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Machine learning and expression 
analyses reveal circadian clock 
features predictive of anxiety
Aziz Zafar1,2, Rebeccah Overton1,2, Ziad Attia1, Ahmet Ay1* & Krista Ingram1*

Mood disorders, including generalized anxiety disorder, are associated with disruptions in circadian 
rhythms and are linked to polymorphisms in circadian clock genes. Molecular mechanisms underlying 
these connections may be direct—via transcriptional activity of clock genes on downstream mood 
pathways in the brain, or indirect—via clock gene influences on the phase and amplitude of circadian 
rhythms which, in turn, modulate physiological processes influencing mood. Employing machine 
learning combined with statistical approaches, we explored clock genotype combinations that predict 
risk for anxiety symptoms in a deeply phenotyped population. We identified multiple novel circadian 
genotypes predictive of anxiety, with the PER3(rs17031614)-AG/CRY1(rs2287161)-CG genotype being 
the strongest predictor of anxiety risk, particularly in males. Molecular chronotyping, using clock 
gene expression oscillations, revealed that advanced circadian phase and robust circadian amplitudes 
are associated with high levels of anxiety symptoms. Further analyses revealed that individuals with 
advanced phases and pronounced circadian misalignment were at higher risk for severe anxiety 
symptoms. Our results support both direct and indirect influences of clock gene variants on mood: 
while sex-specific clock genotype combinations predictive of anxiety symptoms suggest direct effects 
on mood pathways, the mediation of PER3 effects on anxiety via diurnal preference measures and 
the association of circadian phase with anxiety symptoms provide evidence for indirect effects of the 
molecular clockwork on mood. Unraveling the complex molecular mechanisms underlying the links 
between circadian physiology and mood is essential to identifying the core clock genes to target in 
future functional studies, thereby advancing the development of non-invasive treatments for anxiety-
related disorders.

Mood disorders, including depression and anxiety, are becoming more prevalent globally, affecting nearly one-
fifth of the adult population1. These disorders negatively impact productivity, social relationships, and overall 
quality of life in individuals. The search for genetic and environmental factors contributing to the epidemic of 
mental health has uncovered numerous links between circadian rhythm disruptions and mood disorders includ-
ing major depressive disorder (MDD), schizophrenia, bipolar disorder (BD), and generalized anxiety disorder2–7. 
Clinical studies have also demonstrated that circadian rhythms and circadian clock genes can modulate mood 
and psychiatric disorders but few of these studies have explicitly focused on anxiety8.

Circadian rhythms regulate a sleep–wake cycle that is reset every 24 h based on exposure to natural or artificial 
light–dark cycles. The molecular clock driving these rhythms is created by feedback loops in core clock genes and 
their associated transcription factors that control physiological cycles in the body via the regulation of over a third 
of all transcribed genes9,10. The core feedback loop includes the transcription factor CLOCK, which regulates 
the transcription of genes in the Period (per1, per2, and per3) and Cryptochrome (cry1 and cry2) gene families. 
The CLOCK protein forms a heterodimer with BMAL1, which activates additional core clock genes. PER/CRY 
heterodimers, in turn, inhibit the activity of the BMAL1-CLOCK complex. This cycle of transcription activa-
tion and repression is vital for the 24-h circadian cycle. Mutations in these core clock genes may affect mood via 
direct transcriptional activity of downstream physiological pathways that influence mood. Alternatively, clock 
gene mutations may modulate mood pathways indirectly—through disruptions in the phase and amplitude of 
circadian rhythms11. Individual core clock genes may, in fact, be involved in both direct and indirect mechanisms 
modulating the relationship between mood and circadian rhythm.

Evidence supporting indirect impacts of the core circadian oscillator on mood pathways is derived from 
studies examining the association of diurnal preference, differences in timing of activity levels, or chronotype, 
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differences in sleep–wake timing, with mood7,12–16. Individuals that are morning types tend to have earlier circa-
dian phases and sleep–wake rhythms than the intermediate and evening types. These behavioral patterns parallel 
physiological changes, such as changes in body temperature and melatonin profiles17 and clock gene expression 
oscillations (molecular chronotypes) associated with diurnal preference5,13,15,18–21. Studies on diurnal preference 
show that evening types are more likely to experience depression or anxiety at one point in their lifetime17,22–29. 
Mood disorders have also been linked to diurnal preference and circadian misalignment—a mismatch between 
an individual’s physiological circadian rhythms and their behavioral cycles10,16. Previous genome-wide associa-
tion studies (GWAS) and candidate gene studies have also found associations between multiple circadian genes 
and diurnal preference7,14 as well as depression or other psychological disorders13. These studies provide strong 
evidence that diurnal variation in circadian rhythms plays a role in modulating the physiology of mood disorders. 
However, attempts to determine the molecular mechanisms underlying these indirect circadian influences on 
mood and anxiety, in particular, are in a nascent stage.

