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A B S T R A C T   

Introduction: Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute 
respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. 
Currently approved vaccines and other drug candidates could be associated with several drawbacks which urges 
developing alternative therapeutic approaches. 
Aim: To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds. 
Methods: Information was gathered from diverse bibliographic platforms such as PubMed, Google Scholar, and 
ClinicalTrials.gov registry. 
Results: The present review highlights the potential roles of crude extracts of plants as well as plant-derived small 
molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, poly
protein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well 
as plant-based therapies that are under development in the clinical trial phases-1 to 3 are also covered. 
Conclusion: This knowledge could further help understanding SARS-CoV-2 infection and anti-viral mechanisms of 
plant-based therapeutics.   

1. Introduction 

A newly emerged pandemic of COVID-19, caused by an infectious 
coronavirus SARS-CoV-2, has severely affected the entire world and 
remains a health threat. The emergence of new strains that evade im
mune responses generated by the vaccines suggests an urgent need for 
developing alternative therapeutic approaches to cut down the COVID- 
19 infection rate and related morbidity and mortalities. 

COVID-19 is currently being treated with several plausible drugs 
including antimalarial drugs [28], antiviral drugs [83], certain immu
nosuppressors [70], and convalescent plasma therapy. However, these 
kinds of treatments are associated with several concerns, especially in 
patients with severe disease conditions [90]. For example, severe 
adverse effects such as renal impairment and hypotension were 
observed in critically ill patients receiving remdesivir therapy [30]. 
Additionally, several case studies have reported that these standard 
drugs exhibit drug-drug or nutrition-drug interactions into the severely 

infected COVID-19 patients resulting in the unrecognized source of 
medication errors and negative effects [2]. Therefore, it is essential to 
use an alternative and safer approach, such as plant-derived compounds. 

Numerous scientific reports have documented the ability of plants 
and their secondary metabolites against SARS-CoV [91]. Despite being 
new virus, there are multiple in-silico studies suggesting anti-SARS- 
CoV-2 capability of plant-based small compounds. Additionally, in-vi
tro, cell culture and in-vivo clinical trials further validate and strengthen 
their COVID-19 suppressing potential. 

2. Scope of the review 

This review article aims to collect data on anti-SARS-CoV-2 activity 
and therapeutic potential of natural plant extracts and phytocompounds 
primarily based on in-silico (molecular docking and molecular dynamics) 
studies. An attempt has also been made to highlight in-vitro, cell culture, 
in-vivo and clinical trial (phase 1 to 3) studies. Several bibliographic 
platforms such as PubMed, Science-Direct, Google Scholar, and 
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Abbreviations 

RBD receptor-binding domain 
RBM receptor-binding motif 
aa amino acids 
nsp non-structural protein 
E envelope protein 
M membrane protein 
N nucleocapsid 
NTD N-terminal domain 
CTD C-terminal domain 
ACE2 angiotensin-converting enzyme 2 
TMPRSS2 transmembrane protease serine 2 
RNA ribonucleic acid 
sgRNAs sub-genomic RNAs 

gRNA genomic RNA 
ERGIC endoplasmic reticulum-Golgi intermediate complex 
LDLRA low density lipoprotein receptor class A 
SRDR scavenger receptor cysteine-rich domain 
RdRp RNA dependent RNA polymerase 
kb kilobases 
PLpro papain-like protease 
3-CLpro 3 chymotrypsin-like protease 
EGCG Epigallocatechin 3-gallate 
TF theaflavin 
SF-1 superfamily-1 
ADMET absorption, digestion, metabolism, excretion, and toxicity 
QGRG Quercetin 3-glucosyl rhamnosyl galactoside 
2′-O-MTase 2′-O- methyltransferase 
kDa kilodalton  

Fig. 1. Structure of the SARS-CoV-2 virus: Spike (S) is the surface glycoprotein that mediates the interaction of SARS-CoV-2 with the cell surface receptor 
angiotensin-converting enzyme 2 (ACE2). The membrane glycoprotein (M) and envelope (E) are embedded in the host cell-derived lipid membrane which encap
sulates the viral nucleocapsid. 

Fig. 2. Genome organization of SARS-CoV-2. Approximately 30 kb long viral genome comprises 10 open reading frames (ORFs) encoding 27 viral proteins. The 
ORF1ab encompasses about 67% of the total viral genome and encodes 16 non-structural proteins (nsps). Whereas the accessory and structural proteins are encoded 
by the remaining ORFs(adapted from Kim et al., 2020[116] with some modifications) 
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ClinicalTrials.gov registry were used to gather research findings and to 
summarize them methodically as a review. 

3. Fundamentals of SARS-CoV-2 genome organization and life 
cycle 

SARS-CoV-2 infects human lung epithelial cells by binding to the cell 
surface located angiotensin-converting enzyme 2 (ACE2) receptor with 
the help of the receptor-binding domain (RBD) of spike protein (S pro
tein). The transmembrane serine protease 2 (TMPRSS2) is required for 
the priming/activation of the S-protein [35]. A high expression of ACE2 
and TMPRSS2 in the gastrointestinal tract has been reported to be 
associated with gastrointestinal symptoms seen in COVID-19 patients. 
There are also a few studies describing changes in the gut microbiome of 
these patients compared to healthy persons [32]. 

More recently, it has been found that the cleavage of a multibasic site 
present between two subunits (S1 and S2) of S protein by furin protease 
is also involved in S-protein mediated efficient membrane fusion, viral 
entry and the transmission of SARS-CoV-2 [36,65]. The virus is inter
nalized via directly through RBD- ACE2 interaction or membrane fusion 

which requires TMPRSS2 proteolytic activity [9]. It is followed by 
uncoating of its genome and release into the host cell cytoplasm, which 
undergoes translation to produce viral proteins. Non-structural proteins 
(NSPs) 2–16 contain RNA synthesis, proof reading, cofactor and host 
immune evasion activities [76,88]. A negative-sense RNA intermediate 
is generated for the synthesis of positive-sense strand genomic RNA 
(gRNA) as well as a set of shorter sub-genomic RNAs (sgRNAs). Finally, 
the gRNA is packaged and assembled into progeny virions at the endo
plasmic reticulum-Golgi intermediate compartment (ERGIC). The 
sgRNAs encode structural proteins such as envelope (E), membrane (M), 
and nucleocapsid (N) and several accessory proteins (ORF3a, ORF6, 
ORF7a, ORF7b, ORF8, and other ORFs) [9,59,68,74]. (Figs. 1–3). 

4. Virus-host interactions: Potential antiviral targets 

The virus-host interactions during the virus entry, replication, and 
pathogenesis play a crucial role in the virus life cycle. Several viral and 
cellular factors facilitate this process in a coordinated manner. In SARS- 
CoV-2 infection, the viral spike protein interaction with host ACE2, 
TMPRSS2, and furin facilitate virus entry, which are thepotential drug 

Fig. 3. The life cycle of SARS-CoV-2 and 
potential targets of plant-derived small 
molecule inhibitors (A-B) SARS-CoV- 2 
spike protein binding to ACE2 followed by 
internalization of the virus (C) uncoating of 
the viral genome and its release into the 
cytoplasm (D-E) translation of replicase 
proteins (ORF1a/ab) followed by proteolysis 
(F–K) Replication/transcription of the viral 
genome. Incoming positive-strand genome 
generates full-length negative-strand RNA 
and sub-genomic RNA (sgRNAs). sgRNA 
translation results in both structural proteins 
and accessory proteins. (L–P) Structural 
proteins S (spike), M (membrane), E (enve
lope), and viral nucleocapsid complex get 
inserted into the ER-Golgi intermediate 
compartment (ERGIC) for virion assembly 
and release. Plant-based inhibitors (high
lighted in yellow boxes) can target the ma
jority of these steps as marked in red. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the Web version of this article.) (adapted 
from de Vries 2020 [117] with some 
modifications)   

Fig. 4. Spike, ACE2, TMPRSS2 and Furin are the targets of viral entry inhibition. Plant-based inhibitors utilize several mechanisms to block SARS-CoV-2 entry.  
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targets for developing SARS-CoV-2 antivirals (Figure-4) and are dis
cussed below in detail. 

4.1. Spike (S) protein 

Spike is a trimeric glycoprotein that mediates the binding of the virus 
to host cell surface-specific receptors and virus-cell membrane fusion 
[122]. It plays a vital role in determining host tropism and the diversity 
of coronaviruses (CoVs). SARS-CoV-2 is more contagious than SARS-CoV 
as SARS-CoV-2 spike protein interacts with ACE2 with 10–20 folds 
higher affinity than SARS-CoV. The receptor-binding motif (RBM) 
(437–508 amino acids) present in the RBD (319–541 amino acids) of the 
S1 subunit (13–685 amino acids) of the spike protein is majorly 
responsible for the binding of the virus to ACE2 [7,8,89] (Figure-5). 
In-silico docking results showed that the phytocompounds enlisted under 
the spike section in Table-1 interact well with the hot-spot residues of 
the RBD of spike glycoprotein of SARS-CoV-2. 

4.2. Angiotensin-Converting Enzyme 2 (ACE2) 

ACE2 is a single-pass type-1 transmembrane protein of 805 amino 
acids with an extracellular N-terminal peptidase domain and an intra
cellular C-terminus collectrin-like domain (CLD) [23]. The N- terminus 
has a zinc metallopeptidase binding motif (374–378 amino acids, 
HEMGH) essential for the interaction with SARS-CoV-2 S-protein 
(Figure - 6). Histochemical and single-cell RNA sequencing techniques 
revealed that ACE2 is primarily expressed in type-II lung alveolar 
epithelial cells [33,95]. 

A recent study, using bioinformatics, cheminformatics, and molec
ular docking, has demonstrated that tea flavonoids (epigallocatechin 
gallate, EGCG, and theaflavin gallate) have higher atomic contact en
ergy value, dissociation constant (Ki)-value, surface area, ligand 

efficiency, and higher number of amino acid interactions with spike 
protein than synthetic hydroxychloroquine [53]). Another study showed 
that daturaolone, gallotannins, taraxerol, tinosporide, withanolide-A, 
deoxytubulosine, withametelin form strong hydrogen and 
non-bonding interactions with the amino acids of spike protein (between 
Arg 403 to Tyr 505) and have drug-likeliness properties based on Lip
inski’s rule of five. Moreover, these bioactive compounds have lower 
toxic effects and better gastrointestinal absorption than standards [56]. 
A simulation study using the crystal structure of SARS-CoV-2 S protein 
demonstrated that saikosaponin-U and saikosaponin-V, oleanane de
rivatives found in Chinese medicinal plants, can also interact with the 
spike glycoprotein via their octadecahydropicene and oxane rings [75]. 
Using molecular docking and conceptual density functional theory ap
proaches, Kulkarni et al. showed that components of essential oils 
(monoterpenes, terpenoid phenols and phenyl propanoids) have the 
potential to interact with the RBD [47]. The phytocompounds punica
lagin and punicalin (from Pomegranate), tenufolin, cinnamtannin-B1, 
pavetannin-C1, 6-glucopyranosyl procyanidin B1, procyanidin-B7, 
proanthocyanidin-A2 and Kaempferol-3-alpha-L-arabinoside-7-rhamno
side (from Cinnamon), frieldlin, and stigmasterol (from Clerodendrum 
spp) were also found to be effective candidates exhibiting important 
interactions with the targeted S protein [41,66,79], suggesting that they 
could serve as possible candidates for further in-vitro and in-vivo evalu
ations. Additionally, a molecular dynamics simulation study of the 
complex of RBD of S-protein with taraxerol for a time scale of 40 ns 
revealed its potent anti-SARS-CoV-2 activity [41]. Tellimagrandin-II and 
O-demethyl-deoxy curcumin isolated from plants used in Indian tradi
tional medicine demonstrated stable intramolecular interactions with 
Asn343, which could be an important hit to affect host-immune evasion 
by inhibiting S-protein glycosylation [85]. 

