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Abstract

Purpose of Review RNA therapeutics are a new and rapidly expanding class of drugs to prevent or treat a wide spectrum of
diseases. We discuss the defining characteristics of the diverse family of molecules under the RNA therapeutics umbrella.
Recent Findings RNA therapeutics are designed to regulate gene expression in a transient manner. For example, depending
upon the strategy employed, RNA therapies offer the versatility to replace, supplement, correct, suppress, or eliminate the
expression of a targeted gene. RNA therapies include antisense nucleotides, microRNAs and small interfering RNAs, RNA
aptamers, and messenger RNAs. Further, we discuss the mechanism(s) by which different RNA therapies either reduce or
increase the expression of their targets.

Summary We review the RNA therapeutics approved (and those in trials) to treat cardiovascular indications. RNA-based
therapeutics are a new, rapidly growing class of drugs that will offer new alternatives for an increasing array of cardiovas-

cular conditions.

Keywords RNA therapeutics - Cardiovascular disease - mRNA therapeutics - siRNA therapeutics - Antisense

oligonucleotide therapeutics

Introduction

Nucleic acid-based therapies consist of exogenous
sequences, either DNA or RNA, that are designed to gener-
ate a therapeutic effect in vivo. Although RNA therapeutics
have only recently gained notoriety, they have been under
development for several decades [1-5]. The initial proof
of concept experiments for RNA therapies involved using
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messenger RNA (mRNA) to artificially express a protein
in vivo were performed about three decades ago [6, 7¢]. This
first work used intramuscular injection to deliver one of three
in vitro transcribed mRNAs to mice [6]. Protein expression
from the injected mRNAs was verified and proved just as
effective as (as judged by the protein levels expressed from
the injected nucleic acid) using DNA-encoded vectors [6].
The next key study used a lab-made vasopressin mRNA to
transiently correct a rat model of diabetes insipidus [7e].
Since these initial experiments with mRNA, a diverse family
of molecules is now covered by the umbrella of RNA thera-
peutics. RNA therapeutics can contain a diverse mixture of
nucleotides and can be single- or double-stranded [8, 9, 10e].
Currently, antisense oligonucleotides (ASOs), small interfer-
ing RNAs (siRNAs), microRNAs (miRNAs), RNA aptam-
ers, and mRNAs are all grouped together as RNA therapies
[1-9, 10e, 11].

As evidenced by the two COVID-19 vaccines from Mod-
erna and Pfizer/BioNTech, RNA therapies can be designed,
developed, evaluated, manufactured, and distributed rapidly
[12ee, 13ee]. A detailed overview covering the theory and
functional aspects of different RNA therapies is beyond
the scope of this review but is available here [8]. Instead,
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this review describes the major families of RNA therapies,
summarizes the RNA therapeutics currently in use (or in
development) for cardiovascular indications (Table 1), and
describes the mechanism of action for selected RNA drugs
(Figure 1). We also collect and group the different drug and
company names with their respective clinical trial identifiers
to track each RNA therapeutic over time (Table 1).

Antisense Oligonucleotide (ASO)
Therapeutics

In this section, we briefly discuss ASOs (refer to [14, 15]
for more thorough reviews) and highlight the technological
aspects that expedited their clinical translation and ena-
bled their development into cardiovascular disease—tar-
geting therapeutics. ASOs are short (18-30 nucleotides
in length) synthetic, single-stranded nucleic acids whose
sequences are complementary to a cellular RNA target
[15]. Importantly, although considered RNA therapeutics,
ASOs can be either homo- or mixed polymers consisting
of RNA, DNA, and/or LNA (locked nucleic acid) bases
[15]. ASOs use base-pairing interactions to (1) disturb or
correct the splicing and/or processing of pre-mRNAs or to
(2) suppress the translation or (3) induce the degradation
of targeted mRNAs [1, 16, 17]. Each of these approaches
ultimately modulates the levels of a targeted protein [15].
Many ASOs trigger endogenous RNA degradation path-
ways by recruiting RNase H1 which is recruited to and
degrades the RNA strand of DNA:RNA duplexes [18].
The small size and well-understood principles underpin-
ning ASO sequence design help prevent potential toxicities
associated with off-target binding and can be exploited
to enhance binding specificity between ASOs and targets
[19]. In vivo, ASOs with unmodified phosphodiester bond
backbones are rapidly destroyed by serum nucleases and
cleared from circulation by the kidneys [20]. Therefore,
numerous chemical nucleotide modifications have been
introduced to improve the pharmacokinetics and pharma-
codynamics of ASOs [9]. For example, phosphodiester
linkages of ASOs can be replaced by phosphorothioate
linkages to strengthen nuclease resistance and diminish
hydrophilicity while maintaining robust RNase H1 activ-
ity [9, 21]. Unfortunately, these changes need to be made
studiously as certain modified nucleotides were shown
to induce a strong immune response and/or lower ASO
to target binding affinities when compared to standard
unmodified nucleotides [9]. Since it increased ASO stabil-
ity without affecting ASO targeting, initial base modifica-
tions targeted the 2’ position of the ribose sugar. Common
modifications include replacing the 2’-hydroxyl moiety
with either a 2'-O-methyl, 2'-O-methoxyethyl, 2'-O-ami-
nopropyl, or 2'-fluoro groups to prevent hydrolysis of the

