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Abstract

At present, there have only been a few DNA sequencing-based studies to explore the genetic determinants of bone mineral
density (BMD). We carried out the largest whole genome sequencing analysis to date for femoral neck and spine BMD
(n = 4981), with one of the highest average sequencing depths implemented thus far at 22×, in a multiethnic sample (58%
Caucasian and 42% African American) from the Louisiana Osteoporosis Study (LOS). The LOS samples were combined with
summary statistics from the GEFOS consortium and several independent samples of various ethnicities to perform GWAS
meta-analysis (n = 44 506). We identified 31 and 30 genomic risk loci for femoral neck and spine BMD, respectively. The
findings substantiate many previously reported susceptibility loci (e.g. WNT16 and ESR1) and reveal several others that are
either novel or have not been widely replicated in GWAS for BMD, including two for femoral neck (IGF2 and ZNF423) and one
for spine (SIPA1). Although we were not able to uncover ethnicity specific differences in the genetic determinants of BMD,
we did identify several loci which demonstrated sex-specific associations, including two for women (PDE4D and PIGN) and
three for men (TRAF3IP2, NFIB and LYSMD4). Gene-based rare variant association testing detected MAML2, a regulator of the
Notch signaling pathway, which has not previously been suggested, for association with spine BMD. The findings provide
novel insights into the pathophysiological mechanisms of osteoporosis.

Introduction
Osteoporosis is a progressive age-related condition associated
with reduced bone mineral density (BMD) and increased suscep-
tibility to low trauma fractures. It represents the most prevalent
metabolic bone disease affecting >200 million people worldwide,
and significant sex/ethnic differences exist in its risk (1). It is
estimated that at least one in three women and one in five men
over the age of 50 will experience osteoporotic fractures in their
remaining lifetime, and the incidence is expected to increase
as the global population continues to age. BMD is influenced
by both lifestyle (e.g. exercise, nutrition and aging) and genetic
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factors, which are estimated to account for 50%–80% of the total
phenotypic variability (2).

A delicate balance of bone formation/resorption is critical
for maintaining bone health during aging, and bone metabolism
involves specialized cell types such as osteoblasts, osteocytes
and osteoclasts (3). Osteoblasts, derived from the bone marrow
mesenchymal stem cells (MSCs), are bone building cells
which play a crucial role in the mineralization of the bone
matrix. The MSCs can also differentiate into adipocytes and
chondrocytes, which are the main components of adipose
tissue and cartilage, respectively. Osteoclasts, derived from
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hematopoietic progenitors in the bone marrow which also
give rise to monocytes in the peripheral blood, are primarily
involved in bone resorption processes. Osteocytes, which are
differentiated from osteoblasts and constitute most of the cells
in the cortical bone, form a communication network to regulate
the skeletal remodeling activities of osteoblasts and osteoclasts.

Dual-energy X-ray absorptiometry (DXA) derived BMD mea-
surements of the femoral neck (FNK) and lumbar spine (SPN)
are the most widely used metric for clinically diagnosing osteo-
porosis, as well as the most powerful known risk factor for
predicting fracture risk (4). Since DXA machines are costly and
not always available, quantitative ultrasound of the calcaneus is
sometimes used to provide an estimated BMD (eBMD) measure-
ment, although DXA remains the gold standard. The largest yield
in discoveries of genetic loci associated with BMD phenotypes
has been facilitated by the rise of large consortia such as GEnetic
Factors for OSteoporosis (GEFOS) (5,6) and the UK Biobank (7).
Genome-wide association studies (GWASs) have identified >100
loci associated with DXA BMD and >500 loci associated with
eBMD, but these loci collectively explain only a small proportion
(<10% and <20%, respectively) of the total trait heritability (8).
Although the enormous sample size of the UK Biobank has
identified most DXA loci to also be associated with eBMD, the
phenotypic and genetic correlations between these traits were
reported to be 0.5 and 0.64, respectively (9). Although the genetic
correlation is rather strong, eBMD is not a perfect surrogate, and
genetic association studies for DXA BMD are still valuable and
necessary.

The majority of GWAS studies for BMD have focused on com-
mon variants (minor allele frequency, MAF > 5%), while ignoring
the effects of low frequency and rare variants. At the present
time, there have only been a few DNA sequencing-based studies
to investigate the genetic determinants of BMD. The GEFOS
consortium used a whole genome sequencing (WGS) design to
identify a low frequency noncoding variant with a large effect
size near a novel locus EN1 (6), whereas another study in Ice-
landic subjects detected a rare coding variant that disrupts
the function of LGR4 (10). Although these earlier WGS stud-
ies made substantial contributions, they were conducted only
in Caucasians and with low/moderate sequencing depth (7×
and 10×, respectively). The sequencing depth is defined as the
average number of times a nucleotide in the genome has been
sequenced, and higher sequencing depth generally indicates
higher confidence for variant discovery and thus for subsequent
association findings. Recently, a WGS study for total body BMD
using a sequencing depth of 30× was conducted by the Qatar
Biobank, although the effects of rare variants were not taken into
consideration (11).

We carried out the largest WGS analysis in the bone field to
date, with one of the highest sequencing depths implemented
thus far, in a multiethnic sample composed of both Caucasian
and African American subjects from the Louisiana Osteoporo-
sis Study (LOS). The WGS samples were combined with the
GWAS summary statistics provided by GEFOS as well as several
other available GWAS datasets using meta-analysis, and the
BMD associated loci were prioritized based on their functional
consequences, statistical fine mapping and transcriptome-wide
association analysis (TWAS). Additionally, gene-based analyses
were conducted to test the joint effects of the rare variants
located within each gene region. This study aims to propose
novel genetic determinants of BMD, and to offer new insights
into the functional mechanisms of osteoporosis. An overview of
the study workflow is provided in Figure 1.

Results
WGS analysis

The LOS WGS sample includes 4981 subjects (2872 Caucasian
and 2109 African American) with an average age of 39.2
(SD = 11.2). The proportion of males and females was equally
balanced both in the full sample as well as ethnicity subgroups.
The average sequencing depth was 22× on the whole genome
excluding gap regions. On average, per sequencing individual,
99.0% of the whole genome excluding gap regions was covered
by a depth of at least 1×, 97.6% had at least 4× and 92.3% had
at least 10×. After the quality control for GWAS, there were an
average of 3.7 million variants per subject and the average call
rate was 99.9%.

GWAS meta-analysis

GWAS meta-analysis was performed for 15.5 million SNPs in the
combined sample (n = 44 506), as well as for sex and ethnicity
specific subgroups (Table 1). The genomic inflation factors for
each individual GWAS were between λ = 0.99–1.03, indicating
that there are minimal confounding effects from population
structure after adjusting for the ancestry principal components.
Although we incorporated several samples of African American
and Chinese subjects, we note that the combined meta-analysis
was still nearly 90% Caucasian. In the combined sample, we
identified 31 and 30 genomic risk loci for FNK BMD and SPN
BMD, respectively (Figure 2, Tables 2 and 3). Among these risk
loci, there were 32 genome-wide significant variants for FNK
BMD and 35 for SPN BMD that were conditionally independent
associations (Supplementary Material, Tables S1 and S2). In the
female analysis, we detected 15 loci for FNK BMD and 27 for SPN
BMD (Supplementary Material, Tables S3 and S4), whereas in the
male analysis we identified 7 loci for FNK BMD and 6 for SPN
BMD (Supplementary Material, Tables S5 and S6). There were no
genome-wide significant results in the African American and
Chinese analyses, which had relatively small sample sizes and
were not sufficiently powered for ethnic comparisons.