The complex between viral S protein and human ACE2 has also been 
explored to identify antiviral phytochemicals. Using molecular 

Fig. 5. Molecular structure of spike pro
tein of SARS-CoV-2 and interactions with 
plant-based drugs. A furin cleavage site is 
present at the interface between S1 and S2 
subunits of the spike protein. Amino acid 
positions of spike protein that can be inter
acted by different groups of plant-based in
hibitors (steroids, quinones, terpenoids, 
flavonoids, and tannins) are also shown. 
Please refer Table-1 for precise details. SP- 
signal peptide; RBD- Receptor binding 
domain; RBM- Receptor binding motif; TM- 
transmembrane motif; FP- fusion peptide; 
HR1-Heptad repeat-1, HR2-heptad repeat-2; 
NTD- N-terminal domain, CP- cytoplasmic 
domain(adapted from Joshi et al., 2020[40] 
with some modifications).   

Fig. 6. Molecular organization of host ACE-2 monomer showing the interaction sites of different classes of phytocompounds (quinones, alkaloids, flavonoids, 
tannins, terpenoids, and organosulphur compounds) on the HEMGH/SARS CoV-2 spike protein binding domain and the collectrin domain (adapted from Bian and Li, 
2021[118]). 
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dynamics, hesperidin, a major flavonoid present in citrus fruits, has been 
demonstrated to interact with this complex noncompetitively at a site 
different from that of S-protein. Further, the antiviral activity of hes
peridin was validated by a quantitative structure-activity relationship 
study [12]. Another study, using virtual screening followed by 
protein-ligand interaction approach, showed that phytochemicals like 
glycyrrhizinic acid, maslinic acid, ursolic acid, corosolic acid, 2-hydrox
yseneganolide, gedunin, and oleanane can bind firmly with the active 
site and other important amino residues of S protein and ACE2 through 
multiple noncovalent interactions [87]. Of particular interest, His-34 is 
an important amino acid of ACE2 receptor as it lies on the surface and 
exhibits crucial interactions with the S protein. One of the molecular 
dynamic studies revealed that the andrographolide and pterostilbene 
could negatively affect SARS-CoV-2 by interacting with the His-34 [10]. 
Rilapladib, a quinoline, can interrupt the spike-ACE2 complex [11]. 
Natural compounds such as isothymol, thymol, p-cymene, limonene, 
and gamma-terpinene (from Ammoides verticillata), and 17- organosulfur 
compounds (from garlic) were also found to be potential inhibitors of 
ACE2 receptor [1,82]. Further, xanthones, proanthocyanidins, secoir
idoids, naringenin, hesperetin, baicalin and neohesperidin, scutellarin, 
nicotinamin, and glycyrinodin could exhibit ACE2 inhibition activity 
[58]. Hesperidin can modulate the binding energy of ACE2-spike protein 
complex and affects the stability of viral-host interaction [12]. At the 
binding contact of the spike-ACE2 complex, the di-hydroflavone moiety 
of hesperidin has been predicted to be parallel to the β-6 sheet of RBD 
[92]. Apart from this, punicalin and punicalagin from pomegranate peel 
are predicted to interact with ACE2 and block entry of SARS-CoV-2 into 
host cells [79]. Several bioactive compounds shown in research article 
by Mondal et al can interact with hot-spot binding residues (Lys31 and 
Lys353) of the ACE2 receptor through hydrogen bond or non-bonded 
interactions [56]. Besides these, geranium and lemon essential oils 
downregulate the expression of ACE2 in human colon adenocarcinoma 
cells as observed by western blot experiments [48]. More details of 
in-silico studies, including types of interactions, binding energy values, 
as well as identity and position of interacting amino acids with different 
phytocompounds are presented in Table-1. 

4.3. Transmembrane Serine Protease-2 

Human TMPRSS2 is a 492 amino acid type-II transmembrane protein 
that belongs to the serine protease family. The N-terminal half consists 
of a predicted transmembrane domain (84–106 amino acids), a low- 
density lipoprotein receptor class A domain (LDLRA, 113–148 amino 
acids), and a scavenger receptor cysteine-rich domain (SRCR, 149–242 
amino acids), whereas the C-terminus half contains a serine protease 

domain (255–492 amino acids) [63] (Figure-7). For priming of the viral 
spike protein, TMPRSS2 cleaves off the spike protein at two sites, 
Arg-685/Ser-686 and Arg-815/Ser-816. The catalytic site of TMPRSS2 
consists of amino acid residues Ser-441, His-296, and Asp-345, whereas 
the substrate-binding sites include Asp-435, Ser-460, and Gly-462 [34]. 
Molecular docking studies showed that the bioactive constituents of 
different plants enlisted under the TMPRSS2 section in Table-1 and 
presented in Figure-7 display significant interactions with the amino 
acid residues of the serine protease domain (255–492), particularly with 
the amino acids of catalytic and substrate binding sites. 

The phytocompounds withaferin-A, withanolide-N, punicalin, puni
calagin, ellagic acid and gallic acid could interact well with the impor
tant amino acid residues of TMPRSS2 [49,79]. Withanolide-N not only 
showed stronger interactions compared to withaferin-A, but it could also 
downregulate the expression of TMPRSS2 mRNA in human breast can
cer cell line. This observation led authors to predict its dual role in 
inhibiting SARS-CoV-2 entry. The disruption of substrate binding was 
most likely due to interactions of withanolide-N with the Ser-441 [49]. 

4.4. Furin 

Furin is a subtilisin-like proprotein convertase located in the trans- 
Golgi network. It cleaves a precursor protein with a specific amino acid 
pattern (Arg-X-X-Arg). The furin-like cleavage site, a 12-nt insertion at 
S1/S2 junction in the spike coding sequence, is absent in other members 
of the same clade [13,19]. Furin cleavage site enhances receptor affinity 
and facilitates membrane fusion. The cleavage of this site occurs via 
priming of S protein which could provide a gain-of-function benefit to 
the SARS-CoV-2 for an efficient human to human transmission 
compared to other members of beta coronaviruses [13,19,54]. In-silico 
analyses suggested that punicalagin, punicalin, ellagic acid and gallic 
acid from pomegranate could interact with the active site residues and 
other crucial amino acid residues of furin (Table-1) and form more 
stable complexes than sulconazole (control) [80]). 

5. SARS CoV-2 replication inhibitors 

The replication and transcription of the SARS-CoV-2 RNA genome (~ 
30 kb) is catalyzed by an RNA-dependent RNA polymerase (RdRp) 
domain located at the C-terminus of non-structural protein 12 (nsp12) in 
association with other non-structural proteins such as nsp3 (papain-like 
protease), nsp5 (3-chymotrypsin-like protease), nsp15 (endor
ibonuclease) and nsp16 (2-O’ MTase). 

Fig. 7. Molecular structure of transmembrane protease serine-2 (TMPRSS2) and the interaction sites of tannins, steroidal lactone, and caffeate ester in its 
domains. H-296, D-345 and S-441 are the catalytic residues present in the serine protease domain (adapted from Paoloni-Giacobino et al, 1997 [63] and Mahmoud 
and Jarrar, 2021[119]) 

Fig. 8. Location of amino acid interaction site (89–264) of tannins and flavonoids on SARS-CoV-2 nsp3 papain-like protease monomer(adapted from Joshi 
et al., 2020 [40]). 

B. Uma Reddy et al.                                                                                                                                                                                                                            



Microbial Pathogenesis 168 (2022) 105512

6

Table 1 
Interactions of plant-based small molecules with targeted SARS-CoV-2 or host proteins.  

Spike Glycoprotein (viral protein) 

Class Small molecule inhibitors Interacting amino acids with different classes of 
phytocompounds 

References 

Tannins Punicalin (3-IR and − 7.406 BE), punicalagin (6-IR and − 7.312 BE), 
Pedunculagin (4-HB, 6 NBI and − 7.7 BE), punigluconin (7-HB, 5- 
NBI and − 7.9 BE), chebulagic acid (5-HB, 5-NBI and − 7.5 BE), 
chebulinic acid (5-HB, 7-NBI and − 6.5 BE), cinnamtannin-B1 (3- 
HB, 3-HP and − 10.2 BE), 6-Glucopyranosyl procyanidin-B1 (8-HB, 
1-EI and − 9.9 BE), Procyanidin-B7 (2-HB, 3-HP, 2-EI and − 9.6 BE), 
proanthocyanidin-A2 (5-HxB, 1-HP, 2-EI and − 9.4 BE), ellagic acid 
(3 IR and − 6.114 BE), gallic acid (2 IR and − 4.808 BE), gallotannins 
(6 HB, 7-NBI, − 7.4 BE). 

Phe40, Leu95, Gln102, Asn103, Lys187, Asp206, Val209, 
Asn210, Leu335, Phe342, Asn343, Pro346, Thr347, Trp349, 
Val367, Leu368, Tyr369, Asn370, Ser371, Ala372, Phe374, 
Phe377, Asp382, Phe390, Arg393, Asn394, Glu398, Gln493, 
Ala396, His401, Glu402, Arg403, Glu406, Gln409, Lys417, 
Tyr449, Tyr453, Leu455, Phe456, Tyr489, Phe490, Leu492, 
Gln493, Ser494, Tyr495, Gln496, Asn501, Tyr505, Asp509, 
Arg514, Tyr515, Lys562, Lys562, Pro565 

[56,66,79]. 

Terpenoids Geraniol (2-HB and-5.0 BE), L-4-terpineol (2-HB and − 5.1 BE), 
carvacrol (1-HB and − 5.2 BE), limonene (12-HPI and − 5.1 BE), 
thymol (-5.4 BE), tinosporide (2HB, 6-NBI and − 6.4 BE), taraxerol 
(7-NBI and − 7.9 BE), daturaolone (8 NBI and − 7.5 BE), glycyrrhizin 
(7-HB, 3-NBI, − 7.1 BE), friedelin (1-HB, 2-IR and − 7.3 BE), 
tenuifolin (4-HB, 2-HP and − 8.7 BE), ϒ-terpinene (− 4.8 BE), 
α-terpinene (− 5.0 BE), camphene (2-HPI and − 5.2 BE), camphor (2- 
HPI and − 4.8 BE). 

Leu73, Asp350, Tyr385, Phe390, Asn394, Arg403, Asp405, 
Glu406, Arg408, Gln409, Gly416, Lys417, Tyr449, Tyr451, 
Leu452, Tyr453, Leu455, Phe-456, Lys458, Ser-459, Leu461, 
Ile468, Thr470, Ile472, Glu484, Tyr489, Phe490, Pro491, 
Leu492, Gln493, Ser494, Tyr495, Gly496, Asn501, Tyr505 

[47,56,66] 

Flavonoids Pavetannin-C1 (9-HB, 4-HP, 1-EI and − 11.1 BE), hesperidin (5 IR 
and − 8.99), chrysin (9 IR and − 6.87), querceitin 3-O- 
robinobioside (5-HB, 6-NBI, − 7.9 BE), kaempferol 3 - alpha-L- 
arabinofuranoside 7-rhamnoside (7-HB, 2-HP and − 8.7 BE), 
catechin gallate (5 HB, 3 HP and − 6.1 BE), cinnamaldehyde (2-HB 
and − 5.0 BE), Anthranol (1 HB, 2 HP and-9.08 BE),Apigenin (5 HB, 2 
HP and -10.09 BE)Derrisin (2 HB, 2 HP and -11.04 BE)Jaceidin (2 HB, 
2 HP and -10.54 BE),Lupiwighteone (1 HB, 3 HP and -9.92 BE), 
Luteolin (2 HB, 2 HP and -10.92 BE), Mundulinol (2 HB, 1 HP and 
-11.08 BE), Naringenin (2 HB, 2 HP and -10.12 BE), Rhamnetin (2 HB, 
2 HP and -10.15 BE), Tamarixetin (2 HB, 1 HP and -10.33 BE), 
Cannflavin (1 HB, 2 HP and -9.11 BE), Methylglovanon (1 HB, 1 HP 
and -9.43 BE) 

Ser44, Leu48, Ala292,Cys301, Leu303, Ile312, Tyr313, 
Thr315, Asn317, Phe318, Arg319, His345, Thr347, Ala348, 
Trp349, Asp350, His374, Glu375, His378, Asp382, Tyr385, 
Gly395, Asn397, Glu398, His401, Arg403, Glu406, Tyr410, 
Lys417, Arg443, Ser448, Asn449, Tyr453, Arg454, Leu455, 
Phe456, Ser459, Glu471, Val472, Glu473, Gly474, Phe475, 
Phe486, Tyr484, Thr487, Asn488, Ser494, Tyr495, Gly496, 
Phe497, Tyr505, Tyr510, Arg514, Tyr515, Gln516, Leu517, 
His519, Ala520, Ala522, Asn544, Gly545, Leu546, Val595, 
Pro665, Ser730, Met731, Lys733, Gln762, Arg765, Ala766, 
Asn856, Val860, Pro863, Asp867, Asp867, Lys964, Leu966, 
Ser967, Phe970, Asn969, His1058. 