@ Springer

ASO [9]. Several other important base modifications or
substitutions to alter nucleoside pairing interactions and
the molecular conformation of ASO, including the incor-
poration of LNA bases, restrained ethyl nucleoside ana-
logues, artificial amido-bridged nucleic acids, or other
ASO backbone changes [9]. ASOs have also been coupled
to ligands (GalNAc for example) to target their delivery to
a particular tissue [22]. Finally, helping to reduce produc-
tion-related costs, due to their heavily modified structures,
many ASOs do not require specialized delivery vehicles
[91.

Several targets such as proprotein convertase subtili-
sin/kexin type 9 (PCSK9), lipoprotein(a) (Lp(a)), and
ANGPTL3 have been genetically linked to cardiovascular
and metabolic diseases [23-25]. In 2019, Pfizer partnered
with Akcea Therapeutics (an affiliate of Ionis Pharmaceu-
ticals) to investigate and license AKCEA-ANGPTL3-LRx,
an ASO targeting ANGPTLS3 [9]. At the same time, Novartis
also collaborated with Akcea and Ionis Pharmaceuticals to
develop and license AKCEA-APO(a)-LRx, using Ionis’
ligand-conjugated antisense technology platform [9]. Both
of these ASOs have entered the Phase II clinical trials
(Table 1) and have been showing potential to treat heterozy-
gous familial hypercholesterolemia and atherosclerotic car-
diovascular diseases.

As mentioned above, the properties of ASOs and oligonu-
cleotide therapeutics in general allow ASOs to reach every
tissue, including the heart, effectively. As with many drugs,
ASOs can be targeted to the liver with little or no assistance
[9]. Although many ASOs have been approved by the FDA,
since 2013 only Mimopersen (Kynamro, Figure 1, top left)
has been approved by the FDA as a treatment for a cardio-
vascular indication (NCT00770146) [26]. Mipomersen is
approved as a treatment for homozygous familial hypercho-
lesterolemia (HoFH), a rare genetic disorder where both low-
density lipoprotein (LDL) receptor alleles are mutated [26].
Untreated, HoFH leads to reduced clearance of circulating
LDL cholesterol in plasma [26]. The Kynamro compound
is a “second generation” 2'-O-methoxyethyl chimeric ASO
[26]. The ASO is built with phosphorothioate linkages rather
than the phosphodiester linkages found in natural RNAs
[27]. In addition, the ASO contains DNA nucleotides in the
center of the molecule with 2'-O-methoxyethyl-modified
RNA nucleotides at the ends [27]. In the liver, this drug ini-
tiates the degradation of the mRNA encoding apolipoprotein
(Apo)B-100 (Figure 1, top left), a key structural element of
LDL and its metabolic precursor, very-low-density lipopro-
tein [27]. Reduction of ApoB protein then helps reduce LDL
cholesterol and lipoprotein(a) (Lp(a)) levels in the blood [27,
28]. A double-blind, randomized, placebo-controlled, Phase
III clinical trial (NCT00607373) was completed in 2010 and
showed that mipomersen effectively inhibited ApoB protein
production by ~25% and reduced LDL cholesterol level in
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HoFH patients who were already being treated with lipid-
lowering drugs [26, 29]. However, several subsequent stud-
ies showed the adverse events of Mipomersen in treated
patients, including serious injection site reactions and flu-
like symptoms [29, 30]. Moreover, a severe risk of liver
damage has also been reported. According to liver function
tests, around one in three patients receiving Mipomersen
exhibited measurable signs of liver toxicity [31-33, 34e].
Therefore, in April 2021, this drug was discontinued on the
open market and can only be prescribed in the context of an
FDA-approved Risk Evaluation and Mitigation Strategies
program.