Among the genome-wide significant SNPs in the combined
sample, we observed that 54% of the variants identified for FNK
BMD were also associated with SPN BMD, whereas 37% of the
SNPs detected for SPN BMD were shared with FNK BMD. This is
consistent with previous reports which assert that there are site-
specific differences in the genetic determinants of BMD (12). A
Venn diagram was used to illustrate the number of SNPs that
were either shared or specific to each trait in each subgroup
(Supplementary Material, Fig. S1). Approximately 10% of the
trait-associated SNPs demonstrated heterogeneity in the allelic
effects between studies and were therefore analyzed using the
random effect model. We observed that >95% of the identified
SNPs have MAF >10%, and the variant effect sizes were inversely
proportional to the MAF (Supplementary Material, Fig. S2).

The combined meta-analysis revealed several genomic risk
loci that were not significant in the GEFOS summary statistics
alone, including two for FNK BMD (IGF2 and ZNF423) and one
for SPN BMD (SIPA1). In the female analysis for FNK BMD, we
identified PDE4D (rs153949, P-value = 5.1e−9), whereas in the
female analysis for SPN BMD, we detected PIGN (rs1942989, P-
value = 4.8e−8). In the male analysis for FNK BMD, we identified
TRAF3IP2 (rs80250323, P-value = 4.8e−8) and NFIB (rs7036184, P-
value = 1.5e−8), whereas in the male analysis for SPN BMD, we
detected LYSMD4 (rs28602271, P-value = 1.4e−8). The novel SNP
located at TRAF3IP2 is a low frequency variant (MAF = 1.5%,
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Figure 1. Overview of study workflow. WGS was conducted in a multiethnic sample of Caucasians and African Americans. The WGS samples were integrated with

several other independent GWAS samples, which were imputed by the TOPMed reference panel, and the GWAS summary statistics provided by the GEFOS consortium

to perform meta-analysis. The variants at each genomic risk locus were prioritized based on their overlap with various functional annotations, fine mapping and TWAS.

Gene-based SKAT was applied to test the joint effects of the rare variants within each gene region using the WGS samples.

β = −0.63) with an effect size 7-fold larger than the average effect
size of all the other genome-wide significant SNPs in the male
analysis.

Tissue expression profiles of BMD associated genes

Among the genes containing BMD associated variants, 14 (EPDR1,
ESR1, GALNT3, H19, HOXC4, HOXC5, HOXC6, IBSP, IGF2, SFRP4,
SMOC1, SPP1, TNFRSF11B and ZNF423) were determined to be
preferentially expressed in osteoblasts compared with other
cell types based on the ENCODE RNA-seq data (Supplementary
Material, Table S7). The median expression ratio for these genes
comparing the reads per kilobase million (RPKM) in osteoblasts
with the median of the 11 other cell types was 6.1. These findings
were supported using mouse expression microarray profiles to
demonstrate that many of these genes are at least moderately
expressed in osteoblasts (Supplementary Material, Fig. S3).

Functional characteristics of BMD associated variants

Since >95% of the BMD associated SNPs reside in intergenic
or intronic regions (Supplementary Material, Fig. S4), we prior-
itized SNPs for their functional importance by assessing their
overlap with various epigenomic features that are associated
with active and open chromatin. A Venn diagram was used

to visualize the number of trait-associated SNPs overlapping
each combination of regulatory elements for both BMD phe-
notypes (Supplementary Material, Fig. S5). In the pooled meta-
analysis, we observed that 6% of SNPs for FNK BMD and 8% for
SPN BMD overlap enhancer/promoter chromatin in osteoblasts,
whereas 8.5% of SNPs for FNK BMD and 7% for SPN BMD over-
lap H3K27ac in osteoblasts, and 5% of SNPs for FNK BMD and
4% for SPN BMD overlap DHS in osteoblasts. The BMD associ-
ated SNPs were significantly enriched (P-values < 0.001) in these
epigenomic features compared with all other SNPs included in
the meta-analysis. The genes containing regulatory SNPs that
overlap enhancer/promoter chromatin, H3K27ac, and/or DHS
in osteoblasts were enriched in the following GO terms (false
discovery rate; FDR < 0.05); regulation of Wnt signaling pathway
(GO:0030111), skeletal system morphogenesis (GO:0048705), and
positive regulation of bone resorption (GO:0045780).

Interestingly, only 2 BMD associated SNPs were observed to be
significant eQTLs in osteoclasts—rs7193109 and rs3848369, both
located at AXIN1, were reported to be significantly associated
with the expression level of TMEM8A (FDR < 0.05), which was
previously found to be differentially expressed between individ-
uals with high/low BMD using microarray data from peripheral
blood monocyte cells (13). Among other tissues in GTEx, 16%
of SNPs for FNK BMD and 12% for SPN BMD were reported
to be significant eQTLs in subcutaneous adipose tissue, 9% of
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Table 1. Study-specific descriptive statistics

N Female Age Weight SPN FNK

Combined
LOS-CAU 2872 53% 38.9 (12.3) 76.2 (18.2) 1.02 (0.13) 0.83 (0.14)
LOS-AA 2109 47% 39.6 (9.5) 84.6 (21.5) 1.10 (0.15) 0.93 (0.15)
OOS 987 50% 50.3 (18.3) 80.1 (17.7) 1.03 (0.16) 0.81 (0.14)
KCOS 2283 76% 51.4 (13.8) 75.2 (17.4) 1.02 (0.16) 0.80 (0.15)
COS 1558 51% 34.8 (13.4) 60.3 (10.5) 0.95 (0.13) 0.81 (0.13)
CMMS 500 100% 52.8 (2.9) 57.3 (7.7) 1.05 (0.16) 0.86 (0.12)
WHI-AA 839 100% 60.9 (6.9) 83.2 (17.7) 1.05 (0.17) 0.83 (0.14)
WHI-HIS 393 100% 60.7 (7.2) 73.9 (15.6) 0.97 (0.16) 0.73 (0.12)
GEFOS (2015) 32 965 65% 66.6 (11.2) 84.3 (13.3) 1.09 (0.18) 0.86 (0.14)
Male
LOS-CAU 1356 - 36.7 (8.9) 83.3 (16.2) 1.04 (0.14) 0.87 (0.21)
LOS-AA 1123 - 40.3 (9.3) 84.5 (20.5) 1.10 (0.16) 0.96 (0.24)
OOS 494 - 50.3 (18.9) 88.9 (14.8) 1.07 (0.17) 0.85 (0.15)
KCOS 561 - 50.8 (16.1) 87.0 (16.8) 1.07 (0.15) 0.85 (0.15)
COS 768 - 31.5 (12.1) 65.9 (9.7) 0.98 (0.12) 0.87 (0.14)
GEFOS (2012) 9971 - 59.4 (9.2) 81.6 (12.7) 1.17 (0.20) 0.94 (0.11)
Female
LOS-CAU 1516 - 40.9 (14.4) 69.9 (17.6) 1.01 (0.16) 0.80 (0.20)
LOS-AA 986 - 38.9 (10.7) 84.7 (22.6) 1.10 (0.15) 0.90 (0.15)
OOS 493 - 50.3 (17.7) 71.4 (16.0) 0.99 (0.15) 0.78 (0.13)
KCOS 1722 - 51.6 (12.9) 71.5 (16.0) 1.01 (0.16) 0.78 (0.15)
COS 790 - 37.8 (13.9) 54.8 (8.2) 0.92 (0.13) 0.76 (0.11)
CMMS 500 - 52.8 (2.9) 57.3 (7.7) 1.05 (0.16) 0.86 (0.12)
WHI-AA 839 - 60.9 (6.9) 83.2 (17.7) 1.05 (0.17) 0.83 (0.14)
WHI-HIS 393 - 60.7 (7.2) 73.9 (15.6) 0.97 (0.16) 0.73 (0.12)
GEFOS (2012) 22 993 - 59.1 (11.4) 69.4 (13.3) 1.01 (0.19) 0.78 (0.12)

Notes: Data are presented as mean (SD). Weight is measured in kg and BMD is measured as g/cm2. Abbreviations: LOS-CAU, Louisiana osteoporosis study Caucasian
sample; LOS-AA, Louisiana osteoporosis study African American sample; OOS, Omaha osteoporosis study; KCOS, Kansas city osteoporosis study; COS, China
osteoporosis study; CMMS, China metagenomics and metabolomics study; WHI-AA, Women’s health initiative African American sample; WHI-HIS, Women’s health
initiative Hispanic sample.