[12,47,56,57, 
25,66] 

Steroids Withametelin (8 NBI and − 8.0 BE), withanolide-A (1-HB, 7-NBI and 
− 7.7 BE), echinacin (2-HB, 6-NBI and − 7.9 BE), stigmasterol (2-IR 
and − 7.2 BE), withanolide G (4 HB, 2 HP and − 8.4 BE) 

Asp66, Arg67, Gln85, Val367, Asn370, Phe374, Tyr449, 
Leu452, Leu455, Phe456, Glu484, Tyr489, Phe490, Leu492, 
Gln493, Ser494. 

[41,56,57] 

Quinone Emodin (4 IR and − 6.19), rhein (5 IR and − 8.73) Asn332, Thr333, Asn353, Ser388, Val401, Asn448, Ala464, 
Val472, Gly474, 

[12] 

Steroidal saponins Asparoside-C (5 HB and − 7.54 BE), asparoside-D (6 HB and − 7.06 
BE), shatavarin-I (Asparoside-B) (5 HB and − 6.52 BE), shatavarin-X 
(6 HB and − 6.43 BE), racemoside-A (3 HB and − 6.23) 

Arg403, Glu406, Gln409, Gln414, Thr415, Lys417, Asp420, 
Lys444, Gly447, Tyr449, Tyr453, Glu484, Ser494, Gly496, 
Gly496, Gln498, Gly502 

[16] 

Alkaloid Chelidimerine (2 HB, 3 HP and − 8.2 BE), Withanone (1 HB, 5 HP and 
− 7.8 BE), Norsanguinarine (3 HB, 3 HP and − 7.0 BE), Sanguinarine (1 
HB, 4 HP and − 6.8 BE), Adlumidine (3 HB, 4 HP and − 6.8 BE), 
Somniferine (2 HB, 4 HP and − 6.7 BE), Fumariline (1 HB, 3 HP and 
− 6.4 BE) 

Asp66, Arg67, Leu335, Phe338, Gly339, Phe342, Asn343, 
Asp364, Val367, Leu368, Leu368, Asn370, Ser371, Phe374, 
Trp436 

[57] 

Sesquiterpene Badrakemin acetate (3 HB, 5 HP, and − 8.0 BE), Samarcandin (2 HB, 3 
HP, and − 7.4 BE) 

Leu335, Phe338, Gly339, Glu340, Asn343, Asp364, Val367, 
Leu368 

[57] 

Plant lignans Pinoresinol-4-O-b-D- glucopyranoside (4 HB, 3 HP, and − 4.9 BE) Cys336, Phe338, Asn343, Asp364, Val367, Leu368, Ser371 [57] 
Anthocyanin Pelargonidin 3-glucoside (4 HB, 3 HP and − 6.2 BE) Cys336, Phe338, Asn343, Asn364, Val367, Leu368, Ser371 [57] 
Other compounds Cinnamyl acetate (3-HB and − 5.2 BE), barlerinoside (7-HB, 9-NBI 

and − 7.4 BE), deoxytubulosine (1-HB, 8-NBI and − 7.2 BE) 
Arg403, Asp405, Glu406, Gln409, Lys417, Tyr449, Tyr453, 
Arg454, Leu455, Phe456, Ser469, Glu471, Glu484, Gly485, 
Tyr489, Phe490, Leu492, Gln493, Ser494, Gly496, Asn501, 
Tyr505 

[47,56] 

Standards Remidesvir (3 IR and − 5.94 BE), chloroquine (3 IR and − 8.98), 
hydroxychloroquine (4 IR and − 7.82 BE) 

Arg403, Glu406, Tyr453, Thr467, Pro468, Cys469, Gly471, 
Val472 

[12,16,41] 
[16] 

ACE2 (host protein acting as CoV-2 receptor) 

Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Organo-sulfur Allyl disulfide (3 IR and − 12.84 BE), allyl trisulfide (2 IR and 
− 12.76 BE), allyl (E)-1-propenyl disulfide (2 IR and − 9.07 BE), 
allyl methyl trisulfide (2 IR and − 12.50 BE), diallyl tetrasulfide (4 
IR and − 14.06 BE), 1,2-dithiole (2 IR and − 13.21 BE), 1,2-dithiole 
(1 IR and − 7.89), allyl (Z)-1-propenyl disulfide (T7) (2 IR and 
− 9.04 BE), 2-vinyl-4H-1,3-dithiine (3 IR and − 11.83 BE), 3-vinyl- 
1,2-dithiacyclohex-4-ene (3 IR and − 10.57 BE), carvone (2 IR and 
− 8.58 BE), trisulfide, 2-propenyl propyl (4 IR and − 14.01 BE), 
methyl allyl disulfide (3 IR and − 10.32 BE), diacetonalcohol (2 IR 
and − 9.71 BE), trisulfide, (1E)-1-propenyl 2- propenyl (2 IR and 
− 9.57 BE), allyl sulfide (3 IR and − 9.38 BE), 1-propenyl methyl 
disulfide (2 IR and − 8.06 BE), trisulfide, (1Z)-1-propenyl 2- 
propenyl (2 IR and − 8.06 BE). 

Lys94, Gln98, Gln101, Gln102, Asn103, Gly205, Asp206, 
Glu208, Val209, Asn210, Ala396, Lys562, Ser563, Pro565, 
Trp566 

[82] 

Tannins Punicalin (5 IR and − 7.353 BE), punicalagin (4 IR and − 7.144 BE), 
ellagic acid (4 IR and − 6.85 BE), gallic acid (4 IR and − 5.24 BE), 

Asp30, Asn33, His34, Glu35, Glu37, Asp38, Tyr41, Ser280, 
Pro289, Asn290, Ile291, Asp292, Arg393, Lys353, Asp367, 

[79] 
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pedunculagin (4 HB, 4 HPI and − 7.2 BE), punigluconin (5 HB, 5 HPI 
and − 6.6 BE), chebulagic acid (1 HB, 6 HPI and − 6.6 BE), 
chebulinic acid (4 HB, 3 HPI and − 6.8 BE), gallotannins (4 HB, 7 HPI 
and − 7.1 BE). 

Ala386, Ala387, Gln388, Pro389, Arg393, Phe428, Lys441, 
Gln442, Thr445. 

Flavonoid Hesperidin (4 IR and − 9.167 BE), chrysin (3 IR and − 7.146 BE), 
rutin (6 IR and − 3.41 BE), vitexin (7 IR and − 5.71 BE), apigenin (5 
IR and − 3.75 BE), quercetin (5 IR and − 4.11 BE) 

Thr27, Lys31, His34, Glu35, Glu37, Asp38, Gln42, Asn63, 
Thr125, Ile126, Thr129, Asn137, Pro138, Gly139, Lys353 

[12,100] 

Quinone Emodin (3 IR and − 9.83 BE), Rhein (- 7.423 BE) Asp67, Ala71, Lys74 [12] 
Terpenoid Thymol and iso-thymol (1 H-donor and − 4.74 BE), m-eugenol (4 IR 

and − 2.53 BE), p-thymol (3 IR and − 2.75 BE), carvacrol (7 IR and 
− 3.31 BE), costunolide (4 IR and − 4.0 BE), cynaropicrin (5 IR and 
− 3.06 BE), bharangin (4 IR and − 4.36 BE), andrographolide (6 IR 
and − 4.53 BE), beta-pinene (5 IR and − 5.22 BE), spathulenol (6 IR 
and − 4.98 BE), vetiverol (6 IR and - 4.96 BE), cucurbitacin B (6 IR 
and − 5.36 BE), alpha-bisabolol (7 IR and − 5.69 BE), 6-shogaol (6 IR 
and − 3.33 BE), 6-gingerol (6 IR and − 3.49 BE), beta-sitosterol (7 IR 
and − 4.88 BE), linoleic acid (6 IR and − 2.07 BE), glycyrrhizinic 
acid (4 HB, 2 Pi-Alkyl, 1CHB, 9 VDW and − 9.5 BE), maslinic acid (4 
HB, 3 Pi-Alkyl, 5 VDW and − 8.5 BE), obacunone (1 HB, 1 Pi-sigma, 1 
Pi-Pi T shaped, 2 Pi-Alkyl, 8 VSW and − 8.1 BE), epoxyazadiradione 
(2 Alkyl/Pi-Alkyl, 1 Pi-Sigma, 7 VDW and − 8.0 BE), 
azadiradionolide (3 HB, 3 Alkyl/Pi-Alkyl, 6 VDW and − 8.0 BE), 
Ursolic acid (3 HB, 3 Pi-Alkyl, 7 VDW and − 7.4 BE), gedunin (1 HB, 
3 Alkyl/Pi-Alkyl, 1 Pi-Sigma, 1 CHB, 7 VDW and − 7.3 BE). 

Lys26, Thr27, Asp30, Lys31, Asn33, His34, Glu35, Asp38, 
Glu37, Leu39, Phe40, Gln42, Asn90, Thr92, Val93, Gln96, 
Tyr127, Ser128, Glu145, Asn 149, Trp271, Arg273, Phe274, 
His345, Pro346, Thr347, Ala348, Trp349, Asp350, Lys353, 
Asp367, Lue370, Thr371, His373, His374, Glu375, Asp382, 
Tyr385, Ala387, Gln388, Pro389, Phe390, Arg393, Asn394, 
His401, Glu402, Glu406, Ser409, Gln442, Thr445, Leu503, 
Phe504, His505, Asn508, Arg514, Tyr515, Lys562  

[1,87,100] 

Alkaloids Pellitorine (5 IR and − 3.4 BE), vasicine (5 IR and − 6.21 BE), 
piperidine (9 IR and − 4.31 BE), piperine (5 IR and − 4.1 BE) 

Asp30, Lys31, Asn33, His34, Glu35, Glu37, Asp38, Phe40, 
Asp350, Lys353, Pro389, Phe390, Arg393, Asn394, 

[100] 

Standards Lopinavir (9 IR and − 7.5 BE), umifenovir (7 IR and − 6.5 BE), 
Hydroxychloroquine (10 IR and − 7.1 BE) 

His34, Glu37, Thr276, Asn290, Ile291, Met366, Asp367, 
Leu370, Gln388, Pro389, Arg393, Lys403, Glu406, Ser409, 
Leu410, Ala413, Lys441, Thr445, Ser494, Tyr495, Gly496, 
Tyr505 

[10,79] 

TMPRSS2 (host protease) 

Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Tannins Punicalin (5 IR and − 8.168 BE), punicalagin (6 IR and − 7.358 BE), 
ellagic acid (2 IR and − 6.829 BE), gallic acid (5 IR and − 5.709 BE) 

Arg87, Ala88, Arg91, Asp92, Asn97, Asp129, Tyr401, Met404, 
Arg405, Gly408 

[79] 

Steroidal lactone Withaferin-A (2 HB, 19 IR and − 5.60 BE), Withanone (1 HB; 18 HP 
and − 4.30 BE) 

His296, Glu299, Tyr337, Lys342, Glu389, Asp435, Ser436, 
Cys437, Gln438, Asp440, Ser441, Thr459, Ser460, Trp461, 
Gly462, Ser463. Gly464, Cys465, Ala466, Gly472, Val473 

[49] 

Caffeate ester Caffeic acid phenethyl ester (2 HB; 17 HP and − 6.20 BE) Cys281, Val280, His296, Cys297, Glu299, Leu302, Asp435, 
Ser436, Cys437, Gln438, Gly439, Asp440, Ser441, Thr459, 
Ser460, Trp461, Gly462, Gly464, Cys465 

[49] 

Standards Camostat (5 IR and − 7.069 BE), Camostat mesylate (1 HB and 20 
HPI and -5.9 BE) 

Arg87, Asn97, Phe99, Met404, Arg405, Val275, Gln276, 
Val278, Val 280, His296, Cys297, Leu302, Asp435, Ser436, 
Cys437, Gln438, Gly439, Ser441, Thr459, Trp461, Gly462, 
Cys465, Ala466, Gly472, Val473 

[79] 
[49] 

Furin (host protein) 