Core circadian genes also function as transcriptional regulators and can influence neurotransmitter signaling 
in well-known mood pathways, including serotonin, dopamine, and glucocorticoid pathways30. Recent studies 
demonstrate that components of the circadian clock can directly modulate mood disorders. In mice, knock 
down of the Neuronal PAS Domain Protein 2 (NPAS2), period (PER), or cryptochrome (CRY​) genes results in 
altered anxiety levels9,31,32. In humans, genome- and phenotype-wide association studies (GWAS and PheWAS) 
have not yielded strong evidence of associations between core clock genes and mood until Ho et al.33 identified a 
clock-related gene associated with seasonal affective disorder. However, population-level candidate gene studies 
have identified multiple links between clock genes and depressive disorders, including anxiety3,7,32. Mathematical 
models have also predicted links between circadian clock disruptions and anxiety14. Most interestingly, a recent 
clinical study demonstrated that melatonin treatment used to correct circadian misalignment in anxious patients 
helped to mitigate anxiety34. The lack of clarity in large GWAS and PheWAS studies with complex phenotypes 
like mood disorders suggests that directed candidate gene studies using deep phenotyping are needed to identify 
the influence of specific clock genes and/or synergistic clock gene interactions on mood pathways.

In the current study, we performed a deep phenotypic analysis of anxiety (State-Trait Anxiety Inventory 
(STAI))35 diurnal preference (Morningness–Eveningness Questionnaire (MEQ)36, and molecular chronotype 
(via gene expression analyses based on clock gene expression phase and amplitude). We explore the synergistic 
effects of multiple genotypes on phenotypes using an array of machine learning algorithms, including feature 
selection and association rule learning, as well as statistical approaches. Unlike PheWAS studies, machine learn-
ing techniques are not constrained by and can be robust to the smaller sample sizes typical of deeply phenotyped 
datasets. In addition, feature selection can be used to incorporate both clinical and genotypic features to reduce 
the data’s dimensionality and identify the most predictive disease risk factors. Here, we employ deep-phenotyping 
and machine learning to identify direct and indirect mechanisms of circadian influences on anxiety.

Methods
Experimental data collection.  Study participants were recruited from Colgate University and the sur-
rounding community in Hamilton, NY, USA (n = 982; males = 318, females = 664, ages 17–79; median = 19). Par-
ticipants were predominantly Caucasians of European descent. All participants gave written informed consent, 
and all procedures followed the principles of the Declaration of Helsinki. The Institutional Review Board at 
Colgate University authorized all consent forms and procedures (#FR-F13-07, #ER-F14-12, #F15-13, and #ER-
F16-19).

Self‑report surveys.  Participants completed computer-based surveys, which included the trait version of 
the Spielberger’s State-Trait Anxiety Scale (STAI)37, Beck Depression Inventory (BDI-II)38, and the short form of 
the Patient-Reported Outcomes Measurement Information System (PROMIS™)39 Sleep Disturbance. The STAI 
was used to indicate the anxiety scores of individuals ranging from 20 to 80, with scores of 20–37 indicating “no 
or low anxiety”, 38–44 indicating “moderate anxiety”, and 45–80 indicating “high anxiety.” The Horne-Östberg 
Morningness-Eveningness Questionnaire (MEQ)36 survey was administered to measure diurnal preference.

Genotyping.  DNA was extracted from 10 to 20 hair follicles from each participant. The hair samples were 
digested with Proteinase K at 56 °C for 24 h, and purified using the Qiagen DNAeasy Micro Kit. Genotyping 
for single nucleotide polymorphisms (SNPs) was performed using a TaqMan SNP Genotyping assay (Applied 
Biosystems, Foster City, CA) on an ABI 3700HT real-time qPCR instrument. Participants were identified as 
homozygous or heterozygous for the major and minor alleles (Suppl. Table 1).

A fragment length analysis of the PER3 VNTR length polymorphism repeat region was conducted using PCR 
fluorescent primers on GeneScan software with an ABI 3100 sequencer. The forward primer fluorescently labeled 
with 6-FAM was used with the following PCR primers: forward, 5′-CAA​AAT​TTTA TGA​CAC​TAC​CAG​AAT​
GGC​TGAC-3′, and reverse, 5′-AACC TTG​TAC​TTC​CAC​ATC​AGT​GCC​TGG​-3′40. The PCR was performed in 
a 25-μl volume using Qiagen PCR Mastermix. The PCR cycling conditions were 3 min at 94 °C, followed by 35 
cycles of 45 s at 94 °C, 45 s at 58 °C, and 45 s at 72 °C, with a final step at 72 °C for 3 min. Capillary electropho-
resis was then used to separate PER3 alleles on an ABI 3700 sequencer and sized using ABI ROX standards. The 
genotype of each participant was identified as PER3 4/4, PER3 4/5, or PER3 5/5.