Another well-known ASO candidate called Volanesorsen
(Table 1), which targets the mRNA encoding hepatic apoli-
poprotein C-IIT (APOC3), has been shown to reduce plasma
triglyceride levels, and has been submitted to the FDA for
authorization to market [35, 36]. Ionis Pharmaceuticals and
Akcea Therapeutics developed this drug and registered it
under the brand name Waylivra. In patients with familial
chylomicronemia syndrome (FCS), weekly doses of Volane-
sorsen markedly reduce triglycerides (1700 mg/dL vs 90 mg/
dL compared to placebo treatment) [36]. In 2019, the Phase
IIT APPROACH study also showed mean triglyceride levels
decreased 77% in Volanesorsen-treated patients versus an
18% increase in patients in the placebo group [37]. They
also revealed that Volanesorsen lowered triglyceride levels
below the risk threshold for triglyceride-induced acute pan-
creatitis [37]. However, since most ASOs can be distributed
broadly and accumulate in the liver and kidneys, with half-
lives of 2—4 weeks, Volanesorsen showed some evidence of
adverse effects associated with thrombocytopenia and risk of
bleeding [38, 39]. Despite these side effects, the significant
reduction of plasma lipid levels led the European Commis-
sion to approve Volanesorsen as the only approved therapy
for FCS in 2019 [40].

Numerous second- and third-generation ASOs are
currently being developed to treat not only cardiovascu-
lar diseases (Table 1), but other life-threatening and rare
genetic diseases including spinal muscular atrophy (Spin-
raza), Duchenne’s muscular dystrophy (Vyondys 53), and
hereditary transthyretin amyloidosis (Inotersen) [41-44].
Although the near-term safety of ASOs has been examined
in preclinical and clinical trials, the potential consequences
of long-term ASO administration still remain unclear [19].
Moreover, some possible adverse effects may happen due to
ASO chemistry or downstream effects of target involvement.
For these reasons, extended follow-up of patients treated
with ASO drugs is required to determine the long-term effi-
cacy and side effects of these ASO therapies. Despite these
unknowns, ASOs provide a new approach that has the ver-
satility to improve the quality of life for patients with some
previously untreatable diseases.
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Fig.1 Mechanisms of action for selected RNA-based drugs to treat
cardiovascular diseases. Top left: Mipomersen is an example of an
ASO drug (red) which hybridizes to ApoB-100 mRNA and recruits
RNase H1 to cleave the targeted mRNA, preventing apolipoprotein
B production, which then reduces the synthesis of VLDL and LDL.
Top right: Inclisiran as an siRNA therapy that targets PCSK9 mRNA.
The targeting strand is incorporated into RISC complexes which then
recognize the targeted mRNA and initiates its cleavage and degrada-
tion. This decreases the amount of PCSK9 protein produced, blocking
the PCSK9-driven internalization and degradation of LDL receptors.
The increased numbers of cell surface LDL receptors then remove

RNAi: RNA Interference for Gene Silencing

The discovery of RNA interference (RNAI) entirely reshaped
how gene expression and regulation was perceived [3, 45].
RNAI is a natural process by which mRNAs are regulated
post-transcriptionally [45]. In addition to regulating the
expression of endogenous genes, the RNAi pathway also
protects an organism from foreign nucleic acids [45]. Tar-
geted, sequence-specific gene silencing offers nearly limit-
less applications such as defining the function(s) of newly
discovered genes, identifying novel and therapeutically
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more LDL from circulation thereby reducing bloodborne LDL levels.
Bottom left: BT200 is an RNA aptamer designed to inhibit aberrant
thrombus formation. This aptamer blocks the interaction between
VWEF (von Willebrand factor) and GP IIb/Illa receptors on platelet
membranes, triggering the blockage of platelet thrombus formation.
Bottom right: AZD8601 is an mRNA therapy designed to increase
angiogenesis. Optimized VEGF-A mRNAs are packaged in lipid nan-
oparticles (LNPs) which are endocytosed by the targeted host cells.
The mRNA is then translated into VEGF-A protein which increases
angiogenesis. Figure generated using BioRender.com