Class Small molecule inhibitors  References 

Tannins Punicalin (7 IR and − 9.725 BE), punicalagin (4 IR and − 9.385 BE), 
ellagic acid (5 IR and − 7.801 BE 

His194, Gly255, Pro256, Pro256, Glu257, Asp258, Asp259, 
Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, 
Ser368, Thr365, Arg 490, Trp531, Ala532, 

[79] 

Standards Sulcanozole (4 IR and − 6.923 BE) Val263, Phe528, Trp531, Ala532 [79] 

Papain-like protease/nsp3 (viral protease) 

Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Terpenoid, Flavonoid Oleonolic acid (4 IR and − 10 BE), ursolic acid (5 IR and − 9.7 BE), 3β- 
acetoxyolean-12-en-27-ioc acid (3 IR and − 9.5 BE), Isovitexin (5 IR 
and − 9.3 BE) 

His89, Trp106, Ala107, Asp108, Asn109, Val159, Gly160, 
Gu161, Leu162, Pro248, Tyr264 

[55] 

3 Chymotrypsin-like protease/nsp5 (viral protease) 
Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Flavonoid Epigallocatechin (6 IR and − 7.0 BE), gallocatechin (6 IR and − 7.1 
BE) catechin (6 IR and − 7.1 BE), epicatechin (6 IR and − 7.2 BE), 
catechin gallate (6 IR and − 7.2 BE), epigallocatechin gallate (9 IR 
and − 7.6 BE), epicatechin gallate (10 IR and − 8.2 BE), 
gallocatechin-3-gallate (9 IR and − 9.0 BE), kaempferol (4 HB, 6 
HPI and − 8.58 BE), quercetin (8 IR and − 6.58), luteolin-7- 
glucoside (10 IR and − 8.17 BE), myricetin (4 IR and − 6.15 BE), 
scutellarin (2 IR and − 7.13 BE), isoflavone (2 IR and − 5.69 BE), 
Quercetin-3-O-rutinose (6 HB, 1 PS and − 9.2 BE), Quercetin-7-O- 
glucuronide (6 HB, 1 PC, 1 PS, 1 PP, 1 Pal and − 8.4 BE), quercetin- 
3′-O-glucuronide (6 HB, 1 PS, 2 Pal and − 8.5 BE), quercetin-3-O- 
glucuronide (3 HB, 1 PS, 1 PC, 1 Pal and − 8.5 BE), quercetin-7-O- 
sulfate (6 HB, 1 PS, 1 Pal and − 8.4 BE), quercetin-3-O-sulfate (4 HB, 
1 PS, 1 Pal and − 7.6 BE), quercetin-3′-O-sulfate (6 HB, 1 PC, 3 PS 

Lys5, Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, 
Met49, Tyr53, Tyr54, Pro108, Lys137, Phe140, Leu141, 
Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, 
Glu-166, Leu-167, Pro168, His172, Asp187, Arg188, Gln189, 
Thr190, Ala191, Gln192, Gly195, Asp197, Thr199, Asn238, 
Tyr239, His246, Leu271, Leu272, Leu286, Leu287, Glu288, 
Asp289. 

[20,57,66,67, 
73,109] 
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and − 8.1 BE), quercetin (4 HB; 1 PS, 2 Pal and − 7.5 BE), kaempferol- 
3-O-rutinose (nicotiflorin) (4 HB, 1 PS, 1 Psi, 1 PP and − 8.9 BE), 
kaempferol-4′-O-glucuronide (4 HB, 3 Pal and − 8.0 BE), 
kaempferol-3-O-glucuronide (6 HB, 1 PS, 1 PP, 1 Psi and − 8.3 BE), 
kaempferol-7-O- glucuronide (4 HB, 2 PS, 1 Psi, 2 Pal and − 8.3 BE), 
kaempferol-7-O-sulfate (3 HB, 1 PS, 1 PP, 2 Pal and − 8.3 BE), 
kaempferol-4′-O-sulfate (4 HB, 1 Pal and − 8.2 BE), kaempferol-3- 
O-sulfate (3 HB, 1 PS, 1 Pal and − 7.3 BE), kaempferol (1 HB, 2 PS, 2 
Pal and − 7.2 BE), 5,7,3′4’ - tetrahydroxy2’-(3,3- dimethylallyl) 
isoflavone (14 IR and − 16.35 BE), myricitrin (16 IR and − 15.64 BE), 
methyl rosmarinate (16 IR and − 15.44 BE), 3,5,7,3′,4′,5′- 
hexahydroxy flavanone – 3 – O – beta – D glucopyranoside (13 IR 
and − 14.42 BE), (2S)-eriodictyol 7-O-(6′′-Ogalloyl)-beta-D- 
glucopyranoside, (15 IR and − 14.41 BE), calceolarioside B (16 IR 
and − 19.87 BE), myricetin 3-Obeta-D-glucopyranoside (17 IR and 
− 13.70 BE); licoleafol (13 IR and − 13.63 BE), amaranthin (16 IR 
and − 12.67 BE), peonidin 3-O-glucoside (5 HB, 7 HP and − 9.4 BE), 
kaempferol 3-O-β –rutinoside (4 HB, 6 HP and − 9.3 BE), rutin (2 
HB, 6 HP and − 9.2 BE), 4 - (3, 4 - Dihydroxyphenyl) – 7 – methoxy - 
5 - [(6 – O – b – D – xylopyranosyl – b – D - glucopyranosyl) oxy] - 
2H-1-benzopyran – 2 - one (5 HB and 7 HP), quercetin-3-D- 
xyloside (7 HB, 5 HP and − 9.1 BE), quercetin 3-O-a-L- 
arabinopyranoside (4 HB, 6 IR and − 9.0 BE), kaempferol 3-ruti
noside 40-glucoside (9 HB, 6 HP and − 8.9 BE), quercetin 3-O-(6′′- 
O-malonyl)-b-D-glucoside (3 HB, 8 HP and − 8.8 BE), idaein (2 HB 
and 8 HP), callistephin (3 HB and 8 HP); malvin (4 HB, 8 HP and 
− 8.7 BE), luteolin 7-rutinoside (2 HB; 9 HP; − 8.6 BE), cyanin (4 HB; 
4 HP; − 8.5 BE), kaempferol 7-O-neohesperidoside (5HB, 7 HP and 
− 8.4 BE), rhamnetin 3 sophoroside (5 HB, 4 HP and − 8.3 BE), 
myricetin 3-O-b-D-galactopyranoside (5 HB, 2 HP and − 8.2 BE), 2′′- 
O-alpha-L-rhamnopyranosyl-isovitexin (3 HB, 10 HP and − 8.2 BE), 
hesperidin methylchalcone (5 HB, 4 HP and − 8.0 BE), 
procyanidin-B7 (4 HB, 1 HP, 1 EI and − 8.2 BE), kaempferol 3- 
alpha-L-arabinofuranoside-7-rhamnoside (3 HB, 1 HP, 1 EI and 
− 8.1 BE), proanthocyanidin-A2 (1 HB, 1 HP, 1 EI and − 8.0 BE), 6- 
glucopyranosyl procyanidin B1 (5 HB, 1 HP, and − 7.6 BE), 
pavetannin-C1 (4 HB, 1 HP, 1 EI and − 7.3 BE), querceitin 3-O- 
robinobioside (6 HB, 8 NBI and − 8.8 BE).        

Organosulfur Allyl disulfide (6 IR and − 15.32 BE), allyl trisulfide (4 IR and 
− 15.02 BE), allyl (E)-1-propenyl disulfide (2 IR and − 13.25 BE), 
allyl methyl trisulfide (4 IR and − 14.36 BE), diallyl tetrasulfide (4 
IR and − 14.47 BE), 1,2-dithiole (T6-ACE2) (2 IR and -13.21 BE), 
allyl (Z)-1-propenyl disulfide (2 IR and − 12.60 BE), 2-vinyl-4H- 
1,3-dithiine (4 IR and − 14.04 BE), 3-vinyl-1,2-dithiacyclohex-4- 
ene (3 IR and − 13.83 BE), carvone (1 IR and − 12.36 BE), trisulfide, 
2-propenyl propyl (5 IR and − 14.36 BE), methyl allyl disulfide (3 
IR and − 13.56 BE), diacetonalcohol (2 IR and − 13.26 BE); 
trisulfide, (1E)-1-propenyl 2- propenyl (2 IR and ¡12.00 BE); 
(1Z)-1-propenyl 2- propenyl (1 IR and − 11.68 BE) 

Leu141, Asn142, Gly143, Ser144, Cys145, His163, Met165, 
Glu166 

[82] 

Terpenoids Glycyrrhizic acid (4 HB, 3 CHB, 12 VDW and − 8.7 BE), 6- 
oxoisoiguesterin (5 IR and − 9.1 BE), daturaolone (10 NBI and − 7.3 
BE), glycyrrhizin (7 HB; 7 NBI and − 8.2 BE), calendulaglycoside B 
(16 IR and − 8.2 BE), calenduloside (15 IR and − 7.9), tenuifolin (6 
HB, HP-2 and 8.8 BE), 7-Deacetyl-7-benzoylgedunin L (1 CHB, 2 
HB, 10 VDW, 1 Pi-Pi T shaped, 1 alkyl, 1 Pi-alkyl, − 9.1), glycyrrhizic 
acid (4 HB, 3 CHB, 12 VDW, − 8.7), limonin: 3 HB, 1 pi-donor, 1 CHB, 
4 VDW, − 8.7), Obacunone (3 HB, 1 pi-donor, 1 pi-alkyl, 5 VDW, 
− 7.5), Dihydroartemisinin (2 HB, 2A, 1 PA and − 7.0 BE) 

Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, 
Met49 Leu50, Tyr118, Arg131, Lys137, Phe140, Leu141, 
Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, 
Glu166, Leu167, Pro168, His172, Asp187, Arg188, Gln189, 
Thr190, Ala191, Tyr239, Leu275, Leu286, Leu287 

[21,31,51,56, 
87] 

Sesquiterpene Badrakemin acetate (2 HB, 5 HP and − 8.6 BE), Samarcandin (3 HB, 
2 HP and − 8.5 BE) 

His41, Gly143, Cys145, His163, Glu166, Leu167, Pro168, 
Gln192 

[57] 

Iridoid glycoside Harpagoside (3 HB, 3 HP and − 6.1 BE) His41, Met49, Leu141, Asn142, Met165, Glu166 [57] 
Beta-diketone demethoxycurcumin (1 IR and − 7.02 BE), curcumin (2 IR and 

− 6.04 BE); bisdemethoxycurcumin (5 IR and − 7.3 BE) 
His41, Asn119, Phe140, Cys145, His163 [73] 

Beta-hydroxy ketone Zingerol (5 IR and − 5.40 BE) and gingerol (5 IR and − 5.38 BE) Met49, His163, Met165, Glu166, Pro168, Asp187, Arg188, 
Gln189, Thr190 

[43] 

Furanocoumarin Bergapten (5-methoxypsoralens) (2 IR and − 5.98 BE) Phe140, His163 [73] 
Anthocyanins Delphinidin 3-Sambubioside-5-Glucoside (27 IR and − 12.37 BE); 

Delphinidin 3,3′-Di-Glucoside-5-(6-P-Coumarylglucoside) (28 IR 
and − 11.59 BE), 
2-(3,4,5-Trihydroxyphenyl)-3-[6-[(E)-3-(4-hydroxyphenyl) 
acryloyl]-beta-D-galactopyranosyloxy]-5,7-dihydroxy-1- 

Thr24, Thr25, Thr26, Leu27, His41, Cys44, Met49, Leu50, 
Pro52, Tyr54, Gly138, Ser139, Phe140, Leu141, Asn142, 
Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, 
Leu167, Pro168, Thr169, Gly170, His 172, Val186, Asp187, 
Arg188, Gln189, Thr190, Ala191, Gln192 