Circadian gene expression analysis (molecular chronotyping).  Ten to twenty hair follicles were col-
lected in RNAlater solution at four different time points during the day: 8 a.m., 4 p.m., 5 p.m., and 8 p.m.16. All 
hair samples were stored at − 80 °C prior to analysis. RNA was extracted and purified from hair follicles using the 
RNeasy Micro purification kit according to the protocol provided by Qiagen. The purified RNA was converted 
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to cDNA using rt-PCR (TaqMan Gold rt-PCR, ABI). Nanodrop was used to quantify the cDNA. Expression 
levels of clock genes PER3 and NR1D2 were measured using quantitative PCR on an ABI 7900HT instrument 
(Applied Biosystems). GUSB and 18S were used as control genes, and each analysis was performed in a replicate 
of three. Relative mRNA levels were determined using the standard curve method as described in the ABI User 
Bulletin #2, and then converted into z-scores per individual. A standard curve was created based on the average 
data points from all the subjects41. The trained curve was fitted to the four data points of each subject using the 
parameter estimation method, Stochastic Ranking Evolutionary Strategy (SRES). 2 For phase shift estimation, 
the training curve was obtained from known intermediate types (n = 20; individuals not included in this study). 
The phase difference between the curve obtained from each subject’s four RNA data points and the training 
curve gave the phase shift. Amplitudes and phases were then converted into z-scores for statistical analysis.

Feature generation and selection.  Genotypic and clinical features.  We used seven genotypic features: 
CLOCK3111 (rs1801260), CRY1 (rs228716), CRY2 (rs10838524), PER2 (rs10838524), PER3A (rs228697), PER3B 
(rs17031614), and PER3 VNTR (rs57875989), and four behavioral/clinical features: diurnal preference scores, 
age (≤ 22 or > 22), gender, and socioeconomic status (poor, lower-middle-class, upper-middle-class, affluent). 
For genotypic features, individuals can be homozygous dominant, homozygous recessive, or heterozygous. To 
reduce multicollinearity, we performed one-hot encoding for non-binary features, removing the most frequent 
variant (as the baseline condition). We created 2-way combinations using the seven genotypic features and their 
respective variants, giving us 7C2 * 9 more features. We removed the most frequent class for each group of 9 
combinations and treated it as a reference category. After pre-processing, the data set for analysis contained 174 
total features.

Feature selection.  We used four feature selection methods (each method ten times with ten-fold cross-valida-
tion) to find epistatic combinations predictive of mood disorders. InfoGain (IG) and ReliefF (ReF) are rank-
ing-based feature selection methods that rank features based on their correlation with the class42,43. Minimum 
Redundancy Maximum Relevance (MRMR) and Joint Mutual Information (JMI) are subset-based feature selec-
tion methods that use information theory-based criteria to find possible subsets from the feature space44,45. A 
feature was considered robust if it appeared in 95% of the runs for a certain feature selection method and in at 
least three out of the four feature selection methods. This subset of the features was used for in-depth statistical 
analysis.

Classifiers.  We modeled the relationship between risk factors and anxiety using three classifiers: tree-based 
methods like Random Forests (RF) and XGBoost (XGB) and a linear method, Support Vector Machines 
(SVM)46–48. We evaluated the performance of our classifiers using accuracy scores and the area under the receiver 
operating characteristic (AUROC) curves. Classifiers employ a variety of hyperparameters that must be tailored 
for each dataset. As a result, we used preliminary testing to determine an appropriate range of hyperparameters 
for each classifier, followed by grid searching to determine the optimal combination of hyperparameters for 
maximizing accuracy.

Cross‑validation.  We employed stratified tenfold cross-validation to determine each model’s generalizability. 
We divided the data set into tenfolds(subsets) for each combination of feature selection method and classifier, 
maintaining a consistent distribution of our outcome class for each fold. We performed the k-nearest neighbors’ 
imputation to fill in missing values for each fold49. We repeated the cross-validation procedure ten times to 
ensure robust results, each time using a different random number generator seed.

