang and
Francis [12] proposed a machine learning method to classify
the eye fixations of ASD and TD children, which achieved a
classification accuracy of 84%. +ese studies demonstrated
that machine learning has advantages in efficiency and
objectiveness compared with standardized diagnostic scales.
Compared with TD children, children with ASD have dis-
orders in nonverbal communication skills, such as the
abilities of facial expression recognition (FER) and ex-
pression imitation. Samad et al. [13] evaluated the ability of
ASD children to imitate others’ facial expressions on the
basis of their expression muscles. +e results suggested that
spontaneous expression imitation could be used as a be-
havioral marker of children with ASD. Jaiswal et al. [7]
developed an algorithm that automatically detects ASD in
individuals with attention-deficit hyperactivity disorder by
using facial expression data based on dynamic deep learning
and 3D analysis of behavior. +is study found that using
facial expression data to detect ASD is effective.

Atypical brain development in children with ASD ap-
pears earlier than atypical behavior, and the critical period of
early intervention will be missed if the detection is based on
behavioral data. +is condition has fueled the research of
ASD detection in the prodromal phase by using physio-
logical data, such as electroencephalography (EEG) data.
EEG was originally used to measure cortical activity in
children. Owing to the advantages of noninvasiveness, low
cost, and high temporal resolution, EEG has become a useful
biological indicator of brain development in children [14].
Abdulhay et al. [15] proposed an EEG-based quantitative
approach for the automatic detection of ASD in TD children,
relying on a second-order difference plot area as a dis-
criminative feature. Bosl et al. [16] analyzed nonlinear
features of EEG signals to assist in the diagnosis of ASD with
high accuracy, specificity, and sensitivity. Ibrahim et al. [17]
investigated different EEG feature extraction and classifi-
cation techniques to predict the clinical diagnostic outcome
of epilepsy and ASD, improving the speed and accuracy of
diagnosis.

Although the data of eye fixation, facial expression, and
EEG have been applied to detect ASD, studies on data fusion
are few, the discriminative powers of different data mo-
dalities are unclear, and the complementary characteristics
of such data modalities should be investigated. In this study,
we used an innovative approach to extract features of eye
fixation, facial expression, and EEG, and a hybrid fusion
approach based on a weighted naive Bayes algorithm was
presented for multimodal data fusion. +en, confusion
matrices and graphs were analyzed to investigate the
complementary characteristics and discriminative powers of
different data modalities. +e contributions of this study are
summarized as follows: (1) the limitation of single-dimen-
sional detection is avoided by detecting ASD from two
dimensions: physiology (EEG) and behavior (eye fixation
and facial expression); (2) the discriminative powers of
different data modalities were investigated, and EEG may be
the most discriminative information compared with eye
fixation and facial expression data; and (3) a hybrid fusion
approach based on a weighted naive Bayes algorithm was
developed to improve classification accuracy by combining
the complementary information of the three modalities.

In Section 2, the data and methodology are presented. In
Section 3, a feature extraction method is provided. A
weighted naive Bayes algorithm is presented in Section 4,
wherein the details of a hybrid fusion framework are also
described. +e experimental results are provided in Section
5, and the conclusions are given in Section 6.

2. Proposed Method

2.1. Data. Eighty children with and without ASD completed
the study. +ey were recruited from special education
schools and regular kindergartens. All subjects were
recruited with the approval of our institutional review board.
Forty children (age range: 3–6 years; mean± SD: 4.6± 9
months; the number of boys: 33; the number of girls: 7) were
diagnosed with ASD on the basis of the criteria of the Di-
agnostic and Statistical Manual of Mental Disorders, Fifth
Edition. Forty TD controls (age range: 3–6 years; mean± SD:
4.8± 7 months; the number of boys: 33; the number of girls:
7) were screened to exclude any with psychiatric or neu-
rological disorders, including ASD. No significant difference
in age or sex existed between the two groups of participants.