SNPs for FNK BMD and 5% for SPN BMD were reported to be
significant eQTLs in visceral adipose tissue, and 17% of SNPs for
FNK BMD and 11% for SPN BMD were reported to be significant
eQTLs in skeletal muscle. We observed that 10% of SNPs for
FNK BMD and 7% for SPN BMD overlap a TFBS for at least
one transcription factor based on the ENCODE ChIP-seq data.
The FNK SNPs most frequently overlapped TFBS for POLR2A
(3.7%), CTCF (2.7%), CEBPB (1.9%), MYC (1.8%) and MAX (1.7%),
whereas the SPN BMD SNPs most frequently overlapped TFBS
for POLR2A (4.3%), CTCF (3.1%), FOS (1.7%), RAD21 (1.7%) and
MAFK (1.5%). Many of the BMD risk loci also overlap topologically
associating domains (Supplementary Material, Tables S8 and S9).
For instance, the novel loci LYSMD4 in men (Fig. 3A) and PIGN in
women (Fig. 3B) are involved in various chromatin interactions
that may potentially play a role in bone metabolic processes.

Functional consequences of nonsynonymous variants

There were 29 exonic variants detected for either FNK or SPN
BMD in the pooled analysis, including 10 that are synonymous
and 19 that are nonsynonymous (Supplementary Material,
Table S10). Several of these variants located at IBSP (rs1054629),
SMG6 (rs216195 and rs216196), RHPN2 (rs28626308) and GPATCH1
(rs7259333, rs2287679, rs10416265 and rs6510356) were not
detected in the GEFOS summary statistics. The nonsynonymous
SNP located at RHPN2, which has amino acid change R70Q, is pre-
dicted to be deleterious/damaging based on SIFT (score = 0.011),
PolyPhen-2 (score = 0.99) and CADD (score = 24). Variants with
CADD score > 20 are amongst the top 1% of deleterious variants
in the human genome. Based on MutPred2, the potential

mechanisms of pathogenicity for this amino acid change include
altered coil (P-value = 0.01), gain of strand (P-value = 0.01) and
loss of helix (P-value = 0.04). Additionally, MutPred2 indicated
that this amino acid change alters the mitogen activated protein
kinase (MAPK) docking motif (ELME000233) of MAPK interacting
molecules (e.g. MAPKs, substrates, phosphatases), and signaling
mediated by MAPKs is critical for normal osteoblast and
osteoclast differentiation/function (14). The nonsynonymous
SNP at RHPN2 was previously detected for eBMD (7), but not in
GWAS studies for DXA BMD.

Fine mapping

The statistical fine-mapping analysis for the pooled sample
was able to distinguish a single causal variant with high prob-
ability of causality (posterior probability; PP > 0.5) at 10 and
11 genomic risk loci for FNK BMD and SPN BMD, respectively
(Tables 4 and 5). Several potential causal variants were located
at novel loci including rs7111145 (IGF2), rs34290737 (ZNF423) and
rs2306363 (SIPA1). Among the annotations considered in the
model, DHS and H3K27ac in osteoblasts were statistically signif-
icant (P-values < 0.05), and therefore variants that overlap these
functional elements were assigned larger prior probabilities of
causality than the baseline prior probability assigned to all other
SNPs (Supplementary Material, Table S11).

TWAS

The stratified LD score regression (LDSC) analysis indicated
that the BMD heritability is enriched in several different GTEx
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Figure 2. Manhattan plots illustrating GWAS association signals in the combined sample for (A) FNK BMD and (B) SPN BMD. The x-axis denotes chromosome, the y-axis

represents the −log10 P-value, and the red horizontal line corresponds to the threshold for genome-wide significance.

tissues including coronary artery (FNK P-value = 0.02, SPN P-
value = 7.0e−4), aorta (FNK P-value = 0.008, SPN P-value = 0.02),
uterus (FNK P-value = 8.0e−4, SPN P-value = 0.004) and ovary
(FNK P-value = 0.05, SPN P-value = 0.04). Interestingly, the
heritability was not observed to be enriched in subcutaneous
adipose tissue, visceral adipose tissue or skeletal muscle (P-
values > 0.05). However, given the strong biological evidence for
interactions among skeletal muscle, bone and fat (15), these
tissues were combined with those identified by LDSC to perform
multi-tissue TWAS analysis. There were 12 genes for FNK BMD
(IBSP, GALNT3, HOXC4, LSM12, ASB16, PKDCC, HOXC6, SOST,
NBR1, NTHL1, CCDC170 and SMAD5) and 16 genes for SPN BMD
(PPP6R3, GAL, GPATCH1, HOXC4, HOXC6, SIPA1, GALNT3, IBSP,
CBX5, CCDC170, RHPN2, C12orf10, SPP1, MAP3K12, CKAP5 and
SMOC1) that were detected to have trait-associated expression
levels (Table 6). Collectively, the genes identified by TWAS were
enriched (FDR < 0.05) in several relevant GO terms including
regulation of ossification (GO:0030278), negative regulation of
BMP signaling pathway (GO:0030514), and regulation of bone
mineralization (GO:0030500).

Rare variant analysis

In the SKAT rare variant meta-analysis of Caucasian and African
American subjects, we identified MAML2 (P-value = 2.0e−9) to
be associated with SPN BMD. On the other hand, MAML2 did
not display any evidence for association with FNK BMD (P-
value = 0.08). Although no other genes reached statistical sig-
nificance in either the subgroup analyses or combined meta-
analyses, there were several that were borderline significant
including TTN (P-value = 3.4e−6) and BCL9 (P-value = 5.0e−6) in
the male specific analysis for FNK BMD. Although we attempted
to conduct the analysis with alternative rare variant selection
criteria (e.g. high confidence loss of function and damaging
missense variants), we did not detect any other genes reaching
the stringent significance threshold.

Discussion
This study represents the first multiethnic WGS genetic associa-
tion analysis for BMD in a large population-based sample of both
Caucasian and African American subjects. Although the cost of
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Table 2. Genomic risk loci for FNK BMD in combined sample