SMOTE.  When a dataset is unbalanced, the feature selection and classification models frequently overesti-
mate the likelihood of the majority outcome. As a result, the model may be inaccurate. We employed Synthetic 
Minority Oversampling (SMOTE) technique to increase model accuracy by balancing our unbalanced dataset. 
SMOTE accomplishes this by identifying the k-nearest neighbors (we chose k = 5 based on empirical evidence) 
and randomly generating new data along the line connecting two neighbors of the same class50. To ensure our 
dataset was balanced, we used SMOTE to oversample the number of cases for the less frequent outcome. We 
performed our analysis with and without SMOTE to determine whether it improved them and then reported 
the balanced dataset results.

Statistical analyses.  Logistic regression.  All statistical analyses were performed using R51. We performed 
logistic regression analysis on each feature individually, keeping one-hot encoded features grouped together for 
the regression. After this univariate analysis, we performed multivariate logistic regression on all the features. 
Due to the high dimensionality of the dataset, we observed overfitting of the initial model. As a result, we per-
formed multivariate logistic regressions using Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC), employing a sequential replacement method to identify subsets of features with low multicol-
linearity and strong association with the target variable52. We conducted these analyses using the RcmdrMisc 
library in R (RcmdrMisc). Along with AIC and BIC, we used the results of machine learning based feature 
selection algorithms to identify robust features for subsequent multivariate analysis as described above. Due to 
unplanned pairwise comparisons between features, p-values from the regression analysis were adjusted using 
the Benjamini–Hochberg method53.
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Mediation analyses.  We used mediation analysis to determine whether MEQ scores were statistically signifi-
cant mediators between genotypic and clinical factors and mood disorders. The mediation’s significance was 
found using the R package mediate, which employs a nonparametric bootstrapping method to compute a confi-
dence interval for the mediatory effects54.

Fisher’s exact tests.  Fisher’s exact tests were used to identify features with a strong association with human anxi-
ety individually. We created heatmaps illustrating patterns of association between molecular chronotype and 
human anxiety using different phase, amplitude, and STAI cutoffs.

Analysis of variance.  To identify sex-specific differences in the average STAI scores for different two-way gene 
combinations, we used the car library in R to conduct a Type-3 Sum of Squares two-way ANOVA55. Tukey’s 
follow-up tests on significant factors were performed using the emmeans library. The normality of data was 
assessed by visual inspection and Shapiro–Wilk’s test in R.

Association rule learning analyses.  We performed association analysis using the arules package56. The prob-
ability that an association occurs in the dataset is called its support. The lift of a rule is defined as the ratio of the 
observed support to that expected if the left-hand side and right-hand side of the relationship were independent. 
Since we had eleven variables, it was computationally intractable to find rules of length up to eleven with suit-
able support and lift. We limited ourselves to rules of size at most six, with at least 90% confidence. For each sex, 
we found rules that code for both categories of the target variable and then sorted them by their respective lift 
values. We visualized these relationships in sex-specific network plots, using the igraph library57.

Gene networks using mutual information.  We employed the Algorithm for the Reconstruction of Gene Regula-
tory Networks (ARACNE) to find the direct and indirect interactions between genes, clinical features, MEQ, and 
mood disorders58. ARACNE constructs a network of relationships between nodes using a distance metric such 
as mutual information and correlation; for each triplet of edges, drops the edge with the lowest value. We used 
the minet package in R to create the network and then plotted it using Rgraphviz59 We used bootstrapping to 
determine the frequency (i.e., confidence level) with which each link in the network appears.

Results
Synergistic, two‑way genotype combinations are predictive of human anxiety.  RF, SVM, and 
XGB classifiers predicted anxiety symptoms with an accuracy of 61–76% using all or a subset of genotypic and 
clinical factors chosen by feature selection methods (Fig. 1). The XGB method achieves the highest accuracy 
(76%) when all features are used. However, if sixty features selected using the JMI method are used, a similar 
accuracy level (75%) can also be obtained using XGB and RF classifiers. These accuracy levels are 25%-26% more 
accurate than random chance in our balanced dataset, which has a baseline accuracy of 50%.

Multivariate logistic regression analysis of the top features revealed that two-genotype combinations predicted 
a more robust risk of anxiety symptoms relative to single gene variants (Table 1). In the overall dataset, the com-
bination of PER3B-AG and CRY1-CG was most strongly associated with the risk of having anxiety symptoms 
(Fig. 2; OR 15.3, p = 0.026). Average anxiety scores for individuals with PER3B-AG and CRY1-CG genotypes 
were higher (males: 54.8 ± 4.1; females: 46.7 ± 2.5) than for individuals of other genotypes (males: 41.3 ± 0.8, 
females: 44.8 ± 0.6; Fig. 2A,B).

The combination of CLOCK3111-TC and CRY2-AG also significantly increased the odds of anxiety symptoms 
(Fig. 2; OR 2.5 (1.3–5.8), p = 0.026). Average anxiety scores for individuals with CLOCK3111-TC and CRY2-AG 
were higher (males: 45.5 ± 1.7; females: 45.4 ± 1.5) than for individuals of other genotypes (males: 40.8 ± 0.9, 
females: 44.7 ± 0.6; Fig. 2C,D).