[27,57] 
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benzopyrylium 2-(3,4,5- Trihydroxyphenyl)-3-[6-[(Z)-3-(4- 
hydroxyphenyl) acryloyl]-beta-D-galactopyranosyloxy]-5,7- 
dihydroxy-1-benzopyrylium (27 IR and − 10.94 BE), 
3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxycinnamoyl-(->6)]- 
b-D-glucopyranoside](E-), 5-O-(6-O-malonyl-b-D- 
glucopyranoside) Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)- 
[4-hydroxycinnamoyl-(->6)]-b-D-glucopyranoside](E-) 5-O-(6- 
O-malonyl-b-D-glucopyranoside (25 IR and − 10.30 BE), 
3-< [4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-< 
[hydroxy(4-oxocyclohexa-2,5-dien-1-ylidene)methoxy]methyl 
> oxan-2- yl)oxy]oxan-2-yl]oxy>-2-(3,4-dihydroxyphenyl)-7- 
hydroxy-5-< [3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] 
oxy>-1lambda-chromen-1-ylium (25 IR and − 13.59 BE), Cyanidin 
3-(60 ‘-p-coumarylsambubioside) (22 and − 9.58 BE), 
Pelargonidin 3-glucoside (4 HB, 5 HP and − 8.1 BE), Cyanidin 3,5- 
di-O-glucoside (4 HB, 6 HP and − 6.9 BE), Cyanidin 3-O-rutinoside 
(7 HB, 4 HP and − 6.9 BE) 

Steroidal lactone Withanoside-II (20 IR and − 11.30 BE), withanoside IV (20 IR and 
11.02 BE), withanoside-V (27 IR and − 8.96 BE), sitoindoside IX (24 
IR and − 8.37 BE), Withanolide G (4 HB, 4 HP and − 8.6 BE) 

Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, 
Met49, Leu50, Phe140, Leu141, Asn142, Gly143, Ser144, 
Cys145, His163, His164, Met165, Glu166, Leu167, Pro168, 
Arg188, Gln189, Thr190, Ala191, Gln192 

[57,84] 

Alkaloid 10-Hydroxyusambarensine ( 10 IR and − 10.1 BE), 
cryptoquindoline (3 IR and − 9.7 BE); 6-Oxoisoiguesterin (1 HB, 4 
IR and − 9.1 BE), N-[(5-methylisoxazole - 3-yl) carbonyl] alanyl-l- 
valyl-n1- ((1r,2z)-4-(benzyloxy) – 4 – oxo -1- [(3r)-2-oxopyrrolidin-3- 
yl] methyl] but-2-enyl)-l-leucinamide (3 HB, 3 HPI, − 7.4 BE), 22- 
hydroxyhopan-3-one (1 HB, 4 IR and − 8.6 BE), Chelidimerine (2 HB, 
6 HP and − 10.2 BE), Somniferine (3 HB, 3 HP and − 8.3 BE), 
Adlumidine (5 HB, 2 HP and − 8.2 BE), Withanone (4 HB, 3 HP and 
− 8.2 BE), Fumariline (3 HB, 5HP and − 7.8 BE), Sanguinarine (5 HB, 3 
HP and − 7.7 BE), Norsanguinarine (3 HB, 5 HP and − 7.5 BE) 

His41, Met49, Tyr54, Lys137, Phe140, Leu141, Asn142, 
Gly143, Ser144, Cys145, Cys148, Met49, His163, Met165, 
Glu166, Leu167, Pro168, Asp187, Gln189, Gln192, Thr199, 
Tyr239, Tyr273, Leu275 Leu286, Leu287 

[31,57] 

Tannins 
Phenylpropanoids 
Aromatic alcohol 

Pedunculagin (5 HB, 9 NBI and − 8.9 BE), punigluconin (6 HB, 12 
NBI and − 8.5 BE), taraxerol (11 NBI and − 7.2 BE), withametelin (8 
NBI and − 7.9 BE), tinosporide (2 HB, 12 NBI and − 8.5 BE), 
chebulagic acid (6 HB, 3 NBI and − 6.5 BE), chebulinic acid (9 HB, 9 
NBI and − 8.6 BE), gallotannins (5 HB, 10 NBI and − 8.3 BE), 
cinnamtannin-B1 (3 HB, 4 HP and − 8.4 BE), barlerinoside (7 HB, 
10 NBI and − 7.5 BE) 
Hydroxycinnamic acid (3 HB, 2A, 1 PA, and − 7.5 BE) 
Phenethyl alcohol (6 HB, 2 PA, − 7.3 BE) 

Thr24, Thr25, Thr26, His41, Cys44, Thr45, Ser46, Tyr54, 
Cys145, His163, Thr25, Met49, Phe140, Leu141, Asn142, 
Gly143, Ser144, Cys145, His164, Met165, Glu166, His172, 
Ala285, Asp187, Arg188, Gln189, Asp197, Thr199, Tyr239, 
Met276, Leu287, Leu286 
His41, His164, Gln192, Thr190, Pro168, Met165, 
Arg188, Arg187, Val186, Thr190, Gln192, Met49, Met165, 
Pro168 

[41,56,66] 
[51] 
[51] 

Standards N3 inhibitor (native cocrystal ligand) (8 HB, 6 HPI and − 7.9 BE/28 
IR and − 9.47 BE/23 IR and − 8.12 BE), nelfinavir (9 IR and − 12.20 
BE); prulifloxacin (10 IR and − 11.32 BE) and colistin (18 IR and 
− 13.73 BE), x77 (4 HB, 2 PS, 1 Pal, 1 Pam, 1 PP and − 8.4 BE), 
ribavirin (5 IR and − 5.43 BE), lopinavir (3 HB, 3 HP and − 9.41 BE), 
ritonavir (2 HB, 3 IR and − 6.8 BE), l 
X77 (4 HB, 2 PS, 1 PA1, 1 Pam, 1 PP and − 8.4 BE) 

Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, 
Glua47, Met49, Leu50, Pro52, Tyr54, Val104, Gln110, Ile106, 
Asp153, Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, 
Ser158, His163, His164, Met165, Glu166, Leu167, Pro168, 
Gly170, Hie172, Asp187, Arg188, Gln189, Thr190, Ala191, 
Gln192, Val202, Ile249, Pro293, Phe294 Val297. 

[20,27,31,67, 
73,84,109]  

RNA dependent RNA polymerase/nsp12 (viral replicase) 

Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Flavonoid Theaflavin (8 HB, 2 PA and − 9.1 BE), quercetin-3-O- (rutin) (9 HB, 
1 Psi and − 8.5 BE), quercetin-7-O-glucuronide (6 HB, 1 PA and 
− 8.2 BE), quercetin-3′-O-glucuronide (5 HB; 1 PAm; − 8.2 BE), 
quercetin-3-O-glucuronide (6 HB; 2 PA; 1 Pal; − 8.0 BE), quercetin- 
7-O-sulfate (6 HB, 1 PC, 1 Pal, and − 8.0 BE), quercetin-3-O-sulfate 
(2 HB, 2 PA and − 7.1 BE), quercetin-3′-O-sulfate (6 HB, 1 PC, 1 Pal 
and − 8.1 BE), quercetin (3 HB, 2 Psi and − 7.4 BE), kaempferol-3-O- 
rutinose (4 HB, 2 PA and − 9.2 BE), kaempferol -4′-O-glucuronide 
(6 HB, 1 PC and − 8.3 BE), kaempferol-3-O-glucuronide (6 HB, 2 PA, 
2 Pal and − 7.9 BE), kaempferol-7-O-glucuronide (8 HB, 1 PC and 
− 7.9 BE), kaempferol-7-O-sulfate (4 HB, 1 PC, 2 PA, 2 Pal and − 7.3 
BE), kaempferol-4′-O-sulfate (1 HB, 2 PA and − 6.7 BE), 
kaempferol-3-O-sulfate (1 HB, 2 PA and − 6.7 BE), kaempferol (2 
HB, 2 Psi and − 7.2 BE) 

Asp452, Lys545, Arg553, Ala554, Arg555, Thr556, Met615, 
Trp617, Asp618, Tyr619, Pro620, Lys621, Cys622, Asp623, 
Arg624, Thr687, Asn691, Ser759, Asp760, Asp761, Ser778, 
Ile779, Glu796, Lys798, Cys799, Trp800, Thr801, Glu811, 
Cys813, Ser814 

[20] 

Terpenoids Glycyrrhizic acid (7 HB, 1 CHB, 1 pi-alkyl, 16 VDW and − 9.9 BE), 
limonin (2 HB, 2 pi-alkyl, 1 pi-pi T shaped, 10 VDW and − 8.2 BE), 7- 
Deacetyl-7-benzoylgedunin (1 HB, 1 Alkyl/pi-alkyl, 2 CHB, 1 pi- 
anion, 3 pi-cation, 6 VDW and − 8.2 BE), limonin glucoside (3 HB, 1 
CHB, 4 Alkyl/Pi-Alkyl, 9 VDW and − 8.2 BE), 7- -deacetylgedunin (1 
HB, 2 CHB, 1 Pi-Alkyl, 1 Pi-sigma, 1 Pi-anion, 5 VDW and − 8.1 BE), 
obacunone (2 HB, 1 Alkyl, 1 Pi-Anion, 8 VDW and − 7.8 BE) 

His439, Asp452, Tyr456, Met542, Lys545, Ala547, Ile548, Ser 
549, Ala550, Lys551, Arg553, Ala554, Arg555, Thr556, 
Val557, Ala558, Gly616, Trp617, Asp618, Tyr619, Pro620, 
Cys622, Asp623, Arg624, Ser682, Asp760, Asp761, Ala762, 
Val763, Ala797, Lys798, Trp800, His810, Glu 811, Phe812, 
Ser814, Arg836 

[87] 

Standards Remdesivir (3 IR and − 6.3 BE), favipiravir (3 IR and − 3.6 BE) Lys551, Arg553, Arg555, Asp623, Ser682 [41] 

Helicase/nsp13 (viral protein) 

Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Flavonoids [46] 

(continued on next page) 
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5.1. Papain-like protease (PLpro)/nsp3 

Papain-like protease (PLpro)/nsp3 is a multidomain transmembrane 
protein with an active site containing catalytic triad residues (Cys-111, 
His-272 and Asp-286) in between thumb and palm protein domains 
(Figure-8). This protein is autocleaved from nsp3 protein via its intrinsic 
proteolytic activity. PLpro can also perform deISGylation of host pro
teins which could lead to inhibition of host innate immune response [18, 
40]. Due to its key role in viral replication and disease pathogenesis, it 

represents a promising drug target [52]. The docking score and the 
prediction of the molecular interactions showed that phytochemicals 
oleanolic acid, 3β-acetoxyolean-12-en-27-oic, and isovitexin could effi
ciently interact with the PLpro mainly by hydrogen bond [55]. Another 
study showed that catechins from green tea can interact to the S1 
ubiquitin-binding site of PLpro which might lead to inhibition of its 
protease enzymatic function as well as abrogation of SARS-CoV-2 
inhibitory role on interferon-stimulated gene system [18](Table 1). 

Table 1 (continued ) 

Tomentodiplacone B (9 IR and − 8.4 BE), osajin (4 IR and − 8.2 BE), 
sesquiterpene glycoside (9 IR and − 8.2 BE), rhamnetin (9 IR and 
− 8.1 BE), silydianin (6 IR and − 8.1 BE) 

Val6, Asn9, Arg21, Arg22, Pro23, Phe24, Glu128, Arg129, 
Leu132, Phe133, Glu136, Arg178, Asn179, Pro234, Pro238, 
Ser310, Pro406, Ala407, Pro408, Asp534, Arg560 

Standards Nelfinavir (6 IR and − 6.2 BE), remdesivir (8 IR and − 6.8 BE), 
prulifloxacin (7 IR and − 8.1 BE) 

Val6, Arg21, Arg129, Leu132, Glu136, Lys139, Glu142, 
Asn177, Asn179, Tyr180, Pro234, Pro238, Cys309, Met378, 
Asp383, Pro406, Ala407, Pro408, Arg409, Thr410, Leu412, 
Leu417, Arg560 

[46] 

Endoribonuclease/nsp15 (viral protein) 

Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Flavonoid Naringin (5 IR and − 7.8 BE), taxifolin (6 IR and − 7.2 BE), luteolin 
(5 IR and − 7.2 BE), apigenin (4 IR and − 7.2 BE), myricetin (4 IR and 
− 7.0 BE), wogonin (3 IR and − 6.9 BE), epigallocatechin (3 IR and 
− 6.8 BE), chlorogenic acid (6 IR and − 6.8 BE), afromosin (4 IR and 
− 6.7 BE), rutin (5 IR and − 7.8 BE), silymarin (IR and − 8.0 BE). 