A video clip, containing social and nonsocial informa-
tion, was edited as the stimulus. +e social information is
comedians with happy facial expressions, funny actions, and
laughter. +ere were 10 video clips in total in our material
pool, and three graduate students majoring in special ed-
ucation were asked to assess their emotions when watching
the video clips in two dimensions (valence-arousal). +e
valence changes from negative to positive. +e arousal di-
mension changes from calm to excited. +e mean distri-
butions of the 10 video clips on the arousal-valence plane
were counted. +e video clip with the highest mean arousal
of positive was selected from the material pool. +e non-
social information includes backgrounds and two spinning
wheels. +e video clip lasts 40 s. Previous studies have found
that children with ASD have atypical processing patterns for
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social information, reflected in abnormal eye fixation, facial
expressions, and EEG data [18, 19]. +ese multimodal data
were collected with three sensors, Tobii Eye Tracker, video
camera, and Emotiv EPOC+. Tobii Eye Tracker was used to
collect the data of eye fixation of children, a video camera
was used to collect facial expressions of children, and Emotiv
EPOC+ was used to collect EEG data of children. We
intended to detect children with ASD by analyzing multi-
modal data reflecting the children’s atypical processing
patterns for social information.

2.2. Framework. In this study, a multimodal framework
capable of automatically detecting children with ASD was
proposed. +e experimental scene and data analysis method
are shown in Figure 1. Four stages were considered. (1) In the
data acquisition stage, multimodal data were collected with
three sensors when the children were providing the stimulus.
(2)+e eye fixation, facial expression, and EEG features were
extracted in the feature extraction stage. (3) +e behavioral
features were fused with eye fixation and facial expression
features, and then, the behavioral and physiological features
were sent to a classification model to produce subdecisions.
(4) +e subdecisions were the inputs of the decision fusion,
and a weighted naive Bayes algorithm was used for the final
classification result.

3. Feature Extraction

3.1. Eye Fixation Features. Existing studies have shown that
children with ASD have atypical social attention compared
with TD children [20]. Children with ASD pay considerable
attention to nonsocial information, whereas TD children pay
considerable attention to social information. Data of eye
fixation are the coordinate of the participants’ fixation
points. +erefore, we regarded fixation points as discrimi-
native features for ASD classification. We divided the
number of all fixation points by the number of fixation
points in a region to produce a distribution frequency. +e
higher the distribution frequency is, the higher the interest in
information will be. Different areas of interest (AOI) can be
divided on the basis of fixation coordinates. In this study, K-
means algorithm was used to cluster the fixation points of
the participants. All the fixation points were clustered to K
clusters, corresponding to K distribution frequency, which
was considered K eye fixation feature. A binary variable
rnk ∈ 0, 1{ } was introduced to represent the relationship of
the fixation point n and cluster K. If fixation point n belongs
to cluster K, the value of rnk is 1; otherwise, it is 0. +erefore,
loss function J can be defined as follows:

J � 􏽘
N

n�1
􏽘

K

k�1
rnk n − μk

����
����
2

(1)

where μk is the center of cluster K, and J represents the sum
of squares of the distance from each fixation point to the
clustering center. K-means performs an iterative algorithm
to obtain optimal rnk and μk. +e iterative algorithm can be
described as follows:

Step 1. rnk that can minimize loss function J, which is a
linear function of rnk, is calculated. Given the values of n and
μk, the fixation point is assigned to the nearest cluster.

rnk �
1, k � argmin n − μj

�����

�����
2
,

0, otherwise.

⎧⎪⎨

⎪⎩
(2)

Step 2. In accordance with rnk, the cluster center μk that
minimizes loss function J can be obtained. J is a quadratic
function of μk, and the following equation can be obtained
when the derivative of J with respect to μk is 0.

􏽘

N

n�1
rnk xn − μk( 􏼁 � 0. (3)

Hence, μk can be calculated as follows:

μk �
􏽐

N
n�1 rnkxn

􏽐
N
n�1 rnk

. (4)

Steps 1 and 2 are iterated until μk converges, and the
optimal cluster center K can be obtained.