Figure 1.   Heat map of prediction accuracy for feature selection and classifier methods. Our analyses yielded up 
to 26% higher prediction accuracy than baseline (50%) on a balanced data set.
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Table 1.   Risk factors for anxiety symptoms. Results from a multivariate logistic regression model based on 
top-ranked selected features identify two-way gene combinations, most notably PER3B-AG/CRY1-CG, as well 
as demographic features that are strongly associated with anxiety symptoms. Age is coded as 1 for 18–22 years 
old and 0 for > 22 years old. Gender is coded as 1 for females, and 0 for males.

Variable Odds ratio 95% CI Adj P

PER3B_AG/CRY1_CG 15.262 2.352–319.019 0.026

PER3B_AG/CRY2_AA 0.17 0.034–0.694 0.026

AGE 3.851 1.234–14.006 0.031

CLOCK3111_TC/CRY2_AG 2.524 1.226–5.761 0.026

CRY1_CC/PER3_VNTR_4,4 2.432 1.029–6.781 0.061

GENDER 1.826 1.121–2.972 0.026

MEQ 0.958 0.935–0.982 0.005

Figure 2.   Genotype combinations predictive of anxiety symptoms in males. (A,B) Average anxiety scores for 
males with a combination of PER3B-AG and CRY1-CG are higher than average anxiety scores of individuals 
with other genotype combinations (Gender: F1, 479 = 0.661, p = 0.417, Genotype: F1, 479 = 7.174, p = 0.008; 
Gender x Genotype: F1, 479 = 4.141, p = 0.042). Anxiety scores are measured using the self-reported State-Trait 
Anxiety Index (± 1 SE). Tukey’s posthoc tests showed that males with AC-CG combination were significantly 
different from males with other genotypes and from females. (C,D) Average anxiety scores of males with a 
combination of CLOCK3111-TC and CRY2-AG also tend to be higher than average anxiety scores of individuals 
with other genotype combinations, but this is not significant at p < 0.05. (Gender: F1, 517 = 1.773; p = 0.184 , 
Genotype:F1, 517 = 3.417; p = 0.065; Gender x Genotype: F1, 517 = 1.912, p = 0.167).
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Additionally, the combination of PER3B-AG and CRY2-AA was protective against anxiety (Table 1; OR 0.17 
(0.04–0.69), p = 0.026). Clinical features are also predictive of anxiety symptoms; females and young adults had a 
significantly higher risk of reporting anxiety symptoms (Table 1; age: OR3.9 (1.2–14.0), p = 0.026; gender: OR 1.8 
(1.1–3.0), p = 0.026). Preference for morningness had a slight protective effect on the odds of reporting anxiety 
symptoms (OR 0.96, p = 0.005).

The association rule learning results identified additional multi-way genotype and clinical feature combi-
nations that were strong predictors of human anxiety (Suppl. Table 2); risk genotypes differed for males and 
females (Fig. 3). For females, the most frequently appearing SNP variants in the top predictors of anxiety were 
CLOCK3111-TC and PER3B-GG, with age and MEQ as important clinical factors (Fig. 3A). For males, the most 
frequently occurring variants were PER2-GG, PER3B-GG, CRY2-GG, and CLOCK3111-TC, with age, but not 
MEQ, significantly predicting the risk of anxiety (Fig. 3B).

Genotypic associations with anxiety symptoms can be direct or mediated by diurnal prefer-
ence.  Our network analysis using ARACNE on the interactions between genotypes, clinical features, and 
anxiety symptoms show that only the PER3B SNP variant (rs17031614) shares mutual information with anxiety 
symptoms via diurnal preference scores, which acts as a mediator (Suppl. Fig. 1). All other variants (PER2, PER3 
VNTR, PER3A, CLOCK3111, CRY1, and CRY2 SNPs) were directly associated with anxiety symptoms follow-
ing bootstrap analysis. The most robust links to anxiety symptoms are diurnal preference scores and depressive 
symptoms; the latter is likely due to the well-known co-morbidity of anxiety and depressive symptoms.

To further investigate the effects of MEQ on anxiety symptoms, we performed a mediation analysis of the top 
features. We found that the association between being a college-aged student and anxiety scores was mediated 
by diurnal preference scores. We also found that PER2-GG was strongly associated with an increase in anxiety 
scores (coefficient = 2.17, t418 = 2.09, p = 0.038) and the combination of PER3B-AG and CRY2-AG was weakly 
associated with anxiety scores (coefficient = 4.44, t418 = 1.85, p = 0.065); interestingly, these effects were completely 
mediated by diurnal preference score.