Chr Location (hg19) Top SNP Top P-value Genes

1 22 657 120–22 735 906 rs7524102 2.7e−22 MIR4418, ZBTB40
1 68 587 768–68 665 023 rs2566752 3.7e−17 WLS
1 172 188 348–172 300 345 rs12737669 2.7e−8 DNM3
2 42 215 902–42 306 205 rs10203720 7.4e−9 PKDCC, LOC102723824
2 119 529 829–119 529 829 rs55983207 4.1e−8 LOC101927709, EN1
2 166 424 558–166 650 422 rs6726821 6.7e−17 CSRNP3, GALNT3
3 41 072 355–41 198 050 rs391459 1.5e−16 ZNF621, CTNNB1
4 88 701 522–88 868 189 rs12505482 2.3e−9 IBSP, MEPE, SPP1
5 88 226 422–88 430 633 rs1366594 1.1e−30 MEF2C-AS1
6 21 372 975–21 397 034 rs9466056 4.3e−11 CDKAL1, LINC00581
6 126 883 880–127 167 072 rs13204965 3.0e−9 MIR588, RSPO3
6 151 847 381–152 095 987 rs9478217 3.7e−14 CCDC170, ESR1
7 38 029 944–38 157 511 rs4281029 1.8e−12 EPDR1, STARD3NL
7 96 077 048–96 371 732 rs10808100 2.2e−22 SEM1
7 120 954 908–121 040 782 rs2536185 5.3e−17 CPED1, WNT16, FAM3C
8 119 882 287–120 063 542 rs13264172 7.7e−17 TNFRSF11B, COLEC10
9 133 423 184–133 522 025 rs9657746 6.7e−10 ASS1, LOC100272217, FUBP3
11 2 116 492–2 153 634 rs7111145 1.0e−9 H19, IGF2
11 15 630 472–15 741 475 rs7108738 9.8e−24 LOC102724957
11 16 484 699–16 805 226 rs11024028 4.8e−11 SOX6
12 54 385 599–54 443 741 rs4759320 3.1e−13 MIR196A2, HOXC4, HOXC5, HOXC6
13 42 949 052–43 088 407 rs34110009 3.4e−8 AKAP11, LINC02341
16 364 128–418 429 rs8047501 2.5e−10 AXIN1
16 1 524 261–1 533 554 rs13336428 3.9e−8 CLCN7, PTX4
16 49 848 827–49 878 979 rs2047937 3.8e−9 ZNF423
16 51 021 803–51 025 468 rs62028332 9.2e−9 MIR548AI
16 86 706 435–86 714 715 rs71390846 1.3e−11 FOXL1, LINC02189
17 1 945 201–2 206 114 rs8072532 9.0e−13 SMG6
17 41 773 814–42 306 838 rs4793018 1.2e−11 MEOX1, SOST, CFAP97D1, MPP3, NAGS, TMEM101,

LSM12, HDAC5, LOC105371789, C17orf53, ASB16,
ASB16-AS1, TMUB2, ATXN7L3, UBTF

19 33 536 571–33 624 096 rs12460195 4.8e−8 RHPN2, GPATCH1
20 10 638 386–10 644 158 rs2235811 1.3e−8 JAG1

next-generation sequencing, which is determined by choice of
sample size and sequencing depth, has declined dramatically, it
is still prohibitively expensive to sequence a very large sample
at high depth. Therefore, WGS studies usually apply one of the
following strategies, (1) single stage to sequence a small number
of samples at high depth (>30×) or a larger sample size at low
depth (<10×), or (2) two stages to sequence a small number of
individuals at high depth followed by a larger sample at low
depth. Here we sequenced all subjects at a medium depth, which
has been shown to have comparable power for variant discovery
and better control of type I error compared with other study
designs (16).

The WGS samples were combined with other available
independent samples, which were imputed by the largest
available reference panel, and the summary statistics from
GEFOS to conduct GWAS meta-analysis for DXA derived
FNK and SPN BMD. By integrating the GWAS results with
various types of epigenetic and transcriptomic information, we
provide compelling evidence for the importance of numerous
genetic risk loci. Many of the identified regions have been
widely reported in previous GWAS studies (5,6) such as WNT4,
WLS, WNT16/FAM3C/CPED1, CSRNP3/GALNT3, CCDC170/ESR1,
TNFRSF11B/COLEC10 and LRP5/PPP6R3. On the other hand,
we also detected several loci that may play important roles
in skeletal remodeling but have not been as well estab-
lished/replicated in earlier GWAS analyses. We will elaborate

these novel or less well established/replicated genes in the
following.

Novel BMD risk loci in combined sample

IGF2 (insulin-like growth factor 2) encodes a member of the
insulin family of polypeptide growth factors, which are involved
in both prenatal growth and postnatal development. It has been
reported that igf2 knockout mice were observed to have a 40%
reduction in birth weight compared with their wild-type litter-
mates (17). Additionally, IGF2 influences postnatal long bone
growth by regulating glucose metabolism in chondrocytes. Fur-
thermore, IGF2 has been shown to stimulate bone morphogenic
protein (BMP)-9 induced osteogenic differentiation and bone
formation via the PI3K/AKT signaling pathway (18). This risk
locus also contains the long noncoding RNA H19, which is up-
regulated during osteogenic differentiation of MSCs and pro-
motes bone formation through various mechanisms (19).

ZNF423 (zinc finger protein 423) encodes a nuclear protein
that functions as a DNA-binding transcription factor by using
distinct zinc fingers in different signaling pathways. This
locus was previously detected for association with eBMD (7),
but has not previously been reported for DXA BMD. ZNF423
plays an important role in the balance of osteoblast and
adipocyte lineage commitment of the MSCs by inducing the
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Table 3. Genomic risk loci for SPN BMD in combined sample

Chr Location (hg19) Top SNP Top P-value Genes

1 22 537 920–22 735 906 rs7524102 5.8e−18 WNT4, MIR4418, ZBTB40
1 68 593 243–68 665 023 rs2566752 3.2e−21 WLS
2 54 617 504–54 684 666 rs7607093 1.6e−9 C2orf73, SPTBN1
2 119 507 607–119 579 901 rs11692564 1.0e−10 LOC101927709, EN1
2 166 535 918–166 640 575 rs1895701 1.9e−12 CSRNP3, GALNT3
3 41 072 355–41 198 050 rs62260279 6.7e−13 ZNF621, CTNNB1
4 88 738 578–88 859 131 rs11934731 6.8e−11 MEPE, SPP1
6 21 372 975–21 391 282 rs9466056 2.9e−11 CDKAL1, LINC00581
6 151 847 381–152 092 638 rs1023940 1.7e−16 CCDC170, ESR1
7 37 938 422–38 157 511 rs2177470 3.3e−14 NME8, SFRP4, EPDR1, STARD3NL
7 96 117 918–96 429 251 rs6965122 4.1e−12 SEM1
7 120 954 908–121 040 782 rs7807953 8.9e−22 CPED1, WNT16, FAM3C
8 119 822 573–120 063 542 rs4335155 1.9e−26 TNFRSF11B, COLEC10
10 28 422 981–28 501 117 rs3847382 1.3e−11 MPP7
10 79 393 332–79 467 467 rs11002249 1.3e−12 KCNMA1, DLG5
11 16 593 142–16 756 873 rs11024028 7.3e−12 SOX6
11 65 380 124–65 473 798 rs10750766 7.0e−9 SIPA1, RELA, KAT5
11 68 143 719–68 451 973 rs2291467 5.0e−18 LRP5, PPP6R3, GAL
12 53 630 558–53 752 204 rs2272313 2.2e−12 MFSD5, ESPL1, AAAS, SP7
12 54 385 599–54 443 741 rs12319419 2.6e−16 MIR196A2, HOXC4, HOXC5, HOXC6
13 42 913 933–43 200 103 rs8001611 6.9e−25 AKAP11, LINC02341, TNFSF11
14 70 456 699–70 477 022 rs1471243 3.0e−9 SMOC1
14 91 354 924–91 542 088 rs1286063 2.4e−14 RPS6KA5
16 364 128–418 429 rs9921222 9.9e−9 AXIN1
16 50 929 954–51 007 792 rs6500348 2.7e−9 MIR548AI
16 86 706 435–86 714 715 rs71390846 1.5e−10 FOXL1, LINC02189
17 41 773 814–41 930 241 rs1828720 6.3e−9 MEOX1, SOST, CFAP97D1, MPP3
18 60 054 857–60 054 857 rs884205 2.8e−10 TNFRSF11A
19 33 504 997–33 628 438 rs8106453 2.9e−14 RHPN2, GPATCH1
20 10 634 658–10 669 188 rs2235811 9.2e−14 JAG1

Figure 3. Chromatin interaction mapping in MSCs for (a) LYSMD4 risk locus, and (b) PIGN and TNFRSF11A risk loci. The most outer layer shows a Manhattan plot for

the SNPs at each locus. The second layer represents the chromosome ring, with genomic risk loci highlighted in dark gray. The links illustrate the long-range chromatin

interactions involving each risk locus.
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Table 4. High-confidence causal variants for FNK