In our study, K was set to 8, 12, 16, and 20, and we
divided different AOIs by using the K-means algorithm, as
shown in Figure 2. +e final value of K was determined from
the experimental results. +e frequency of fixation points in
each AOI was counted as the feature value, and K areas of
interest correspond to K feature values.

3.2. Facial Expression Features. Previous researchers have
suggested that children with ASD have a defect in facial
expression imitation ability compared with TD children
[21]. In the field of computer vision, a FER algorithm
could be used to analyze children’s facial expression
imitation ability, which may be feasible to detect children
with ASD. Nevertheless, FER remains a challenging task
because the facial expressions of ASD children are
complex/ambiguous, usually exhibiting a combination of
multiple basic emotions instead of a single emotion;
hence, traditional FER cannot obtain optimal perfor-
mance in analyzing the facial expressions of children with
ASD [22]. To address this problem, our previous research
on FER based on a convolutional neural network (CNN)
and a soft label was used as a reference to detect the facial
expression of children [23]. A soft label can annotate
multiple labels on a combination of expressions, thus
providing a highly intuitive description for complex
expression images. First, we used a constructor to obtain
a soft label, and a CNNmodel was trained on the basis of a
hard label. +en, the probability distribution of the latent
label was fused. Moreover, we trained multiple base
classifiers to improve the generalization performance of
the ensemble classifier. +e framework of FER based on a
CNN and a soft label is shown in Figure 3. +e expression
type that appears in the stimulus is defined as the target
expression. +e facial expressions of the children were
recorded, and then, we counted the frames where the
target expression appears in the children’s facial
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expressions in every 40 frames. Lastly, the number of
target expressions in every 40 frames was used as a facial
expression feature.

3.3. EEG Features. In this study, the Emotiv EPOC neu-
roheadset was used to collect EEG signals. It is composed of
14 data acquisition electrodes (AF3, F7, F3, FC5, T7, P7, O1,

O2, P8, T8, FC6, F4, F8, and AF4) and 2 reference electrodes
(P3 and P4). +e electrode distribution strictly follows the
international lead design of 10–20 systems. First, we pre-
processed the raw EEG signals to reject the outliers. A low-
pass filter was used to reject noise with a frequency larger
than 45Hz, and a high-pass filter was utilized to reject noise
less than 0.2Hz. After filtering, data were divided into ef-
fective epochs, and invalid data, such as data with an eye

Feature Extraction Behavioral feature fusion Decision fusion

Weighted naive
bayes algorithm

ResultPhysiological feature

sub-decision1

sub-decision2

Facial Expression
Features

Eye Fixation
Features

EEG Features

Video Camera
Collect Facial Exp-

ression Data

Tobii Eye Tracker
Collect Eye Fixation Data

Emotiv EPOC+
Collect EEG Data

Figure 1: +e experimental scene and data analysis framework. Note. Data were collected using Tobii Eye Tracker, Emotiv EPOC+, and
camera, providing the eye fixation, EEG, and facial expression data, respectively.
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Figure 2: Different AOI divided by K-means algorithm. (a) K� 8, (b) K� 12, (c) K� 16, (d) K� 20.
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blink, eye movement, and muscle movement, were removed.
+en, fast Fourier transform was used to obtain five fre-
quency bands: theta (4–6Hz), alpha (6–13Hz), low beta
(13–20Hz), high beta (20–30Hz), and gamma (30–45Hz)
[24]. +e powers of the five frequency bands in an effective
epoch were extracted, and a t-test was run to explore the
differences in EEG in various brain regions of the two groups
under distinct frequency bands.