relevant genes, and targeting genes previously labeled as
“undruggable.” In mammals, RNAI is triggered by short
double-stranded RNAs (dsRNAs) from endogenous or
exogenous (synthetic RNAs, pathogens) origins. There are
two main types of RNAi: small interfering RNAs (siRNAs)
and microRNAs (miRNAs) [46]. They both target mRNAs
using base-pair recognition and initiate mRNA degradation,
which then decreases the levels of the corresponding pro-
tein [46]. However, key differences separate the two RNAi
mechanisms. For example, siRNAs are perfectly comple-
mentary to the targeted mRNA and cause its cleavage and
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degradation [47], whereas miRNA sequences contain multi-
ple mismatches to their targeted mRNA and initiate mRNA
degradation by recruiting decapping enzymes and deadeny-
lases [48]. As they are beyond the scope of this manuscript,
other differences and similarities are thoroughly detailed in
this review [47].

siRNAs

A standard siRNA drug is a 21- to 25-nucleotide dsRNA.
In vivo, these exogenous dsRNAs are trimmed into siRNA
precursors by an enzyme called Dicer which leaves a 3’ over-
hang [49, 50]. The processed siRNA precursor is then loaded
into the RNA-induced silencing complex (RISC) which
preferentially retains the targeting RNA strand to make the
active siRNA [51]. siRNA-mediated gene silencing occurs
when a perfectly complementary siRNA sequence triggers
the endonuclease “slicing” activity of AGO2 which cleaves
the targeted mRNA leading to its degradation thereby reduc-
ing protein levels [52]. Therapeutic siRNAs initially faced
multiple challenges like immunogenicity, specificity, and
instability; however, many studies were performed to opti-
mize the structure and delivery of siRNA drugs. Today,
numerous siRNA drugs have obtained FDA approval, while
others are currently being tested in clinical trials [8]. Most
cardiovascular system—focused siRNA therapeutics or candi-
date drugs are designed to treat conditions via liver-specific
delivery. Inclisiran, sold as Leqvio, (Figure 1, top right) is
approved in the EU and was approved by the FDA in the
USA as a treatment for primary hypercholesterolemia or
mixed dyslipidemia at the end of 2021 53e, 54ee]. Inclisiran
is an artificial siRNA conjugated with GalNAc on the sense
strand to allow for liver-specific delivery [55]. Upon absorp-
tion by hepatocytes, Inclisiran targets the mRNA encoding
PCSKO9 thereby reducing the expression of PCSK9 protein
[56]. In so doing, Inclisiran increases cell surface levels of
LDL receptor by reducing its turnover which ultimately
reduces bloodborne LDL-C levels by increasing the uptake
of LDL-C by the liver [53e].

miRNAs

MicroRNAs are short, naturally occurring non-coding RNAs
that have vital roles in cellular function via post-transcrip-
tional gene regulation [57, 58]. As mentioned above, miRNAs
contain sequence mismatches which can be disadvantageous
since they can lead to unwanted off-target effects. However,
mismatches can also be beneficial as they can allow for the
simultaneous targeting of multiple distinct mRNAs. miRNAs
typically bind to the 3’'UTR (untranslated region) of mRNAs,
and repress their translation or recruit deadenylases and/or
decapping enzymes to facilitate the degradation of targeted
mRNAC(s) [59]. Notably, offering another possible treatment

@ Springer

avenue, a small minority of miRNAs have also been reported
to upregulate gene expression as reviewed in [60]. Currently,
there are no marketed miRNA therapeutics. However, pat-
ents and clinical trials for miRNA inhibitors (anti-miRs) and
miRNA mimics are on the rise.

miRNA Blockers (Anti-miRs)