CHR Gene SNP P-value PP Annotations

11 H19; IGF2 rs7111145 1.0e−9 0.99 Intergenic
11 LOC102724957 rs7108738 9.8e−24 0.99 Intronic

H3K27ac_ob
DHS_ob
TFBS—EGR1

16 MIR548AI rs62028332 9.2E−9 0.99 ncRNA_intronic
5 MEF2C-AS1 rs10037512 2.5e−33 0.99 ncRNA_intronic
1 WLS rs2566752 3.7e−17 0.98 ncRNA_intronic
16 FOXL1; LINC02189 rs10048146 1.4e−11 0.93 Intergenic

EnhPro_ob
H3K27ac_ob

6 CDKAL1; LINC00581 rs9466056 4.3e−11 0.78 Intergenic
H3K27ac_ob
TFBS—FOXA1, CEBPB, HNF4G,
STAT1, STAT3

11 SOX6 rs11024028 4.8e−11 0.70 Intronic
16 ZNF423 rs34290737 6.1e−9 0.65 Intronic

H3K27ac_ob
2 CSRNP3; GALNT3 rs12185748 7.5e−17 0.53 Intergenic

EnhPro_ob
H3K27ac_ob
DHS_ob
eQTL—subcutaneous
adipose, skeletal muscle,
uterus

Notes: EnhPro_ob – enhancer/promoter chromatin in osteoblast; H3K27ac_ob – H3K27ac in osteoblast; DHS_ob – DHS in osteoblast.

Table 5. High-confidence causal variants for SPN

CHR Gene SNP P-value PP Annotations

6 CCDC170 rs1023940 1.7e−16 0.95 Intronic
11 SOX6 rs11024028 7.3e−12 0.93 Intronic
11 SIPA1 rs2306363 2.7e−8 0.93 UTR5, H3K27ac_ob, DHS_ob

TFBS—BCL3, CHD1, CHD2, E2F1, E2F4, E2F6, EGR1, ELF1, ETS1, FOS,
FOXP2, HMGN3, IRF1, KDM5B, MAX, MAZ, MXI1, MYC, PHF8, POLR2A,
RBBP5, RCOR1, REST, SIN3AK20, SMARCB1, SP1, TAF1, TBP, TFAP2C,
YY1, ZBTB7A
eQTL—subcutaneous adipose, visceral adipose, aorta, skeletal muscle

16 FOXL1; LINC02189 rs71390846 1.5e−10 0.87 Intergenic, EnhPro_ob, H3K27ac_ob, DHS_ob
TFBS—FOS, JUN, POLR2A

16 AXIN1 rs10794639 1.4e−8 0.73 Intronic, EnhPro_ob, H3K27ac_ob, DHS_ob
TFBS—CHD2, E2F1, ELF1, ELK4, ESR1, FOS, FOSL2, GABPA, GATA3, JUN,
JUND, MAX, MYC, POLR2A, RELA, RFX5, RUNX3, SMARCB1, SMARCC1,
SMARCC2, SMC3, STAT1, STAT3, TCF7L2, TFAP2C, USF2, EBF1, ZNF217
eQTL—subcutaneous adipose, aorta, skeletal muscle

17 MEOX1; SOST rs1828720 6.3e−9 0.73 Intergenic, EnhPro_ob, H3K27ac_ob, DHS_ob
TFBS—ZNF143, eQTL—aorta

8 COLEC10 rs2220189 8.0e−26 0.69 Intronic, EnhPro_ob, DHS_ob, TFBS—CEBPB
6 CDKAL1; LINC00581rs9466056 2.9e−11 0.67 Intergenic, H3K27ac_ob, TFBS—CEBPB, EP300, FOXA1, HNF4G, STAT1,

STAT3
10 MPP7 rs7088552 1.7e−11 0.63 Intronic, H3K27ac_ob, DHS_ob
20 JAG1 rs6040063 1.0e−13 0.60 Intronic, EnhPro_ob, H3K27ac_ob, DHS_ob

TFBS—POLR2A and ZBTB33
13 AKAP11; LINC02341rs8001611 6.9e-25 0.53 Intergenic eQTL—aorta

Notes: EnhPro_ob – enhancer/promoter chromatin in osteoblast; H3K27ac_ob—H3K27ac in osteoblast; DHS_ob—DHS in osteoblast.



Human Molecular Genetics, 2022, Vol. 31, No. 7 1075

Table 6. Genes with BMD associated expression levels identified by TWAS

Gene S-MultiXcan P-value Number of tissues Best tissue Best tissue P-value Trait

IBSP 9.9e−10 1 Skeletal muscle 9.9e−10 FNK
GALNT3 3.4e−9 5 Uterus 2.7e−9 FNK
HOXC4 3.7e−9 2 Skeletal muscle 8.9e−10 FNK
LSM12 6.6e−9 1 Subcutaneous adipose 6.6e−9 FNK
ASB16 4.1e−8 3 Skeletal muscle 2.9e−9 FNK
PKDCC 4.6e−8 3 Aorta 2.4e−9 FNK
HOXC6 3.1e−7 3 Skeletal muscle 2.2e−7 FNK
SOST 1.1e−6 2 Aorta 2.4e−7 FNK
NBR1 1.2e−6 4 Uterus 6.7e−7 FNK
NTHL1 1.4e−6 2 Coronary artery 1.1e−6 FNK
CCDC170 1.5e−6 3 Coronary artery 2.6e−6 FNK
SMAD5 1.7e−6 4 Subcutaneous adipose 7.9e−9 FNK
PPP6R3 1.2e−16 1 Ovary 1.2e−16 SPN
GAL 4.0e−13 2 Subcutaneous adipose 5.5e−14 SPN
GPATCH1 2.4e−10 5 Subcutaneous adipose 1.1e−10 SPN
HOXC4 7.4e−10 2 Skeletal muscle 1.4e−10 SPN
HOXC6 9.2e−10 3 Skeletal muscle 6.3e−9 SPN
SIPA1 3.5e−9 3 Subcutaneous adipose 4.4e−9 SPN
GALNT3 3.9e−8 5 Uterus 8.2e−9 SPN
IBSP 1.2e−7 1 Skeletal muscle 1.2e−7 SPN
CBX5 1.5e−7 1 Visceral adipose 1.5e−7 SPN
CCDC170 1.7e−7 3 Coronary artery 1.5e−7 SPN
RHPN2 1.7e−7 6 Subcutaneous adipose 7.5e−11 SPN
C12orf10 1.8e−7 1 Aorta 1.8e−7 SPN
SPP1 2.9e−7 3 Subcutaneous adipose 5.2e−8 SPN
MAP3K12 3.2e−7 2 Subcutaneous adipose 4.9e−8 SPN
CKAP5 2.5e−6 2 Skeletal muscle 4.9e−7 SPN
SMOC1 2.5e−6 3 Aorta 1.3e−7 SPN

Notes: Number of tissues refers to the number of tissues among the 7 considered in TWAS (subcutaneous adipose, visceral adipose, skeletal muscle, coronary artery,
aorta, uterus, ovary) for which there are GWAS SNPs located at the given gene included in the gene expression prediction models acquired from PredictDB.

expression of PPARγ , potentially through amplification of
the BMP signaling pathway (20). Furthermore, transcriptional
repression of ZNF423 has been demonstrated to mediate a BMP-
dependent osteoblast/adipocyte lineage commitment change
(21).