Table 1 outlines the independent sample t-test for different
groups on the power of each band. +e theta band of the two
groups showed significant differences in the left frontal lobe
(t� 5.82, p< 0.05), right frontal lobe (t� 3.02, p< 0.05), right
temporal lobe (t� 2.91, p< 0.05), parietal lobe (t� 3.67,
p< 0.05), and occipital lobe (t� 4.72, p< 0.05). +e power of
the theta band of the ASD group was significantly higher than
that of the TD group. In line with previous studies, the theta
band of the ASD group was significantly different from that of
the TD group in frontal, temporal, and occipital lobes [25].
From the physiological perspective, theta waves mainly reflect
the emotional experience of individuals, particularly those with
ASD. Between the ASD and TD groups, no significant dif-
ference in the power of alpha band existed in most brain re-
gions, except the parietal lobe (t� 2.40, p< 0.05) and occipital
lobe (t� 2.91,p< 0.05).+e alpha bandmainly reflects the deep
relaxation state of the brain, and a minimal difference existed
between the two groups. In addition, the low-beta band is
related to the capacity for concentration, which is absent in
children with ASD. +erefore, the differences in the left frontal
lobe (t� 2.75, p< 0.05), right frontal lobe (t� 2.92, p< 0.05),
parietal lobe (t� 2.49, p< 0.05), and occipital lobe (t� 3.65,
p< 0.05) of the low-beta band were significant. Furthermore, a
significant difference existed in the left frontal lobe (t� 2.28,

p< 0.05) of the gamma band, which is mainly related to the
abilities of learning, memory, and information processing. +e
experimental results showed significant differences in the
abilities of learning, memory, and information processing be-
tween the two groups.

Table 1 indicates that the EEG power of some brain
regions can reflect the ability differences of children with
ASD and TD children. Hence, in this study, the power of
different brain regions with significant differences was
extracted as EEG features to distinguish ASD in TD children.
+e EEG features extracted are as follows: LF of theta, RF of
theta, RT of theta, P of theta, O of theta, P of alpha, O of
alpha, LF of low beta, RF of low beta, P of low beta, O of low
beta, and LF of gamma.

4. Multimodal Data Fusion

Multimodal fusion can combine data from different mo-
dalities for analysis. +e fusion of multimodal data could
provide surplus information and is beneficial to improving
the accuracy of the final result [26]. In the previous section,
we have introduced the features extracted from various
modalities. In this section, we discuss an approach to
combining the features to obtain an overall result.

4.1. Weighted Naive Bayes Algorithm. To date, three methods
for multimodal data fusion exist: feature fusion, decision fusion,
and hybrid fusion. For feature fusion, the features extracted
from various modalities are fused as a single feature vector,
which is analyzed for decision. In decision fusion, the decision
results of each modality are fused as a decision vector to gain an
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Figure 3: +e framework of facial expression recognition based on convolutional neural network (CNN) and soft label.
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overall result. Hybrid fusion will be elaborated in detail in
Subsection 4.2. In decision fusion, the features of each modality
are independently classified, and the classification results of each
modality are identified as subdecisions. To fuse the subdecisions
of different modalities and obtain a comprehensive classifica-
tion result, we adopted a naive Bayes algorithm based on at-
tribute weighting to calculate the weight of the subdecisions
[27, 28]. In accordance with the Bayes algorithm, the probability
of a child being identified as ASD can be defined as follows:

P ci | d1, d2, . . . , dn( 􏼁 �
P d1, d2, . . . , dn, ci( 􏼁

P d1, d2, . . . , dn( 􏼁
, (5)

where C is the set of classification results, and dn represents the
subdecisions of different modalities. P(d1, d2, . . . , dn, ci) rep-
resents the probability that the classification result is ci under
the condition that the subdecision combination is
d1, d2, . . . , dn􏼈 􏼉. P(d1, d2, . . . , dn) is the probability of
d1, d2, . . . , dn􏼈 􏼉 appearing in the training data. +e joint
probability of d1, d2, . . . , dn can be expressed as the product of
the probabilities of each attribute.+erefore, the probability of a
child being identified as ASD can be defined as follows:

P ci | d1, d2, . . . , dn( 􏼁 �
􏽑

n
j�1 P dj, ci􏼐 􏼑

P d1, d2, . . . , dn( 􏼁
(6)