Circadian phase, amplitude, and misalignment are associated with anxiety.  Using Fisher’s 
exact tests to test for significant associations across circadian phase and anxiety symptom scores, we found that 
advanced circadian phase values measured using a PER3 or NR1D2 gene markers (> 2.3 and > 1.7 standard devia-
tions above the mean, respectively) were strongly associated with high anxiety scores. Similarly, high circadian 
amplitudes (> 1.7 and > 2.2 standard deviations above the mean, respectively) were also strongly associated with 
high anxiety scores. The detailed patterns of association are shown via heatmaps (Fig. 4).

Using gene expression data to measure the degree of mismatch in phase and amplitude with self-reported 
chronotype, we estimated the risk of anxiety symptoms with circadian misalignment. We found that individuals 
with advanced circadian phase and evening preferences (low MEQ scores) are six times more likely to report 
anxiety (PER3: OR 5.88 (1.22–28.40), p = 0.027; Nr1d2: OR 6.50 (0.77–58.48), p = 0.085).

Discussion
A growing body of evidence indicates that alterations in circadian rhythms and clock gene mutations influence 
mood disorders, including anxiety. The search for molecular mechanisms underlying these connections has 
focused on GWAS and PheWAS studies. Still, these efforts are limited by the difficulty of predicting complex 
disorders with weak phenotyping and the inability to detect synergistic effects among genotypes. Further, iden-
tifying genotypes significantly associated with anxiety provides insufficient information to discern whether 

Figure 3.   Association rules networks for anxiety symptoms. (A) In females, diurnal preference (MEQ), age, 
and PER3BGG co-occurred most frequently and had the highest average lift in the analysis. (B) In males, age, 
PER2-GG, and PER3B-GG co-occurred most frequently, but combinations with CLOCK3111TC had the highest 
average lift.
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gene variants influence symptoms directly or indirectly, impeding the utility of this information for therapeutic 
interventions. This study uses a novel approach based on machine learning and statistical analysis to explore 
associations between circadian genes and anxiety symptoms in a deeply-phenotyped population sample. We 
report three findings: (1) synergistic interactions between variants in PER3B, CLOCK3111, and cryptochrome 
genes, CRY1 and CRY2, show robust associations with anxiety symptoms, (2) clock variants predictive of anxi-
ety symptoms tend to have sex-specific effects, and (3) molecular chronotype (circadian phase) and circadian 
misalignment—particularly individuals with advanced phases and evening-type sleep–wake cycles—are strong 
predictors of anxiety symptoms. Our results suggest that circadian clock gene variants have both direct (sex-
specific) and indirect (clock-mediated) effects on anxiety symptoms.

Circadian genotypes most predictive of anxiety.  Our results confirm previous associations of anxiety 
with gender and chronotype and reveal novel associations of anxiety symptoms with circadian genotypes. We 
found that the combination of PER3B-AG and CRY1-CG was most strongly associated with the risk of having 
anxiety symptoms. The PER3 gene encodes the period circadian protein homolog 3 protein in humans and is 
a paralog to the PER1 and PER2 genes. PER3 is not essential for maintaining the circadian rhythm but plays a 
vital role in sleep–wake timing and sleep homeostasis. This gene is upregulated by CLOCK/BMAL heterodimers 
but then is repressed in a feedback loop involving PER/CRY heterodimers via interactions with CLOCK/BMAL 
complex. Previous studies have linked multiple SNPs and VNTRs in PER3 to diurnal preference7,17,23,24,27. Archer 

Figure 4.   Heat maps of anxiety scores and circadian phenotypes. (A,B) Higher anxiety scores indicative of 
severe anxiety are strongly associated with positive PER3 phase (advanced circadian phase or morning-types) 
and high circadian amplitude. (C,D) Similar patterns are seen with circadian phenotypes measured using the 
NR1D2 phase and amplitude. The heatmaps were made using Fisher’s Exact Test at varying cutoff levels for both 
dependent and independent variables. The p-values obtained from the analysis were log-transformed (base 10).
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et al.18 demonstrated a strong correlation between the extreme diurnal preference and the PER3 variable number 
of tandem repeat (VNTR) polymorphism (rs57875989), with the longer allele associated with morning types 
and the shorter allele associated with evening types and delayed sleep phase syndrome in individuals. Liberman 
et al.7 also found that the PER3 SNP (rs228697) was significantly associated with diurnal preference and anxiety 
symptoms.