SIPA1 (signal-induced proliferation-associated 1) encodes a
GTPase-activating protein (GAP) which exhibits a specific GAP
activity for Ras-related regulatory protein Rap1. Although SIPA1
has not previously been discussed in studies for osteoporosis,
Rap1 is reported to regulate osteoblast differentiation by influ-
encing ERK/p38 signaling (22). Furthermore, the loss of func-
tion of Rap1 in osteoblasts may inhibit osteogenesis through a
decrease in the expression of crucial osteoblast marker genes.
Other studies have shown that the osteoclast-specific deletion of
Rap1 is reported to be associated with reduced bone resorption
capacity (23). This locus also contains RELA, which has been
shown to promote osteoclast proliferation by inhibiting a RANL-
induced JNK cellular apoptosis pathway (24).

Functional characteristics

We demonstrated that numerous BMD associated genes are
preferentially expressed in osteoblasts, and that the BMD asso-
ciated SNPs were significantly enriched in various regulatory
elements in osteoblasts, such as enhancer/promoter chromatin,
H3K27ac and DHS. Despite the balance of bone building and bone
resorption cells that is critical for bone health, only osteoblast-
based data were considered due to the current lack of data for
osteoclasts and osteocytes in ENCODE and Roadmap. Hopefully
in the future, especially with the rise of single cell sequencing,

similar functional information will become readily available for
other bone cell types.

Many of the BMD associated SNPs overlap TFBS for transcrip-
tion factors that are known to play a role in bone metabolism.
POLR2A is up-regulated during osteoclast differentiation and
osteoclast-specific deletion of POLR2A was shown to inhibit
bone resorption in vivo (25). CEBPB mutant mice were observed
to have increased bone loss and reduced expression of MafB,
an inhibitor of osteoclast differentiation (26). MYC has been
demonstrated to promote osteoclast formation, and knockdown
of myc in osteoclasts protected mice from ovariectomy-induced
bone loss (27). FOS is also essential for osteoclast formation as it
regulates the balance of osteoclast/macrophage differentiation,
and osteoclasts do not form in its absence (28).

Sex-specific associations

Although we were not able to identify ethnicity specific differ-
ences in the genetic determinants of BMD, we did detect several
associations that demonstrated sex-specific associations. In the
female analysis, we identified PDE4D, which encodes cAMP-
dependent phosphodiesterase 4D, and was previously reported
to be associated with BMD in an independent GWAS of Cau-
casian women (29). Additionally, PDE4D inhibitors have been
shown to promote osteoblast proliferation and bone formation
by increasing intracellular cAMP levels (30). We also detected
PIGN, which is involved in glycosylphosphatidylinositol anchor
biosynthesis, but has not previously been studied for its role in
bone health. Chromatin interaction mapping demonstrated that
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PIGN interacts with TNFRSF11A, a key component of RANK/RAN-
KL/OPG signaling, which coordinates skeletal remodeling pro-
cesses. This locus is also involved in a long-range interaction
with PMAIP1, which encodes the BH3-only protein Noxa, a crucial
regulator of osteoclast apoptosis (31).

In the male analysis, we detected a low frequency variant
with a large effect size at TRAF3IP2 (TRAF3 interacting protein
2), which is reported to influence RANKL-induced osteoclast
development (32). We also identified NFIB, a member of the
nuclear factor I family, which regulates osteoblast differentia-
tion by modulating osterix expression (33). Lastly, we detected
LYSMD4 (LysM domain containing 4), which influences peptido-
glycan binding. This gene has not previously been detected in
genetic studies for osteoporosis, but peptidoglycans are reported
to induce bone resorption by stimulating the toll-like receptor
and nucleotide binding oligomerization domain signaling path-
ways to produce inflammatory cytokines (34). LYSMD4 was also
observed to interact with IGF1R, and there is substantial evidence
to demonstrate that IGF-1 signaling is essential for osteoblast
differentiation and bone formation (35).

Fine mapping

We performed a fine-mapping analysis to prioritize variants
located within the identified risk loci, which is a critical and
necessary step to better understand the biological mechanisms
of disease and to reveal novel therapeutic gene targets. Although
we were able to identify several high-confidence potential causal
variants, the sample size was not sufficient to distinguish the
variants that are most likely to have a true biological effect at the
remaining risk loci due to the large number of genome-wide sig-
nificant SNPs and complexity of the LD structure. Additionally,
there may be many rare causal variants in a GWAS associated
region, which were not considered in the fine-mapping analysis,
but more complicated sampling methods are needed for their
detection (36).

TWAS

Multi-tissue TWAS analysis was conducted to prioritize the
genes with BMD associated expression levels, which could
potentially serve as therapeutic gene targets. In addition to the
novel locus SIPA1, we identified several other interesting genes
which should be further investigated.

PKDCC (protein kinase domain containing, cytoplasmic)
encodes a protein kinase belonging to a category of secretory
pathway kinases that phosphorylate proteins and proteoglycans
in the secretory pathway. Knockout experiments in mice
demonstrated that Pkdcc is essential for long bone growth by
regulating the differentiation of chondrocytes (37). During long
bone development, round proliferative chondrocytes (RPCs)
differentiate into flat proliferative chondrocytes (FPCs) and later
into hypertrophic chondrocytes (HCs). In the mouse humerus,
Pkdcc was highly expressed in early FPCs, and Pkdcc−/− mutant
mice exhibited delayed formation of FPCs and HCs (37).

SMOC1 (secreted modular calcium-binding protein 1)
encodes a glycoprotein with a calcium-dependent conformation
that plays an important role in limb development. It is a
BMP antagonist and an important extracellular matrix protein
involved in osteoblast differentiation (38). Knockdown of
SMOC1 significantly reduced bone mineralization as well as
the expression of key osteoblast differentiation markers such
as alkaline phosphatase, collagen type I, osteocalcin and bone
sialoprotein. SMOC1 was first reported in a multiethnic GWAS

for BMD (39) and was later replicated in a GWAS for osteoporotic
fracture in African American women (40).

RHPN2 (Rhophilin Rho GTPase Binding Protein 2) encodes
a member of the rhophilin family of Ras-homologous (Rho)-
GTPase binding proteins. Rho GTPases are known to play an
important role in osteoclast differentiation and function, and
mice deficient for Rho GTPase signaling were observed to have
increased bone mass (41). Rho GTPases are also known to influ-
ence mechano-transduction in osteoblasts (42), and there is evi-
dence of interactions between Rho family proteins and Wnt/β-
catenin signaling within cancer cells (43). Wnt signaling is cru-
cial for the regulation of bone homeostasis (44), and conceivably,
there could be similar interactions within bone cells.

An important limitation of the TWAS analysis is that GTEx
does not include gene expression data for bone cells, and there-
fore there are no existing prediction models available in the
optimal tissue for studying osteoporosis. LDSC indicated that
the BMD heritability was enriched in cardiovascular and female
reproductive tissues. Epidemiological studies have provided evi-
dence that BMD is associated with risk of coronary artery dis-
ease, and that the two diseases share common risk factors such
as dyslipidemia. Additional studies have reported that there
is a coupling of osteogenesis and angiogenesis during bone
remodeling (45). On the other hand, postmenopausal osteoporo-
sis risk is intricately linked with estrogen level (46), and since
the GWAS sample includes 65% women we retained the female
reproductive tissues in the TWAS analysis. Although other GTEx
tissues were not identified to be significantly enriched, LDSC is
a statistical model with certain underlying assumptions, and a
lack of statistical significance is not definitive evidence that a
particular tissue is unimportant. There is considerable evidence
that physiological wellbeing is highly dependent upon the cross
talk between skeletal muscle, fat and bone (15). However, TWAS
is prone to false positive associations with expression data from
nonrelevant tissues due to cross cell type variation in expression
levels and eQTL strengths (47). The TWAS results should be
interpreted taking this into consideration, although many of the
genes detected have previously been established as osteoporosis
candidate genes.