However, a deviation existed between the calculated and
actual results. In formula (6), the naive Bayes algorithm assumes
that each attribute has the same influence on the classification
result; in fact, they are different. In the process of constructing a
naive Bayes classifier, we used a weighting coefficient to rep-
resent the influence of each attribute on the classification to
improve the classification accuracy. +e posterior probability
was calculated by weighting the conditional probability of each
attribute. +e attributes that are highly correlated with the
classification results will have a large weighting coefficient and
vice versa. +e weighting coefficient for each probability
P(dm � v|ci) can be calculated as follows:

W dm�v | ci( ) �
n(m) + n dm � v∧ci( 􏼁/n dm � v( 􏼁

n(m)
, (7)

where n(m) represents the number of decisions, and n(dm �

v∧ci) represents the number of instances in the training set
in which the classification result is ci and the value of dm is v.
n(dm � v) represents the number of instances in the training
set in which dm is the value of v.

In formula (7), the attribute weight can be prevented to
be 0. If the number of instances corresponding to ci is
relatively large, the attribute will obtain a large weighted
value. +e probability of a child being identified as ASD or
TD by using the attribute-weighted naive Bayes algorithm
can be defined as follows:

P ci | d1, d2, . . . , dn( 􏼁 �
􏽑

n
j�1 P dj, ci􏼐 􏼑∗W kj | ci􏼐 􏼑

P d1, d2, . . . , dn( 􏼁
. (8)

4.2. Hybrid Fusion Framework Based on a Weighted Naive
Bayes Algorithm. Hybrid fusion is the combination of
feature fusion and decision fusion, and it utilizes the

merits of feature fusion and decision fusion and over-
comes their disadvantages. In this study, we proposed a
multimodal framework based on hybrid fusion, as shown
in Figure 4.

In the hybrid fusion framework, the features f1, f2, and f3
of EEG, facial expression, and eye fixation were extracted,
respectively. f1 is a physiological feature, whereas f2 and f3 are
behavioral features. To exploit the correlation of different
behavioral features, we performed feature fusion in the early
stage. In level 1, facial expression feature vector f2 and eye
fixation feature vector f3 were combined as a general vector,
which was sent for classification with the result of d

(1)
2 .

Hence, d
(1)
1 is the subdecision of the physiological feature,

and d
(1)
2 is the subdecision of the behavioral features. In level

2, d
(1)
1 and d

(1)
2 were fused as a decision vector, and decision

fusion was used to obtain the final decision d(2). A tradi-
tional Bayes algorithm assumes that all attributes play the
same role in the result. However, in fact, the influence of
each attribute on the result is different.+is study proposed a
weighted naive Bayes algorithm, as described in Subsection
4.1. An attribute with a high correlation will obtain a large
weighted coefficient and vice versa. W

(1)
1 and W

(1)
2 are the

decision weights of d
(1)
1 and d

(1)
2 , respectively. P1 is the

probability of a child being identified as ASD, whereas P2 is
the probability of a child being identified as TD. +e larger
probability corresponds to the final prediction result.

5. Experiment and Data Analysis

In this study, 80 children, including 40 ASD children and 40
TD children, completed the experimental task, and leave-
one-out cross validation was used to ensure that the training
samples are sufficient [29].

5.1. Accuracies of Different Classification Methods. We
evaluated the accuracy of different modalities with various
classifiers to investigate whichmodality is the best to identify
children with ASD. Usually, accuracy is the proportion of
correctly classified samples to total samples. We selected
three commonly used classifiers to perform the classifica-
tion: (1) random forest (RF); (2) support-vector machine;
and (3) K-nearest neighbor. We compared the classification
accuracy of each classifier on different modalities, as shown
in Table 2. +e classification result of EEG data with RF was
the best with an accuracy of 83.75%, and the average ac-
curacy of EEG data with different classifiers was 74.69%.
Regardless of the best or average classification accuracy, it
was higher in EEG data than in other single modalities.
+ese results indicated that EEG may be the most dis-
criminative information compared with eye fixation and
facial expression data.