His235, ASP240, Gln245, Gly248, His250, Lys290, Val292, 
Ser294, Val339, Glu 340, Thr341, Tyr343, Pro344, Leu346 

[106] 

Beta-diketone Demethoxycurcumin (5 IR and − 7.51 BE), quercetin (4 IR and 
− 6.49 BE), bisdemethoxycurcumin (1 IR and − 6.56 BE), curcumin 
(1 IR and − 6.48 BE), myricetin (4 IR and − 6.52 BE), bergapten (4 IR 
and − 5.92 BE), scutellarin (4 IR and − 6.97 BE), isoflavone (2 IR and 
− 5.47 BE) 

His235, Glu340, Thr341, His250, Lys290; Ser294, Gly248 [73] 

Terpenoid Saikosaponin-V (8 HB, 9 HP and − 8.35 BE), saikosaponin-U (8 HB, 
8 HP and − 7.27 BE), saikosaponin-C (6 HB, 9 HP and − 6.98 BE), 
saikosaponin-K (5 HB, 10 HP and − 6.79 BE), saikosaponin-1b (4 
HB, 8 HP and − 6.36 BE), alpha-amyrin (1 IR and − 8.1 BE), pomolic 
acid (2 IR and − 7.9 BE), carnosol (2 IR and − 7.8 BE), arjunolic acid 
(1 IR and − 7.6), asiatic acid (5 IR and − 7.4 BE), betulinic acid (1 IR 
and − 7.3 BE), platanic acid (5 IR and − 7.3 BE), alphitolic acid (1 IR 
and − 7.2), Asiatic acid (5 IR and − 7.4), ursonic acid (5 IR and − 8.4 
BE). 

Gly230, Ala232, Glu234, Hip235, Asp240, Gly245, Leu246, 
Gly247, Gly248, His250, Asn278, Lys290, Cys291, Val292, 
Cys293, Met331, Ala232, Trp333, Val339, Glu340, Thr341, 
Tyr343, Pro344, Leu346 

[75,106]  

Coumarin Beta sitosterol (1 IR and − 8.1 BE), gliotoxin (3 IR and − 6.7 BE), 
psoralen (5 IR and − 6.7 BE), carinatine (4 IR and − 6.6 BE), 
rhinacanthin (6 IR and − 6.5 BE), caffeic acid (4 IR and − 6.3 BE), 
coriandrin (3 IR and − 6.2 BE), scopoletin (5 IR and − 6.1 BE), 
cordycepin (4 IR and − 5.6 BE), ricinoleic acid (3 IR and − 5.0 BE), 
alpha asarone (1 IR and − 4.9 BE), valproic acid (4 IR and − 4.6 BE) 

His235, Gly248, His250, Lys290, Val292, Cys293, Ser294, 
Thr341, Tyr343. 

[106] 

Organosulfur allicin (3 IR and − 3.8 BE) His235, Thr341, His250 [106] 
Alkaloid Taspine (4 IR and − 7.3 BE), ajmalicine (5 IR and − 8.1 BE), 

reserpine (4 IR and − 7.4) 
His235, Thr341, Gly248, His250, Lys290, Glu340 [106] 

Steroids Asparoside-C (5 HB and − 7.16 BE), asparoside-F (7 HB and − 6.6 
BE), asparoside-D (6 HB and − 6.4 BE), rutin (5 HB), racemoside-A 
(4 HB and − 5.99) 

Gly230, Ala232, Glu234, Hip235, Val339, Asp240, His243, 
Gln245, His250, Asn278, Val292, Glu340, Thr341, Leu346 

[16] 

Standards Hydroxychloroquine (4 IR and − 5.8 BE), Nelfinavir (4 IR and − 7.3 
BE), ribavirin (9 IR and − 5.84) 

Thr26, His235, His250, Gly248, Lys290, Val-292, Ser294, 
Thr341, Tyr 343, Pro344,  [73,106] 

2′-O- methyl transferase/nsp16 (viral protein) 

Class Small molecule inhibitors Interacting residues with different classes of phytocompounds References 

Flavonoids, Alkaloids, 
others 

Eryvarin-M (9 IR and − 8.6 BE), silydianin (9 IR and − 8.5), osajin (6 
IR and − 8.2 BE), raddeanine (8 IR and − 8.2 BE) 

Asp6873, Asn6899, Asp6897, Amet6929, Leu6898, Asn6841, 
Lys6844, Cys6913, Lys6968, Phe6947, Lys6944, Asn6899, 
Asp6928, Cys6913, Gly6911, Leu6898, Met6929, Asp6897, 
Asp6928, Met6929, Cys6913, Leu6898, Gly6869, Cys6898, 
Asp6928, Asp6897, Asp6912, Cys6913, Leu6898, Asp6897, 
Gly6871, Asn6811, Met6929, Phe6947. 

[46] 

Standards Nelfinavir (9 IR and − 8.2 BE), remdesivir (9 IR and − 7.0 BE), 
prulifloxacin (12 IR and − 7.6 BE) 

Leu6898, Tyr6930, Gly6871, Pro6932, Lys6968, Lys6844, 
Gly6911, Met6929, GLy6969, Pro6932, Lys6968, Lys6844, 
Leu6898, Lys6996, Glu7001, Lys6844, Lys6844, Lys6968, 
Asp6928, Met6929, Cys6913, Asp6897, Asn6841, Gly6871, 
Leu6898, Phe6947, Tyr6930, Asp6897, Asn6899, Pro6932, 
Asp6931 

[46] 

Note: BE - binding energy, HB - hydrogen bond, HP/HPI - hydrophobic interactions, NBI = non-bonding interactions, IR-interacting residues, EI- electrostatic in
teractions, CHB –carbon-hydrogen bond, VDW – van der Waals interactions. PS: π-sulfur; Pal: π-alkyl; PP: π-π; PA: π-anion; PC: π-cation; Psi: π-sigma; Pam: π-amide; Pi- 
H = π-hydrogen bond, PA- π-alkyl; A-alkyl. 
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5.2. 3-chymotrypsin-like protease (3-CL pro)/nsp5 

The 3CLpro, also called as viral main protease (or nsp5), consists of 
N-terminal finger domain (1–9 amino acids), domain-1 (10–99 amino 
acids), domain-2 (100–182 amino acids) and the C-terminal domain-3 
(amino acid residues 198–303) [40,94]. The catalytic dyad consists of 
His-41 and Cys-145 (Fig. 9). The dimerization of 3-CLpro is required for 
its proteolytic activity. 

In-silico screening followed by molecular docking analyses suggested 
that the phytochemicals bisdemethoxycurcumin, scutellarin, desme
thoxycurcumin, quercetin, myricetin, luteolin and mundulinol could 
potentially inhibit 3-CL pro as these compounds exhibit low binding 
energy [25,73]. Another study recommended certain compounds such 
as catechin, naringenin, kaempferol, glucosides, quercetin, and 
epicatechin-gallate as potential inhibitors of 3CLpro [43]. The phyto
compounds like melitric acid-A, salvianolic acid-A, withanoside-V, and a 
few bioactive compounds from Calendula officinalis showed higher 
binding affinities with 3-CLpro than the N3 and lopinavir (standards). 
Also, they could have important interactions with the amino acid resi
dues of the catalytic dyad [20,21,24,56,84]. In another study, a database 
of medicinal plants consisting of more than 30,000 potential anti-viral 
phytochemicals was screened, and the top hits that could inhibit 
SARS-CoV-2 3CLpro function and viral RNA replication were selected. 
These hits include myricitrin, 5,7,3′,4′-tetrahydroxy2’-(3,3- dimethy
lallyl) isoflavone, methyl rosmarinate, (2S)-eriodictyol 
7-O-(6′′-O-galloyl)-beta-D-glucopyranoside, calceolarioside B, 3,5,7,3′, 
4′,5′-hexahydroxy flavanone-3-O-beta-D-glucopyranoside, myricetin 
3-O-beta-D-glucopyranoside, licoleafol, amaranthine, colistin, nelfina
vir, and prulifloxacin [67]. Terpenoids (6-Oxoisoiguesterin and 
22-hydroxyhopan-3-one) and some anthocyanin derivatives could sta
bly interact with catalytic dyad and other crucial residues via hydrogen 
and hydrophobic interactions [27,31].Epigallocatechin, gallocatechin, 
and epicatechin from green tea also showed the potential to restrict the 
activity of 3-CL pro (Ghosh et al., 2020[101]). Similarly, several 

phytocompounds bind firmly at the catalytic dyad (Cys-145 and His-41) 
and other crucial amino acid residues (Phe-140, Leu-141, Asn-142, 
Gly-143, Ser-144, Glu-166, His-163, His-164, Met-165, Leu-167, 
Pro-168, His-172, Asp-187, Arg-188) of 3-CL pro via making hydrogen 
bonds, hydrophobic bonds and other interactions (like Pi-alkyl and Pi-Pi 
T-shaped, van der Waals etc). Phytocompounds extracted from Avin
cennia officinalis and Iranian medicinal plants have also been proposed 
as inhibitors of 3-CLpro [51,57]. Tanshinones, a class of natural phy
tocompounds have been found to inhibit 3-CLpro activity of SARS-CoV 
in-vitro enzymatic assay studies (Park et al., 2012[115]). Likewise, as 
listed in Table-1 and shown in Figure-9, several phytocompounds have 
ability to block 3-CLpro preferentially by interacting with its domain-1 
and domain-2. 

5.3. RNA dependent RNA polymerase/nsp12 

With the help of accessory subunits nsp7 and nsp8, the catalytic 
subunit nsp12 of RdRp plays a crucial role in the transcription cycle of 
SARS-CoV-2 [88]. Its structure is highly similar to SARS-CoV. The 
nucleotide triphosphate (NTP) entry channel comprises positively 
charged amino acid residues Lys-545, Arg-553, and Arg-555. The right 
hand-like structure of the RdRp domain is further divided into a 
finger-domain (398–581 and 628–687 amino acids), a palm-domain 
(582–627 amino acids and 688–815 amino acids), and a thumb 
domain (816–919 amino acids). Two Zn ions are also required to sta
bilize three-dimensional structure of the RdRp [3,45] (Figure-10). 
Tyr-618, Asn-691, Met-755, Ile-756, Leu-757, Ser-759, Asp-760, 
Asp-761, Val-763, Phe-812, Cys-813 and Ser-814 are some of the 
amino acids residues that are crucial in interacting with the nsp7/8 
complex. In addition, Asp-761 and Asp-762 are active site residues [3]. 

Several compounds have been analyzed in-silico against these 
important sites to investigate their possible antiviral viral targets for the 
SARS-CoV-2. Green tea polyphenols EGCG and theaflavin gallates 
including theaflavin-3-O-gallate (TF2a), theaflavin-3′-digallate (TF2b) 

Fig. 9. The interaction sites of several classes of phytocompounds on different domains of SARS-CoV-2 3-chymotrypsin like protease (3CLpro) including 
the catalytic dyad residues (His-41 and Cys-145; shown in purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) (3CLpro domain organization is adapted from Joshi et al., 2020 [40]) 

Fig. 10. Molecular structure of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and the interaction sites of flavonoids and and terpenoids on its different 
domains(protein domain organization is adapted from Zhang et al., 2020[120]) 
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Table 2 
Effect of phytocompounds on targeted SARS-CoV-2 proteins/replication/infection in cell-free and cell-based studies.  