Since miRNAs can simultaneously target multiple disease-
linked mRNAs and misregulation of miRNAs has been
linked to many diseases, repressing well-described miRNAs
quickly became an attractive therapeutic approach. Anti-miRs
are designed to specifically recognize and inhibit naturally
occurring miRNAs. This can be accomplished by targeting
miRNAs for degradation or by sequestering the miRNA
so it could no longer bind its targets. Both mechanisms
can prevent miRNAs from acting on their mRNA targets.
Multiple approaches to target miRNAs exist, including
antagomiRs (cholesterol-conjugated anti-miRs), locked
nucleic acids, and ASOs [61-63]. All of these molecules
are designed to bind and sequester miRNAs, thus preventing
miRNA-mRNA interactions [64].

miRNA Mimics

miRNA mimics are synthetic RNAs that are patterned after
endogenous miRNAs. Unlike anti-miRs which aim at inhib-
iting miRNAs that are overexpressed in disease, miRNA
mimics are designed to replace or supplement the levels of
beneficial miRNAs. The therapeutic miRNA mimics are pro-
cessed similarly to endogenous microRNAs and will reduce
the level of specific genes [65]. Current miRNAs mimics in
clinical trials are mainly for hepatitis C and different cancers
[66].

RNA Aptamers

Unlike other RNA therapeutics, RNA aptamers use their 3D
conformation rather than sequence-specific base-pairing to
recognize their targets [67]. Similar to an antibody, aptam-
ers (DNA, RNA, or protein-based) bind a desired ligand
with very high affinity and selectivity [67]. Although simi-
lar in function to protein-based antibodies, RNA aptamer
manufacturing is more straightforward, performed entirely
in vitro, and more cost-effective compared to protein-based
antibodies [68]. RNA aptamers are single-stranded mole-
cules that are isolated using systematic evolution of ligands
by exponential enrichment (SELEX) [4, 5]. In SELEX, a
pool of RNA is generated, and those binding to desired tar-
gets with high specificity are isolated and enriched [4, 5,
68]. RNA aptamers exhibit flexible targeting and have been
shown to bind specific molecules, cells, and tissues [68]. In
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contrast with other RNA therapeutics, RNA aptamers are not
restricted to an intracellular target, and they can be designed
to bind virtually any molecule in any cell compartment [4,
5]. The binding properties of RNA aptamers also allow them
to be conjugated to other therapeutics or delivery vehicles
for a tissue-specific delivery [69].

Currently, one RNA aptamer (Pegaptanib) has been
approved by the FDA for age-related macular degeneration
in 2004 [70]. Pegaptanib is a 28-nucleotide RNA aptamer
and functions via binding vascular endothelial growth factor
(VEGF) protein and blocking its pro-inflammatory activities
in AMD patients, thus preventing serious vision complica-
tions [70, 71]. Other candidate RNA aptamer drugs are cur-
rently being evaluated in clinical trials. For example, BT200
(Table 1, Figure 1, bottom left) is a pegylated RNA aptamer
candidate currently in Phase I or II trials for the treatment
of hemophilia A, atherosclerosis, and stroke. BT200 shows
promising results and acts as an antithrombotic agent by
binding the A1 domain of the von Willebrand factor (VWF),
a factor critical for thrombus generation [72e].

Messenger RNA (mRNA) Therapeutics

The proof of concept experiment for mRNA-encoded thera-
peutics was performed over three decades ago when Wolff
et al. showed that administering in vitro transcribed (IVT)
mRNA into mouse skeletal muscle resulted in the expres-
sion of the protein of interest in vivo [6]. During the 1990s,
preclinical trials of IVT mRNA examined a variety of appli-
cations including protein replacement and vaccine-based
designs to treat or prevent cancer and infectious diseases
[6, 11, 73]. Numerous studies quickly discovered several
major drawbacks of mRNA therapies, including short RNA
half-life and non-specific immunogenicity. The intervening
decades have seen the resolution of many of these issues
and therapeutic mRNAs are becoming a favored approach.
Several universities and pharmaceutical companies includ-
ing Moderna, BioNTech, Novartis, CureVac, Sanofi Pasteur,
Glaxo Smith Kline, AstraZeneca, and Alexion are develop-
ing mRNA-based therapeutics [8].