In the hybrid fusion framework proposed in Subsection
4.2, physiological and behavioral features were used for
classification with three commonly used classifiers, and then,
they were fused using a weighted naive Bayes algorithm. As
shown in Table 3, the best classification accuracy of hybrid
fusion classification based on weighted naive Bayes was
87.50%, the best accuracy of physiological data was 83.75%,
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Table 1: t-test on the power of each band in different brain regions of children with ASD and TD.

F t p Mean difference Std. error difference

+eta

LF∗∗ 7.38 5.82 0.00 4.55 0.72
RF∗ 1.85 3.02 0.01 3.46 1.08
LT 1.80 −0.81 0.42 −0.94 1.07
RT∗ 13.53 2.91 0.01 3.82 1.20
P∗∗ 11.47 3.67 0.00 4.16 1.12
O∗∗ 13.50 4.72 0.00 4.44 0.88

Alpha

LF 0.30 2.01 0.05 1.27 0.63
RF 0.41 1.77 0.09 1.27 0.73
LT 0.22 −0.86 0.40 −0.49 0.52
RT 0.92 1.10 0.28 0.92 0.84
P∗ 7.52 2.40 0.02 1.85 0.73
O∗ 5.74 2.91 0.01 1.77 0.58

Low beta

LF∗ 1.31 2.75 0.01 0.86 0.31
RF∗ 2.90 2.92 0.01 0.95 1.78
LT 1.33 0.36 0.72 0.18 0.50
RT 1.25 1.73 0.09 0.83 0.55
P∗ 9.16 2.49 0.02 1.94 0.75
O∗∗ 8.48 3.65 0.00 0.87 0.23

High beta

LF 1.16 1.80 0.08 0.75 0.40
RF 2.63 1.80 0.08 0.83 0.47
LT 4.17 0.78 0.44 0.73 0.88
RT 0.06 0.28 0.79 0.25 0.91
P 5.02 1.59 0.12 1.65 1.00
O 2.73 1.43 0.16 0.33 0.20

Gamma

LF∗ 5.09 2.28 0.03 1.25 0.55
RF 3.16 1.77 0.09 1.32 0.74
LT 0.11 −0.22 0.83 −0.28 1.13
RT 2.28 −0.91 0.37 −1.16 1.14
P 3.69 1.43 0.16 0.95 0.62
O 1.26 1.09 0.28 0.20 0.16

Note. LF� Left frontal, RF� right frontal, LT� left temporal, RT�right temporal, P � parietal, O � occipital, AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, and AF4 are 14 channels defined by the international 10–20 system. ∗p< 0.05. ∗∗p< 0.01.
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Figure 4: Hybrid fusion framework based on weighted naive Bayes algorithm.

Table 2: Accuracies of single modality classification (%).

Classifier Eye fixation data Facial expression data EEG data
RF 73.75 77.50 83.75
SVM 65.00 61.25 65.00
KNN 70.00 65.00 72.50
AVG 67.50 71.56 74.69
Note. RF, SVM, and KNN represent decision tree, random forest, support-vector machine, and K-nearest neighbor, respectively.
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and the best accuracy of behavioral data was 85.00%. +ese
results demonstrated the efficiency of hybrid fusion classi-
fication based on weighted naive Bayes, and the combination
of behavioral and physiological data can improve the clas-
sification accuracy.

5.2. Complementary Characteristics of Different Data
Modalities. For ASD detection, we obtained an average ac-
curacy of 67.50% by using only the data of eye fixation, 71.56%
by using only the data of facial expression, and 74.69% by

using only the data of EEG. For hybrid fusion based on a
weighted naive Bayes algorithm, two stages were considered:
(1) feature fusion in level 1 and (2) decision fusion in level 2.
For feature fusion, the feature vectors of facial expression and
eye fixation were directly concatenated into a larger feature
vector as the inputs of the classifier. In the decision fusion
stage, decision weight was calculated in accordance with the
influence of each attribute on the result. We obtained the best
accuracy of 87.50% by using hybrid modality fusion based on
a weighted naive Bayes algorithm.+is value was significantly
greater than that obtained using a single modality, indicating

Table 3: Accuracies of different classification methods (%).