Sl 
no 

Crude extract/compound Virus/RNA/enzyme 
inhibition/cytotoxicity 

Inhibitory assay Dosage (IC50/EC50/CC50) References 

Flavonoid 

01 Baicalein 3CLpro - Invitro IC50 0.39 ± 0.11 μM [50] 
SARS-CoV-2 replication Vero cells EC50 2.92 ± 0.06 μM [50] 
Cytotoxicity Vero cells CC50 >500 μM [50] 

02 Baicalin 3CLpro In-vitro IC50 83.4 ± 0.9 μM [50] 
03 Scutellarein 3CLpro In-vitro IC50 5.80 ± 0.22 μM [50] 
04 Dihydromyricetin 3CLpro In-vitro IC50 1.20 ± 0.09 μM [50] 
05 Quercetagetin 3CLpro In-vitro IC50 1.24 ± 0.14 μM [50] 
06 Myricetin 3CLpro In-vitro IC50 2.86 ± 0.23 μM [50] 
07 Baicalin 3CLpro (FRET) In-vitro IC50 6.41 ± 0.95 μM [78] 

Replication inhibition Vero E6 EC50 27.87 ± 12.95 μM [78] 
Cytotoxicity Vero E6 CC50 >200 μM [78] 

08 Baicalein 3CLpro (FRET) In-vitro IC50 0.94 ± 0.20 μM [78] 
Replication Vero E6 EC50 2.94 ± 1.19 μM [78] 
Cytotoxicity Vero E6 CC50 >200 μM [78] 

09 Theaflavin 3CLpro (FRET) In-vitro IC50 8.44 μg/mL [39] 
Cytotoxicity HEK293T CC50 >40 μg/mL [39] 

10 Myricetin 3CLpro (FRET) In-vitro IC50 0.2 μM [107] 
11 Baicalin 3CLpro (FRET) In-vitro IC50 34.71 μM [103] 
12 Herbacetin 3CLpro (FRET) In-vitro IC50 53.90 μM [103] 
13 Pectolinarin 3CLpro (FRET) In-vitro IC50 51.64 μM [103] 
Terpenoids 
14 Glycycrrhizin (triterpenoid 

saponin) 
3CLpro In-vitro IC50 30 μM (0.024 mg/mL) [86] 
Virus titer tit Vero cells TCID50 0.44 mg/mL [86] 
Cytotoxicity Vero cells  4 mg/mL (no cytotoxicity) [86] 

15 Δ9-Tetrahydro cannabinol Antiviral activity Vero cells EC50 13.17 μM [97] 
Cytotoxicity Vero cells CC50 29.34 μM [97] 

16 Δ9 -THC Antiviral activity Vero cells EC50 10.25 μM [97] 
Cytotoxicity Vero cells CC50 25.79 μM [97] 

17 CBN Antiviral activity Vero cells EC50 11.07 μM [97] 
Cytotoxicity Vero cells CC50 19.9 μM [97] 

18 CBD Antiviral activity Vero cells EC50 7.91 μM [97] 
Cytotoxicity Vero cells CC50 16.72 μM [97] 

19 CBDA Antiviral activity Vero cells EC50 37.61 μM [97] 
Cytotoxicity Vero cells CC50 59.53 μM [97] 

20 Andrographolide SARS-CoV2 infection in- 
vitro 

Vero E6 EC50 6.58 μM [42] 

Plaque reduction Vero E6 EC50 0.28 μM 
Cytotoxicity  CC50 27.77 μM 

21 Andrographolide Plaque reduction Calu-3 cells EC50 0.034 (μM) [72] 
Cytotoxicity a) HepG2 

b) imHC 
c) HK-2 
d) Caco-2 
e) Calu-3 
f) SH-SY5Y 

CC50 

CC5 

CC5 

CC5 

CC5 

CC5 

a) 81.52 μM 
b) 44.55 μM 
c) 34.11 μM 
d) 52.30 μM 
e) 58.03 μM 
f) 13.19 μM 

22 Arteether (sesquiterpene 
lactone) 

SARS-CoV-2 infection Vero E6 EC50 31.86 ± 4.72 μM [14] 
Cytotoxicity Vero E6 CC50 >200 μM [14] 

23 Artemether (sesquiterpene 
lactone) 

SARS-CoV-2 infection Vero E6 EC50 73.80 ± 26.91 μM [14] 
Cytotoxicity Vero E6 CC50 >200 μM [14] 

24 Artemisic acid (sesquiterpene 
lactone) 

SARS-CoV-2 infection Vero E6 EC50 >100 μM [14] 
Cytotoxicity Vero E6 CC50 >200 μM [14] 

25 Artemisinin (sesquiterpene 
lactone) 

SARS-CoV-2 infection Vero E6 EC50 64.45 ± 2.58 μM [14] 
Cytotoxicity Vero E6 CC50 >200 μM [14] 

26 Artemisone (sesquiterpene 
lactone) 

SARS-CoV-2 infection Vero E6 EC50 49.64 ± 1.85 μM [14] 
Cytotoxicity Vero E6 CC50 >200 μM [14] 

27 Dihydroartemisinin 
(sesquiterpene lactone) 

SARS-CoV-2 infection Vero E6 EC50 13.31 ± 1.24 μM [14] 
Cytotoxicity Vero E6 CC50 31.44 ± 0.73 μM [14] 

28 Artesunate (sesquiterpene 
lactone) 

SARS-CoV-2 infection Vero E6 EC50 12.98 ± 5.30 μM [14] 
Cytotoxicity Vero E6 CC50 55.08 ± 2.32 μM [14] 

29 Arteannuin (sesquiterpene 
lactone) 

SARS-CoV-2 infection Vero E6 EC50 10.28 ± 1.12 μM [14] 
Cytotoxicity Vero E6 CC50 71.13 ± 2.50 μM [14] 

30 Cannabidinol SARS-CoV-2 infection Vero E6 CC50 71.13 ± 2.50 μM 
1.25 μM (SARS CoV2γ) 
0.85 μM (SARS CoV2α) 
0.86 μM (SARS CoV2β) 
0.63 μM (SARS CoV2) 

[14] 
[61] Cytotoxicity A549-ACE2 EC50 

Tannins 
31 Punicalin RBD-ACE2 binding assay 

(ELISA) 
Invitro IC50 0.14 mg/mL [80] 

32 
33 
34 
35 

Corilagin 
Corilagin 
Corilagin (RAI-S-37) 
Corilagin (RAI-S-37) +

SARS-CoV-2 inhibition 
RBD-ACE2 binding assay 
(ELISA) 
Cytotoxicity 

Vero 
In-vitro 
HEK293 cell 
LO2 cells 

EC50 

IC50 

CC50 

CC50 

0.13 μmol/L 
24.9 μM 
>100 
>100 

[108] 
[93] 
[93]  

(continued on next page) 
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Table 2 (continued ) 

Sl 
no 

Crude extract/compound Virus/RNA/enzyme 
inhibition/cytotoxicity 

Inhibitory assay Dosage (IC50/EC50/CC50) References 

Flavonoid 

36 
37 
38 

Remidesivir 
Corilagin (RAI-S-37) 
Corilagin (RAI-S-37) 
Corilagin (RAI-S-37) 

Cytotoxicity 
Cytotoxicity 
SARS-CoV-2 RdRp inhibition 
SARS-CoV-2 RdRp inhibition 
SARS-CoV-2 RdRp inhibition 
SARS-CoV-2 RdRp inhibition 
SARS-CoV-2 infection 

Beas-2B cell 
HEK293 cell transfected 
with nsp7 + nsp8 + nsp12 
HEK293 transfected with 
nsp7 + nsp8 + nsp12 
HEK293 transfected with 
nsp7 + nsp8+nsp12/ 
nsp10+nsp14 
HEK293 transfected with 
nsp7 + nsp8+nsp12/ 
nsp10+nsp14 
Vero cells 

CC50 

EC50 

EC50 

EC50 

EC50 

EC50 

>100 
3.33 ± 0.52 μmol/L 
1.25 ± 0.52 μmol/L 
3.65 ± 0.56 μmol/L 
1.84 ± 0.27 μmol/L 
0.13 μmol/L 

[108] 
[108] 
[108] 
[108] 

39 EGCG 3CLpro (FRET) In-vitro IC50 7.58 μg/mL [39] 
Cytotoxicity HEK293T CC50 >40 μg/mL 

Others 
40 Cepharanthine (alkaloid) SARS-CoV2 infection Vero cells EC50 2.8 μM [38] 

CC50 12.9 μM 
41 Emetine (alkaloid) SARS-CoV2 infection Vero cells EC50 0.000397 μM [38] 

CC50 1.53 e + 6 μM 
42 6-Gingerol (beta-hydroxy 

ketone) 
SARS-CoV2 infection Vero E6 EC50 >100 μM [42] 
Cytotxicity Vero E6 CC50 >100 μM 

43 Panduratin A 
(Diarylheptanoid) 

SARS-CoV2 post infection Vero E6 EC50 0.81 μM [42] 
Vero E6 CC50 14.71 μM 

SARS-CoV2 pre-entry Vero E6 EC50 5.30 μM 
Vero E6 CC50 43.47 μM 

Plaque reduction Vero E6 EC50 0.078 μM 
SARS-CoV2 infection Calu3 EC50 2.04 μM 
Cytotoxicity Calu3 CC50 43.92 μM 
Plaque reduction Calu3 EC50 0.53 μM 

44 Emetine hydrochloride 
(alkaloid) 

SARS-CoV-2 virus reduction Vero E6 EC50 0.46 μM [111] 
CPE inhibition Vero E6 EC50 1.5625 μM [111] 
Cytotoxicity Vero E6 CC50 56.46 μM [111] 

45 Phillyrin (KD-1) 
Lignan) 

Anti-HCoV-229E Vero E6 EC50 64.53 μg/ml [113] 
Cytopathic effect Vero E6 EC50 63.90 μg/ml [113] 
Cytotoxicity Vero E6 CC50 1959 μg/ml [113] 

Huh7 CC50 1034 μg/ml [113] 
Reduce the production of 
proinflammatory cytokines 

Vero E6 –CPE 
(cytopathic 
effect) 

(250, 125, and 62.5 μg/ml of KD1) 
TNF-α, IL-6, IL-1β, MCP-1, and IP-10) 
at the mRNA levels. 

[113] 

46  

47 

Cepharanthine 
(bisbenzylisoquinoline 
alkaloid) 
Lycorine (alkaloid) 

SARS-CoV-2 RNA VeroE6/TMPRSS2 EC50 0.35 μM, [114] 
Cytotoxicity 
SARS-CoV-2 infection 

VeroE6/TMPRSS2 
Vero cells 

CC50 

EC50 

25.1 μM 
0.878 μM 

[114] 
[112] 

48 Digoxin (cardiotonic 
glycoside) 

SARS-CoV-2 infection Vero cells EC50 0.043 μM [110] 
Cytotoxicity Vero cells CC50 >10 μM [110] 

49  

50 
51 
52 

Ouabain (Cardiac glycoside 
similar to digitoxin) 
Herbacetin 
Pectolinarin 
Rhoifolin 

SARS-CoV-2 infection Vero cells EC50 0.024 μM [110] 
Cytotoxicity 
3CLpro (FRET) 
3Clpro (FRET) 
3CLLpro (FRET) 

Vero cells   

in-vitro 
in-vitro in-vitro 

CC50 

IC50 

IC50 

IC50 

>10 μM 
33.17 μM 
27.45 μM 
37.78 μM 

[110] 
[71] 

Crude extracts 
53 Andrographis paniculata extract SARS-CoV2 infection Vero E6 EC50 68.06 μg/ml [42] 

Cytotoxicity  CC50 >100 μg/ml 
54 Andrographis paniculata extract Plaque assay Calu-3 cells EC50 0.036 (μg/mL) [72] 
55 Zingiber officinale rhizome 

extract 
Inhibition of SARS-CoV2 
infection 

Vero E6 EC50 29.19 μg/ml [42] 

Cytotoxicity Vero cells CC50 52.75 μg/ml 
Plaque reduction Vero cells EC50 1.45 μg/ml 

56 Boesenbergia rotunda (extract) SARS-CoV2 infection Vero cells EC50 3.62 μg/mL [42] 
Vero cells CC50 28.06 μg/mL 

57 
58 

Scutellaria baicalensis extract 
Pomegranate peel extract 

3CLpro assay In-vitro IC50 8.52 ± 0.54 μg/mL [50] 
SARS CoV2 RNA replication Vero cells EC50 0.74 ± 0.36 μg/mL [50] 
Cytotoxicity 
RBD-ACE2 binding assay 
(ELISA) 

Vero cells 
In-vitro 

CC50 

IC50 

>500 μg/mL 
0.06 mg/mL  [80]  
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and theaflavin 3,3′-digallate (TF3) have the ability to form stable bound 
conformations with the RdRp protein and could interact with the cata
lytic site indicating their potential to serve as inhibitors [81]. 

Several alkaloids from Argemone mexicana and Clerodendrum spp. 
could be a potential inhibitory candidates against the SARS-CoV-2 RdRp 
protein [41,62] (Table-1). 

5.4. RNA helicase (nsp13) 

It is a multi-functional magnesium ion-dependent protein that be
longs to the helicase superfamily-1 (SF-1) and has 5′ to 3’ based RNA and 
DNA unwinding activities [121]. Compounds such as 
tomentodiplacone-B, sesquiterpene glycoside, rhamnetin, osajin, and 
silydianin have been shown to exhibit better docking results than those 
of remdesivir, nelfinavir, and prulifloxacin (standards) [46] (Table-1). 