Conceptually, the numerous advantages of IVT
mRNA-based therapeutic approaches make them just as
or more versatile than other nucleic acid-based therapies.
IVT mRNAs are fully functional in the cytoplasm and are
rapidly translated to produce the desired proteins [8, 9, 11].
In addition, IVT mRNA-based therapeutics have a better
safety profile. Simply, unlike plasmid DNA and certain
viral vectors, mRNA therapeutics are incapable of integrat-
ing into the genome, and thus eliminate the risk of inser-
tional mutagenesis [11]. Furthermore, IVT mRNA produc-
tion is relatively manageable and inexpensive; therefore, it
has sparked a broad interest in developing this new class of

drugs for treatments in oncology, cardiology, endocrinology,
hematology, pulmonary medicine, and as vaccines for infec-
tious diseases [8, 9, 11].

Currently, IVT mRNA can be delivered via two
approaches. The IVT mRNA can be transferred into the
patient’s cells ex vivo, then these modified cells can be
delivered back to the patient. The direct delivery of the IVT
mRNA to the host using different delivery vehicles is the
other alternative [8]. Substantial energy has been invested
with the goal of improving the translatability and the in vivo
lifespan of IVT mRNA drugs. This includes improvements
to optimize structural components of the IVT mRNA includ-
ing the 5’ cap, 5'- and 3'-untranslated regions, the coding
sequences, and the polyadenylated tail of the mRNA. The
immune-stimulatory profile of IVT mRNA can be altered
and customized based on therapeutics purposes. As an exam-
ple, for an mRNA-based vaccination strategy, the immune-
stimulatory effect associated with IVT mRNA could be
considered a benefit as it could help drive antigen-specific
cellular and humoral immune responses. However, innate
immune activation is a major hurdle for protein replacement
therapies; therefore, several approaches aim to create “de-
immunized” mRNA have been, and continue to be, devel-
oped to overcome this problem [74].

Despite the potential of mRNA therapies to treat car-
diovascular diseases, currently only one, named AZD8601
(Figure 1, bottom right), which encodes vascular endothe-
lial growth factor-A (VEGF-A), is being jointly developed
by AstraZeneca and Moderna [75]. When given to patients
after a heart attack, or those with heart failure, diabetic
wound healing problems, or other ischemic vascular dis-
eases, AZD8601 could prove to be a regenerative treatment
option [76e]. AZD8601 is VEGF-A¢; mRNA in buff-
ered saline [76e]. This drug was optimized to overexpress
VEGF-A while minimizing innate immune activation [76e].
AZDS8601 is currently being evaluated in the EPICCURE
(NCT03370887) Phase II clinical trial, a double-blind, rand-
omized, placebo-controlled, multicenter, 6-month trial, with
24 patients scheduled for elective bypass surgery, includ-
ing 3 groups of 8§ patients who were randomized to receive
either 3 mg AZD8601 (low dose), 30 mg AZD8601 (high
dose), or placebo injection [76e]. During the first-in-human
Phase I trial, the expression of functional VEGF-A was vali-
dated after AZD8601 administration [73]. AZD8601 also
induced new blood vessel formation without an elevated
innate immune response in human volunteers [76e]. The
EPICCURE trial is designed to use quantitative '*O-water
PET imaging to map ischemic but viable myocardium [76e].
However, this trial was limited to patients that undergo coro-
nary artery bypass grafting; therefore, it is more difficult
to assess the adverse events during drug administration or
surgery [76e]. In summary, EPICCURE integrated innova-
tive VEGF-A mRNA delivery with novel ischemia-guided
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administration to assess the safety and potentially benefi-
cial angiogenic effects of AZD8601 on cardiac function and
myocardial perfusion in patients with coronary artery dys-
function that require bypass surgery [76e].

Conclusions

The unquestionable success of the two mRNA vaccines for
COVID-19 has shown the world the power and versatility
of RNA-based therapeutics. This increased awareness has
translated into an unparalleled surge of resources to develop
new RNA medicines. However, with fewer than 40 ongoing
or completed clinical trials evaluating different cardiovascu-
lar disease—targeting RNA drugs, RNA therapeutics remain
a comparatively untapped source of treatments for these
indications. The mRNA-based technologies described here
amount to one of the most promising approaches for future
drug development and can be applied to a broad range of
potential applications.
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