Data Accuracies of classification
Physiological data classification 83.75
Behavioral data classification 85.00
Hybrid fusion classification 87.50
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Figure 5: Confusion matrices of single modality classification and hybrid fusion classification. Note. +e row of each of the confusion
matrices represents the predicted class, and the column represents the target class. +e element (i, j) is the percentage of samples in class j
that is predicted as class i. (a) Eye fixation. (b) Facial expression. (c) EEG. (d) Hybrid fusion based on weighted naive Bayes.
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that hybrid fusion can combine the complementary infor-
mation in each single modality and effectively enhance the
performance.

To investigate the complementary characteristics of dif-
ferent data modalities, we analyzed the confusion matrices and
graph of eye fixation classification, facial expression classifica-
tion, EEG classification, and hybrid fusion classification, which
could reveal the advantages and weaknesses of each modality.
+e confusion matrices of each data modality are shown in
Figure 5. +e confusion graphs of eye fixation and facial ex-
pression, eye fixation and EEG, and facial expression and EEG
are presented in Figure 6. EEG had the advantage of classifying
ASD (90.00%) compared with eye fixation (62.50%) and facial
expression (72.50%), facial expression outperformed EEG in
recognizing TD (92.50% versus 77.50%), and eye fixation
outperformed EEG in recognizing TD (85.00% versus 77.50%).
TD was difficult to recognize by using only EEG, and ASD was
difficult to recognize by using only eye fixation or facial ex-
pression. Previous studies have shown that atypical brain de-
velopment in children with ASD appears earlier than atypical
behavior, and the critical period of early intervention will be
missed if the detection is solely based on behavioral features
[14]. In this study, we fused physiological and behavioral fea-
tures to improve detection accuracy.

Moreover, the misclassifications of the three modalities
were different. Eye fixation misclassified more ASDs as TDs
(37.50%), whereas EEG misclassified more TDs as ASDs
(22.50%). +ese results indicated that eye fixation, facial
expression, and EEG had different discriminative powers for
ASD and TD recognition, and they presented important
complementary characteristics. As shown in Table 3, com-
bining the complementary information of the three mo-
dalities, that is, hybrid fusion, can significantly improve the
classification accuracy (87.50%).

6. Conclusions

Early detection of ASD is highly beneficial to treatment. In this
study, we proposed a hybrid fusion approach that fuses data on
eye fixation, facial expression, and EEG to detect children with
ASD. Its implementation can improve detection efficiency and
reduce costs. Our main contributions are threefold. First, we
have used a novel combination of eye fixation, facial expres-
sion, and EEG data for early ASD detection. Second, we have
used an innovative approach to extract features: (1) eye fixation
features based on k-means algorithm; (2) facial expression
features based on a CNN and a soft label; and (3) 12 EEG
features based on the power of different brain regions. +ird,
we have presented a hybrid fusion approach based on a
weighted naive Bayes algorithm for multimodal data fusion.
Our results indicate that the hybrid fusion classification in this
study is efficient for the early detection of ASD. Eye fixation,
facial expression, and EEG have different discriminative
powers for ASD and TD detection, and EEG may be the most
discriminative information compared with eye fixation and
facial expression. +e three modalities have important com-
plementary characteristics, and hybrid fusion can significantly
improve classification accuracy by combining their comple-
mentary information.

However, despite our promising findings and their
potential application prospect, limitations remain. First, the
number of samples used was relatively small. Extending the
study to include more subjects could improve the accuracy
and stability of the algorithm. In the future, we plan to
increase the number of children sampled. Second, the data
used have nonstationary characteristics, and the recording
environments are changing. Consequently, across-day var-
iability exists in recording conditions. In the future, adopting
detection models over time should be further studied.
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