In mammals, the CRY​ genes act as light-independent inhibitors of the CLOCK/BMAL heterodimers, which 
work as activators in the main circadian core loop60, and these genes also operate in the retina61. The CRY1 vari-
ant (rs2287161) is an intergenic SNP located downstream from the gene’s 3′ polyadenylation site, suggesting that 
additional regulatory elements must aid in the modulation of CRY1 gene expression. This variant has a robust 
association with depression in diverse populations13,29,62.

By what mechanisms do variants in PER3/CRY​ genotype combinations influence mood? PER3 is upregulated 
by CLOCK/BMAL heterodimers but then represses this upregulation in a feedback loop using PER/CRY het-
erodimers to interact with CLOCK/BMAL. Variants in PER3 and CRY​ genes may affect the dimerization of the 
proteins and the speed or success of the binding interaction with the CLOCK/BMAL complex, thus altering the 
sleep–wake cycle and influencing the timing of molecular pathways regulating mood. Alternatively, changes in 
PER3/CRY binding could affect the regulation of downstream pathways that directly influence mood pathways. 
This highlights a potentially critical role of CRY protein binding in modulating mood pathways.

Combinations of CLOCK3111/CRY2 variants may act similarly to the PER3B/CRY1 complexes, inhibiting 
the phosphorylation of the BMAL1/CLOCK dimer. In humans, CLOCK variants have been identified as impor-
tant for both seasonal affective disorder (SAD) and bipolar disorder8,15. The CLOCK3111 SNP (rs1801260) is 
also linked to diurnal preference; individuals homozygous for the C allele have a stronger evening preference63. 
In non-human models, Roybal et al.4 show that ClockΔ19 mice exhibit hyperactivity, reduced anxiety- and 
depressive-related behavior, exhibiting a strong manic-like phenotype during the daytime. Transfections of 
mice with the CLOCK3111 variants revealed that the C-allele results in increased mRNA levels and stability8. In 
humans, Lavebratt et al.64 observed a significant association between the CRY2 haplotypes with winter depres-
sion in Northern European populations. Furthermore, depressed bipolar patients have reduced levels of CRY2. 
Results from these previous studies indicate that both CLOCK and CRY2 are associated with diurnal preference 
and can be a risk factor for depression and/or anxiety, suggesting that variants in these genes on mood may be 
direct or indirect effects. Our results suggest that the CLOCK3111 variant may directly affect anxiety symptoms, 
particularly in males, when found in combinations with the CRY2-AG variant.

Epistatic effects.  Complex traits with a polygenic basis, such as anxiety, may be likely to develop if the addi-
tive effects exceed a critical threshold that disrupts circadian rhythms3,11. In the current study, individuals who 
carry multiple circadian SNPs have an increased risk of anxiety symptoms relative to individuals who carry a 
single gene variant. Using feature selection methods, we can identify many two-genotype combinations that pro-
vide more significant effects on anxiety symptoms relative to the impacts of single SNP variants. Our association 
analysis allows for a more expansive exploration of multiple genes combinations. In these analyses, the top twelve 
rules with the strongest effects on anxiety symptoms included clinical features and two, three, and four-way 
gene combinations as strong predictors of human anxiety; only one factor represented a single gene (the PER3 
VNTR_5,5 genotype; Suppl. Table 1). The most frequently appearing SNP genotype in the association analysis 
was CLOCK3111-TC. Two of the rules with the highest lift values show the combination of CLOCK3111-TC, 
CRY2-AG, and PER2-AG as a significant predictor of anxiety. The combination of the first two SNP variants was 
identified as statistically significant by feature selection and logistic regression as well, but the additional additive 
effects of PER2-AG were identified by association rule learning. These findings imply that synergistic effects in 
the molecular clock are critical for modulating physiological pathways associated with anxiety.

Potential direct effects on anxiety: sex‑specific circadian genotype effects.  One clue to which 
pathways are influenced by disruptions in the function of PER3B/CRY and CLOCK3111/CRY complexes is the 
fact that the effects of these variants on anxiety symptoms may be sex-specific. Previously, Shi et al.65 identified 
significant sex-dependent associations between major depressive disorder (MDD) and common variants of the 
circadian clock genes CLOCK, PER3, and NPAS26. In that study, the association of CLOCK with MDD is also 
stronger in males, but the association of PER3 and NPAS2 with MDD is more significant in females. They pro-
pose that these SNPs have a functional effect via output transcriptional pathways that are mediated sex-depend-
ently by the circadian system rather than the core clock oscillator65. One possible mechanism is glucocorticoid 
regulation, given that males and females have different cortisol levels66. Sex-specific, glucocorticoid-mediated 
stress responses may represent a mechanism by which clock genes affect anxiety and other mood disorders67. 
Other targets of CLOCK-mediated transcription involve neuropeptides and neurotransmitters, as well as their 
receptors, that may act to modulate mood pathways, including serotonergic pathways.