Rare variation

In the rare variant association analysis, we detected MAML2
(mastermind like transcriptional coactivator 2) which encodes
a protein that regulates Notch signaling. MAML2 has not previ-
ously been reported in studies for osteoporosis, but Notch sig-
naling plays a critical role in maintaining skeletal homeostasis
by influencing the activities of bone cells (48). Notch activation
in undifferentiated and mature osteoblasts inhibits cell differen-
tiation, leading to impaired bone formation. On the other hand,
Notch plays a unique role in osteocytes by inducing osteopro-
tegerin, suppressing sclerostin and enhancing Wnt signaling.
The mechanisms of Notch signaling in osteoclast differentiation
are context specific, as Notch activation inhibits commitment
to osteoclast differentiation, but stimulates the proliferation of
committed osteoclast precursors (49). Additionally, congenital
disorders of Notch function often present with severe skele-
tal deformities, and overactivation of Notch is associated with
osteosarcoma (48).

Despite considering the largest WGS sample yet in genetic
association studies for BMD, even at a depth of 22×, the
significant findings were still limited, which indicates that larger
samples are still needed to provide further insights into the
contributions of rare variants for the osteoporosis susceptibility.
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Previous studies have reported that sample size plays a
more important role in association testing than sequencing
depth (16). It should be noted that although we did conduct
separate subgroup analyses for the sake of completeness,
with no significant findings detected, the extensive SKAT
power analysis provided by Wu et al. (50) indicates that our
sample size is not sufficient for sex/ethnicity specific compar-
isons. Additionally, the rare variant analysis was gene-based by
design, and therefore rare intergenic variants with a potential
regulatory role were excluded, which is a standard practice (51).
If the sample size were large enough, all rare variants could
be tested individually, although this is not typically done since
single variant tests are less powerful for rare variants than for
common variants with identical effect sizes (51). Lastly, it was
not possible to attempt replication of the rare variant analysis
findings due to the lack of available independent WGS samples
with BMD phenotype information.

Conclusions
In summary, we conducted a GWAS meta-analysis for BMD
and systematically prioritized the identified risk loci, includ-
ing several which may be novel osteoporosis candidate genes.
Although we have not validated these findings with functional
mechanistic experiments, this study takes an important step
toward understanding the genetic determinants of BMD. We
hope that our results will stimulate future functional validation
experiments to confirm the biological significance of these loci.

Materials and Methods
WGS sample

LOS is a cross-sectional study with ongoing recruitment (>17 000
subjects accumulated so far) since 2011 for investigating genetic
and nongenetic determinants of osteoporosis and other muscu-
loskeletal diseases/traits (52). Gender and race stratified random
sampling were used to select 4981 unrelated subjects (2872
Caucasian and 2109 African American) from the entire LOS
cohort. We excluded individuals with the following preexisting
conditions relevant to bone mass development: (1) serious resid-
ual effects from cerebral vascular disease, (2) diabetes mellitus,
except for easily controlled, noninsulin dependent cases, (3)
chronic renal failure, (4) chronic liver failure, (5) chronic lung
disease, (6) alcohol abuse, (7) corticosteroid or anticonvulsant
therapy for >6 months duration, (8) evidence of other metabolic
(e.g. hyperthyroidism) or inherited bone disease, (9) rheumatoid
arthritis, except for minor cases that involve only hand joint and
wrist, (10) collagen disorders and (11) chronic gastrointestinal
diseases. All participants signed an informed-consent document
before any data collection, and the study was approved by the
Tulane University Institutional Review Board.

FNK and SPN BMD for each subject were measured with DXA
(Hologic QDR-4500 Discovery DXA scanner, Hologic Inc., Bedford,
MA, USA) by trained and certified research staff. The machine
was calibrated daily using a phantom scan for quality assurance,
and the accuracy of BMD measurement was assessed by the
coefficient of variation for repeated measurements, which was
∼1.9% for FNK BMD. Weight was measured with the participants
wearing light indoor clothing using a daily calibrated balanced
beam scale.

We performed WGS of the blood samples at an average
read depth of 22× using a BGISEQ-500 sequencer (BGI Americas
Corporation, Cambridge, MA, USA) to generate two sequencing

runs of paired-end 350 bp reads. The aligned and cleaned data
of each sample were mapped to the human reference genome
(GRCh38/hg38) using the Burrows-Wheeler Aligner software (53)
following the recommended best practices for variant analysis
with the Genome Analysis Toolkit (GATK) to ensure accurate
variant calling (54). Genomic variations were detected by the
HaplotypeCaller of GATK, and the variant quality score recali-
bration method was applied to obtain high-confidence variant
calls (54).

GWAS meta-analysis

The LOS samples were combined with several other independent
samples to perform GWAS meta-analysis. Four of these samples
were from in-house studies including 987 subjects of European
ancestry from the Omaha Osteoporosis Study (55), 2283 individ-
uals of European ancestry from the Kansas City Osteoporosis
Study, 1558 subjects of Han Chinese ancestry from the China
Osteoporosis Study, and an additional 500 women of Han Chi-
nese ancestry (56). One sample was obtained from the database
of Genotypes and Phenotypes (phs000386.v8.p3) including 839
African American and 393 Hispanic subjects from the Women’s
Health Initiative. The GWAS results from these individual sam-
ples were combined with the summary statistics provided by
the 2015 data release from GEFOS (6), which is currently the
largest GWAS meta-analysis of Caucasian subjects for DXA BMD
including 2882 with WGS, 3549 with whole exome sequencing,
and 26 534 genotyped by microarray which were imputed using
a combined UK10K/1000 Genomes Project reference panel.

To achieve higher genome coverage, GWAS array samples
with available individual level genotype data (i.e. not including
GEFOS summary statistics) were imputed by the most recent
TOPMed reference panel (57), which is composed of >97 000
deeply sequenced genomes with an average sequencing depth
of 30×. SNPs with r2 < 0.3, as estimated by Minimac (58), were
considered to have a poor imputation accuracy and were
excluded from the GWAS analyses. Quality control of genotype
data included the following criteria: individual missingness
<5%, MAF > 1%, SNP call rate > 95% and Hardy–Weinberg
equilibrium P-value > 1.0 × 10−6. In each GWAS sample, SNPs
were individually tested for association with FNK and SPN BMD
under an additive mode of inheritance using a two-stage model.
Raw BMD measurements were adjusted for age, sex, weight
and the first five ancestry principal components. The ancestry
principal components were estimated by EIGENSOFT (59) using
an independent set of SNPs across the genome for each sample.
The independent set of SNPs was selected by LD pruning using
the following parameters—window size of 50, step size of 5,
LD threshold of r2 < 0.01. Residual phenotypes after adjustment
were normalized by inverse quantile of the standard normal
distribution and subsequently used as the phenotype for GWAS.

The summary statistics of each GWAS were used as input
for weighted fixed effect meta-analysis with METAL (60), where
effect estimates were weighted by the standard errors. The
heterogeneity in allelic effects between studies was assessed
using the Cochran’s Q test and I2 statistics. SNPs with significant
heterogeneity (Cochran’s Q test P-value < 0.05 or I2 > 50%) were
analyzed by random effect meta-analysis using the Han and
Eskin method in METASOFT (61) and the random effect results
were used in place of the fixed effect results. Meta-analysis
was conducted in the combined sample, as well as sex/ethnicity
subgroups. The 2012 data release from GEFOS (5) was used for the
sex-specific analyses since the 2015 release does not provide the
sex stratified summary statistics. For all analyses, including the
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sex-specific analyses, only the autosomal chromosomes were
considered.