5.5. Endoribonuclease/nsp15 

Endoribonuclease/nsp15 cleaves RNA genome into multiple sub
genomic RNAs (sgRNAs). Based on the docking score, phytocompounds 
asparoside-C, asparoside-D, asparoside-F, racemoside-A, and rutin (from 
Asparagus racemosus) were found to be effective against nsp15 endor
ibonuclease [16]. The 100 nano-second based molecular dynamic 
simulation study and molecular mechanics-generalized born solvent 
accessibility calculations demonstrated that some phytoconstituents 
such as withanolide-N, ashwagandanolide, withanoside-X, and 
dihydrowithaferin-A from Withania somnifera could potentially suppress 
the nsp15 endoribonuclease activity of SARS-CoV-2 [17]. Another study 
revealed the binding capacity of silymarin, sarsasapogenin, ursonic acid, 
rosmarinic acid, curcumin, ajmalicine, novobiocin, aranotin, gingerol, 
and alpha terpinyl acetate to nsp15 protein [106]. 

5.6. 2′-O-methyltransferase (2′-O-MTase)/nsp16 

This is a highly conserved protein of coronaviruses. It is known to 
play an essential role in viral replication and evasion of host cell innate 
immunity [64]. Phytocompounds like eryvarin-M, osajin, raddeanine, 
and silydianin have been found to exhibit the best docking results [46] 
(Table-1). 

6. SARS-CoV-2 assembly inhibitors 

Structural proteins, membrane, envelope and nucleocapsid, play 
essential roles in the assembly and formation of the infectious virion 
particles. Therefore, targeting these proteins could be a promising 
approach to inhibit virus multiplication and transmission. 

6.1. Envelope protein 

E protein (8–12 kDa) is involved in host cell binding, penetration, 
virion assembly, and budding. It is a transmembrane ion channel protein 
with an N-terminal ectodomain and an endodomain at C-terminus. 
Structural insights revealed that compounds from Withania somnifera 
could block the ion channel activity of E protein by binding to the pore 
region [5]. 

6.2. Nucleocapsid protein 

N protein is a 419 amino acid protein with conserved N-terminal 
domain (NTD), Serine/Arginine rich motif (SR) domain, central linker 

region, and a C-terminal domain (CTD). It plays an essential role in viral 
genome packaging and efficient replication. The N protein is highly 
immunogenic and is produced in high amounts during infection [22,96]. 

An in-silico screening study revealed emodin, anthrarufin, alizarine, 
aloe-emodin, and dantron as phytocompounds with good binding af
finity with the N-terminal domain of N protein. ADMET prediction 
revealed that anthrarufin, emodin, aloe-emodin, alizarine, and dantron 
could be potential candidate drugs to treat COVID-19 [69]. 

7. In vitro and in vivo anti-SARS-CoV-2 activities of plant-derived 
compounds 

Plant-based polyphenols (such as phenolic acids, anthocyanins, 
lignans, flavonoids, and stilbenes) and carotenoids (such as xantho
phylls and carotenes) are being used to generate antivirals against 
various coronaviruses. Recent data on plant-derived compounds showed 
their potent and significant SARS-CoV-2 inhibition activity in-vitro and 
in-vivo. A comprehensive study, conducted by Jia-Tsrong Jan et al., 
screened 190 supplements as well as traditional medicines from Chinese 
herbs to identify the SARS-CoV-2 infection inhibitors in-vitro in Vero-E6 
cells. in-vitro enzymatic assays were coupled with in-silico modelling to 
confirm the antiviral activity against SARS-CoV-2 protease and RNA- 
dependent-RNA-polymerase (Jan et al., 2021). Further, the efficacy of 
these promising compounds was tested in a hamster challenge model. 
This study identified the anti-SARS-CoV-2 activity in nelfinavir, Perilla 
frutescens, mefloquine, and Mentha haplocalyx [38]. This observation is 
very encouraging and warrants an urgent need for testing several other 
potent phytocompounds in small animal models to speed up the process 
of developing COVID-19 therapeutics. 

A wide range of natural compounds has been proposed to be used in 
treating COVID-19(either alone or in combination with FDA-approved 
drugs) including ginkgolic acid, shiraiachrome A, resveratrol, and bai
calein. Moreover, ginkgolic acid is a specific covalent inhibitor of SARS- 
CoV-2 cysteine proteases, targeting PLpro and 3-CLpro in-vitro [93]; and 
[15] (please refer Table 2 and 3 for antiviral and immunomodulatory 
functions of small molecule inhibitors). 

In another study, 122 Thai natural products for anti-SARS-CoV-2 
activity were screened using fluorescence-based nucleoprotein detec
tion combined with viral plaque reduction assay. This work showed that 
the extract of Boesenbergia rotunda and its phytochemical compound, 
panduratin A reduce SARS-CoV-2 infectivity in Vero E6 cells at pre-entry 
and post-infection phases [42]. Artemisinin B, an antimalarial drug 
derived from Chinese herbs, also showed anti-SARS-CoV-2 in these cells 
by blocking SARS-CoV-2 at the post-entry level [14]. 

Anti-SARS-CoV-2 activity evaluation of Andrographis paniculata 
extract and Andrographolide in human lung epithelial-carcinoma cell- 
line (Calu-3) using a high-content imaging platform in combination with 
plaque reduction assay showed potent inhibition of SARS-CoV-2 infec
tion with minimal cytotoxicity [72]). 

In another study, Glycyrrhizin showed potential antiviral activity 
against SARS-CoV-2 by inhibiting the viral 3-CL pro that is essential for 
viral replication [86]. Similarly, several other plant-derived compounds 
including tea polyphenols EGCG, theaflavin, baicalein, and shuan
ghuanglian inhibit 3-CLpro activity and the viral replication in Vero E6 
cell line [39,50,78]. Overall, the potent antiviral and anti-inflammatory 
activities of plant-derived compounds further warrants need of devel
oping phytochemical-based SARS-CoV-2 treatment options. 
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7.1. Clinical evaluation of plant-based therapeutics 

In-depth systemic randomized and non-randomized ongoing clinical 
trials of single plant species (Tinospora cordifolia, Nigella sativa, Boswellia 
serrata, Acai Palm Berry, Caesalpinia spinosa, Cinchona/Stevia, Cannabis 
sp, Brazilian Green Propolis), plant-based bioactive compounds (EGCG, 
quercetin, silymarin, hesperidin, escin, colchicine, resveratrol, canna
bidiol, melatonin etc.), as well as poly-herbal formulations (ArtemiC, 
Drug – ADAPT-232, Dietary supplement: Inflammation-I, Inflammation- 
II, Inflammation-III, Tomeka, Shanshamani Vati Plus, Dietary Supple
ment: QuadraMune (TM), Ayurvedic formulation, Dietary Supplement: 
Cretan IAMA, Individualized-Chinese herbal medicine) showed their 
potential to interfere with COVID-19 pathogenesis via inhibiting virus 
replication, virus-mediated pneumonia as well as inmmune dysregula
tion such as cytokine storming (Supplementary Table). Certain anti- 
inflammatory herbal medicines from Andrographis paniculata, Citrus 
spp, and Cuminum cyminum can relieve fever and cough in COVID-19 
patients [37]). Few other medicinal plants such as Glycyrrhiza glabra, 
Thymus vulgaris, Allium sativum, Althea officinalis, Panax ginseng and 
constituents of Camellia sinensis may modulate the immune system and 

provide supportive therapy against COVID-19 via upregulating levels of 
interleukins (IL-1α, IL-1β), monocytes, and lymphocytes in patients [4, 
37]. Apart from these, green tea polyphenols can prevent airway 
blockage by reducing mucin hypersecretion, a phenomenon seen in 
COVID-19 patients [81]. Moreover, several plant species act as good 
source of expectorants as they can elevate the water contents of respi
ratory mucus or diluent of mucus and thus also contributing towards 
prohibiting airway blockage [26,44]. 

8. Conclusions 

Since December 2019, SARS-CoV-2 infection and transmission have 
been a huge concern worldwide. Currently available therapies inhibit 
SARS-CoV-2, however, they could be associated with severe side effects 
as well as drug-nutrition interactions which could be harmful to severely 
infected patients. 

On other hand, the complementary approach including plant- 
derived compounds could be used in controlling COVID-19 in the 
future. Our review herein presented a compilation of in-silico, in-vitro, 
cell culture , and in-vivo studies on numerous plants, plant formulations, 

Table 3 
Effect of small molecule inhibitors on host factors as well as on different cytokines (immunomodulatory functions)  

Sl 
no 

Compound/ 
plant 

Properties Biological/immune-action Studies in In-vivo models References 

01 Quercetin Impacts on ACE2 and 
Furin 

a) Gene silencing 
b) Expression studies 
c) Transgenic mouse models 

Quercetin affected ACE2 expression. In 
addition, it was found that it could alter the 
expression of 98 of 332 (30%) genes which 
encode human proteins that serve as target for 
the SARS-CoV-2 

[29] 

02 citral and 
lemon grass 

anti-inflammatory action Inhibits IL-6, IL-10, TNF-α, IL-4, IFNϒ and IL-1β, 
either release or production and NLRP3 
inflammasome activation via blocking activites of 
proteins, NF-kB,p65, ATP-induced caspase-1 

In macrophages challenges with LPS-induced 
mouse ASLN model 

[98,104] 

03 Ginsenoside anti-inflammatory action Down-regulates IL-6, TNF-α, mRNA expression 
via blocking the activation of NF-kB 

II/R induced lung injury in-vivo [102] 

04 Withaferin-A Immunosuppressant Affect the release of TNF-α, IL-1α, IL-1β, IL-5, IL-3, 
IL-6, IL-8, IP-10, CCL2, MCP-1, SDF-1α, MIP-1α, 
MIP-1β and GM-CSF. 

ATP-stimulated monocyte-derived THP-1 cells. 
Also mouse and human islet cells – in vitro. 

[77,99] 

05 Kaempferol anti-inflammatory action TNF-α, IL-1β, IL-6, IL-8 via inhibiting the 
activation of PKC θ 

human mast cells [105]  

06      EGCG      Regulation of cytokine 
driven signaling 
pathways  

Downregulating the IL-6 and IL-6 driven JAK- 
STAT pathway 
Similarly by affecting IL-1 driven MAPK pathway 
Reduced the protein levels of the receptors 
including CD11a, CXCR3, and CCR2 in human T- 
lymphocyte cells      

Primary human melanocytes, human T cells or 
purified CD8+ T cells from PBMC     

[18,60]       

– Prevents the cytokine storm and mucous 
hypersecretion in COVID-19  

[81] 

07 Cannabidol anti-inflammatory and 
immunosuppressive 

These effects are mediated by inhibition of pro- 
inflammatory cytokine release (e.g. tumor 
necrosis factor-a, Interferon-gamma, IL-1b, IL-6, 
and IL-17) and stimulation of several anti- 
inflammatory cytokine production (e.g. IL-4, IL-5, 
IL-10, and IL-13). 

COVID 19 Patients https://clinicaltr 
ials.gov/ct2/sh 
ow/NCT04731116 

08 FTHC  Only low anti-inflammatory activity Epithelial cancer cell lines (A549) [6] 
09 FCBD  showed reduction of IL-6 and IL-8 secretion levels 

from lung epithelial cells with an IC50 values of 
3.45 and 3.49 μg/mL respectively. 

Epithelial cancer cell lines (A549) [6]  
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and their bioactive constituents that may block the life cycle of SARS- 
CoV-2 in all possible ways. Beyond the antiviral functions, plant- 
derived therapeutic drugs show diverse pharmacological actions (such 
as anti-inflammatory, antioxidant, anti-fibrotic activities), the remark
able tolerance, stability in the systemic circulation which could offer a 
greater advantage in reducing the risk of COVID-19 induced pathogen
esis without much of side effects (Fig. 11). As a proof of concept, certain 
plant-based therapeutics are under different phases of clinical trials. 

Taken together, this review article provides a summary of diverse 
mechanisms of action of plant-based therapeutics to mitigate COVID-19. 
The knowledge obtained here could be applied to further understand the 
COVID-19 replication cycle and related antiviral mechanisms. 
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