Interestingly, our network analyses also showed clear differences in key genotypic risk factors for males and 
females. The top rules for females included strong predictions for anxiety with CLOCK3111-TC, PER3B-GG, 
age, and MEQ, as well as weaker associations for other genotypes. Average lifts were higher for all of the top rules 
for males, but co-occurrence was more widely distributed across the genotypes, suggesting stronger associations 
between multiple gene variants and anxiety. In males, age, PER2-GG, PER3B-GG, and CRY2-GG co-occurred 
most frequently, but combinations with CLOCK3111TC had the highest average lift. Overall, our results suggest 
that the sex-specific anxiety risk conferred by the genotypic combinations involving PER3B, CLOCK3111, and 
CRY2 genes may be further evidence of direct effects of clock gene binding complexes on downstream mood-
related physiological pathways.
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Potential indirect effects on anxiety: mediation by diurnal preference and circadian misalign-
ment.  Following bootstrap analysis of the ARACNE gene network, PER3B was the only polymorphism in 
the current study with effects on anxiety that were significantly mediated by diurnal preference. In our targeted 
mediation analyses, associations of anxiety symptoms in PER2 homozygotes for the G-allele were also signifi-
cantly mediated by diurnal preference. This suggests that the Period family of genes may mediate mood via 
indirect pathways associated with circadian phenotypes and/or circadian misalignment.

Our molecular chronotyping results provide the strongest support for the indirect role of circadian clocks on 
mood by linking advanced phase, robust rhythms, and circadian misalignment to high levels of anxiety symp-
toms. Previous studies have shown that advanced PER3 phase is strongly associated with morning types, while 
delayed phases values are more commonly found in evening types. In the current study, we show that higher 
PER3 phase values were strongly associated with high human anxiety scores. Similarly, a higher PER3 amplitude 
was also strongly associated with high anxiety. One potential explanation for these results is that individuals with 
stronger, more robust circadian amplitudes tend to have more robust sleep/wake patterns. Given that a large 
proportion of our study population consisted of undergraduates, the altered (i.e., typically delayed) sleep/wake 
patterns of college life may cause significant circadian misalignment, leading to high anxiety. To test whether 
the pattern of advanced phase and robust rhythms with high anxiety indicated the effects of circadian misalign-
ment on mood, we identified individuals in our dataset with advanced circadian phases but who also reported 
evening-type patterns of sleep–wake behavior. The risk of anxiety symptoms was six times higher for these 
misaligned individuals, regardless of genotype, indicating that chronic disruptions to endogenous sleep–wake 
patterns increase anxiety symptoms in humans. A similar result was found for depressive symptoms in the same 
population16, suggesting that shifts in circadian circuitry may influence parallel pathways affecting both depres-
sive and anxious symptoms.

Limitations.  This study should be viewed in the context of several limitations. Our machine learning and 
statistical analysis examined a large number of features for the relatively small sample size of the population. In 
addition, our population of primarily Caucasians of European descent limits the generalizability of our findings 
to diverse populations. We demonstrated that we could accurately predict anxiety using classification with a 
subset of features selected via feature selection. However, we are unable to quantify the classification prediction 
accuracy using only the top robust features since we used the entire data set (due to the small sample size) to 
attain these features. Our estimation of delayed or advanced circadian phase utilized an analysis of gene expres-
sion from two genes at four data points; greater accuracy in estimation may be achieved with analysis of addi-
tional genes or data points. Future studies should assess the accuracy of our anxiety risk factor predictions using 
an independent population sample. Finally, our statistical analyses report significant differences in anxiety risk 
associated with particular genotypes and circadian phenotypes; further functional and behavioral studies are 
needed to understand how therapeutic targets or behavioral interventions might be designed to mitigate anxiety 
symptoms in humans.

Conclusion
Here, we report both direct and indirect, via mediation by circadian phenotypes, effects of circadian genotypic 
and clinical features on anxiety symptoms. Using an approach that employs machine learning and statistical 
analyses to examine associations of circadian clock genes with human anxiety, our results support three conclu-
sions. First, variants in select circadian clock genes have synergistic associations with anxiety symptoms. Second, 
sex-linked associations between clock gene variants and anxiety symptoms provide evidence of multiple direct 
pathways for clock genes to influence mood. Finally, molecular chronotype and circadian misalignment are 
strong predictors of anxiety symptoms, indicating that indirect effects of clock gene variants, particularly in the 
PER3 gene, may also play a role in modulating anxiety symptoms. Disentangling the complex influences of clock 
genes on anxiety may reveal both clinical targets and non-invasive therapies that can help mitigate the causes 
and symptoms of anxiety.
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