Genomic risk loci

Genomic risk loci for BMD were defined using the meta-analysis
summary statistics and linkage disequilibrium (LD) structure of
the 1000 Genomes Project reference panel. We first identified
genome-wide significant SNPs (P-value < 5e−8) that were inde-
pendent from each other at r2 < 0.6. All SNPs that have r2 > 0.6
with at least one of these independent significant SNPs were
identified as candidate SNPs. Independent lead SNPs were iden-
tified if they were genome-wide significant and independent
from each other at r2 < 0.1. If LD blocks of the independent
significant SNPs were located within <250 kb they were merged
into the same risk locus. The genetic distance is not highly
correlated with the LD for SNPs separated by >250 kb (62), and
this is the default threshold for LD clumping in various GWAS
software tools (63). Since each risk locus may contain multiple
genome-wide significant SNPs located at different genes, GCTA
(64) was also used to perform stepwise conditional analysis in
order to identify the conditionally independent signals across
the genome.

Tissue expression profiles of BMD
associated genes

Total RNA-seq data from the ENCODE database (strand-
specific; Cold Spring Harbor Lab; https://genome.ucsc.edu/
cgi-bin/hgFileUi?db=hg19&g=wgEncodeCshlLongRnaSeq) was
used to compare the RPKM in osteoblasts and 11 heterologous
cell cultures for each gene mapped by BMD associated variants.
The 11 nonosteoblast cell cultures included dermal fibroblasts,
fetal lung fibroblasts (IMR-90), myoblasts, human mammary
epithelial cells, foreskin melanocytes, dermal melanocytes,
aortic endothelial cells, follicle dermal papilla cells, pericytes,
saphenous vein endothelial cells and preadipocytes. Genes
were considered preferentially expressed in osteoblasts if the
osteoblast RPKM > 0.1 and the osteoblast RPKM/median of 11
nonosteoblast RPKM > 2. To partially validate the findings, we
also examined mouse expression microarray profiles from
BioGPS (https://www.biogps.org).

Functional characteristics of BMD associated SNPs

The 18-state chromatin segmentation Roadmap epigenomics
data were used to identify SNPs that overlap strong pro-
moter/enhancer chromatin in osteoblasts. Roadmap data
were accessed at https://egg2.wustl.edu/roadmap/data/byFi
leType/chromhmmSegmentations/ChmmModels/core_K27ac/
jointModel/final/. Promoter chromatin was defined by active
transcription start site (state 1), whereas enhancer chromatin
was characterized by flanking transcription start site upstream
(state 3), genic enhancer (state 8), and active enhancer (states
9 and 10). Roadmap narrow peaks (https://egg2.wustl.edu/roa
dmap/data/byFileType/peaks/consolidatedImputed/narrowPea
k/) were also used to identify SNPs that overlap DNase I
hypersensitivity sites (DHS) and/or the histone H3 lysine-27
acetylation (H3K27ac) epigenetic mark, which are associated
with open and active chromatin, in osteoblasts. SNPs that
overlap transcription factor binding sites (TFBS) were identified
using ChIP-seq data from ENCODE (http://genome.ucsc.edu/cgi-
bin/hgTrackUi?db=hg19&g=wgEncodeRegTfbsClusteredV3), in
which the peaks for 161 transcription factors in 91 cell types were

combined into clusters to produce a summary display showing
occupancy regions for each factor. One-sided Fisher’s exact test
was used to test for enrichment (i.e. over-representation) of the
BMD associated SNPs in each functional element.

To identify SNPs that influence gene expression levels,
expression quantitative trait loci (eQTL) mapping was performed
using eQTL data for various disease-relevant tissues from
the Genotype-Tissue Expression (GTEx) project (https://gtexpo
rtal.org) as well as osteoclast-like cells differentiated from
peripheral blood mononuclear cells provided by GEFOS (65).
Topologically associating domains were characterized using
Hi-C data for MSCs (GSE87112) to examine the long-range
chromatin interactions involving each genomic risk locus.
CIRCOS plots to visualize the topologically associating domains
were constructed using FUMA (63).

Predicting functional consequences
of nonsynonymous SNPs

Prediction of damaging nonsynonymous SNPs was conducted
using three types of scores including SIFT (https://sift.bii.a-sta
r.edu.sg/), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)
and CADD (https://cadd.gs.washington.edu/). The machine
learning based approach MutPred2 (66) was then used to predict
the molecular mechanisms of pathogenicity for amino acid
substitutions of interest. This tool identifies specific protein
structure and functional alterations associated with a particular
substitution which may affect the phenotype. Alterations with
P-value < 0.05 were considered as potential mechanisms of
pathogenicity.

Fine mapping

The PAINTOR Bayesian fine-mapping approach (67) was used
to prioritize potential causal variants by integrating the GWAS
summary statistics, LD structure and functional annotations for
the SNPs located at the risk loci for each trait. The LD structure
was provided by the 1000 Genomes Project reference panel. For
functional annotations, we integrated overlap of the SNPs with
Roadmap-derived enhancer/promoter chromatin segmentation
states and narrow peaks for DHS and H3K27ac in osteoblasts.

The annotation information is incorporated as a prior prob-
ability of causality in the Bayesian framework, which improves
the accuracy of fine mapping by allowing variants to be weighted
differently depending on the functional elements in which they
reside. PAINTOR uses a data driven approach to determine the
prior probabilities of causality associated with each functional
annotation. Bayes rule is applied at each fine-mapping locus to
calculate the PP of each causal configuration of SNPs, and a PP of
causality is computed for each SNP by performing a summation
across the probabilities of each potential causal configuration.
The fine-mapping analysis was conducted under the assump-
tion of one causal variant per risk locus. We fit a baseline model
without functional annotations as well as a separate model for
each annotation of interest, and likelihood ratio tests were used
to test the statistical significance of each functional annotation.
Significant annotations were retained in the final model.

TWAS

We downloaded the gene expression profiling data for 53 tis-
sues from GTEx and computed a t-statistic for each gene to
compare the expression levels between a given tissue and all
other tissues. The top 10% of genes with the highest t-statistics
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within each tissue were identified as the specifically expressed
genes that are representative of a particular tissue type. A 100-
kb window was added on either side of the transcribed region of
each gene in the set of specifically expressed genes to construct a
genome annotation corresponding to each tissue. The stratified
LDSC approach (68) was then applied to identify tissues from
GTEx in which the BMD heritability is significantly enriched.
LDSC estimates the significance of the heritability enrichment
for each tissue by performing a regression of the GWAS associ-
ation statistics against the LD scores, defined as the sum of r2

with all other SNPs. Tissues with P-value < 0.05 were considered
putative BMD relevant tissues. We applied a lenient threshold to
ensure that potentially relevant tissues were not ignored.

Multi-tissue TWAS analysis was conducted among the
putatively BMD relevant tissues to identify genes with BMD
associated expression levels. The gene expression levels were
imputed based on the GWAS summary statistics and prediction
models trained using reference samples from GTEx with both
genotype and gene expression measurements. The prediction
models for the BMD relevant tissues were downloaded from
PredictDB (http://predictdb.org/). S-PrediXcan was applied to
separately perform TWAS for each relevant tissue, and the
marginal effects from individual tissues were combined using S-
MultiXcan to infer the joint effect sizes for each gene across the
multiple tissues (69). We used a threshold of P-value < 2.5e−6 to
determine statistical significance (i.e. Bonferroni correction for
∼20 000 genes tested).

Rare variant analysis

The Ensembl Variant Effect Predictor (VEP) software (70) was
applied to annotate the functional consequences of variants in
the LOS WGS data with MAF < 1% and minor allele count > 1. The
gene-based SKAT (50) variance component test was used to test
the joint effects of the rare variants located within each gene
region that have sequence ontology terms with moderate (mis-
sense and in-frame insertion/deletion) or high (start lost, stop
lost, frameshift, stop gained and splice donor/acceptor) impact.
The rare variant association analyses were conducted separately
for each sex/ethnicity group using rvtests (71), and RAREMETAL
(72) was applied to combine the results from different subgroups.
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