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Abstract

Bottom-up proteomics provides peptide measurements and has been invaluable for moving 

proteomics into large-scale analyses. Commonly, a single quantitative value is reported for each 

protein coding gene by aggregating peptide quantities into protein groups following protein 

inference and/or parsimony. However, given the complexity of both RNA splicing and post-

translational protein modification, it is overly simplistic to assume that all peptides that map to 

a singular protein coding gene will demonstrate the same quantitative response. By assuming all 

peptides from a protein coding sequence are representative of the same protein we may miss the 

discovery of important biological differences. To capture the contributions of existing proteoforms, 

we need to reconsider the practice of aggregating protein values to a single quantity per protein 

coding gene.
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Mass spectrometry-based proteomics has become a key method for characterizing the 

protein composition of biological samples. The field of proteomics includes a diverse 

collection of data acquisition and analysis methods, but so-called “bottom-up” proteomics 

based on proteolysis of proteins into peptide fragments remains the primary strategy for 

robust surveys of complex protein mixtures. Mass spectra collected from these peptide 

fragments are then used to infer what proteins were present in the original sample. In the 

early 2000’s as large scale peptide identification took off, parsimony was used to assert the 

set of proteins that could give rise to the peptide data that was observed directly.(1,2) As 

data increased in scale, controlling for false discovery rate (FDR) at the protein level was 

determined to be a more conservative way to assert protein presence.(3)

With the rise in quantitative proteomics, it became desirable to summarize or aggregate 

peptide quantities into a single value on the protein level. Many strategies have been created 

to accomplish this, with most assuming that peptides belonging to the same protein will 

behave similarly. However, based on historical work in protein biochemistry, 2-dimensional 

gels, and top-down proteomics, it is estimated that there may be up to 100 proteoforms 

per protein on average.(4,5) This estimate is based on the possible variations that can occur 

to a protein’s coding sequence or by post-translational modifications (PTMs) to a protein. 

As most of the amino acid sequence is shared among related proteoforms, a given tryptic 

peptide can be derived from multiple different proteoforms (Figure 1). Once digested in a 

mixture, the direct connection between a peptide and its originating proteoform(s) is lost, 

such that the measurements of individual peptides are convolutions of the proteoforms the 

peptides are present. This issue of conflation is conceptually similar to the problem of 

haplotype phasing in genomics.(5)

Rationale for combining peptide measurements to a single protein quantity

The idea of aggregating peptide measurements to the protein level is appealing for 

interpretation and integration of proteomics data with other data types. Since the beginning 
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of quantitative proteomics, scientists have compared the quantification and coverage of 

proteomics to the latest gene expression data.(6) Intuitively this practice makes sense based 

on the central-dogma of molecular biology. However, this comparison assumes that for 

each mRNA transcript there is a single protein quantity for comparison. Despite knowing 

that there may not be a single “protein” derived from the expressed gene, this analysis 

is standard practice in the field. Such comparisons have demonstrated that the correlation 

between gene expression and an individual protein measurement is relatively poor.(7) While 

several explanations have been proposed, it is important to note that most experiments 

were performed with bottom-up proteomics data that has been summarized to a single 

measurement per protein, even though it is likely that multiple proteoforms exist.

Beyond the proposed ease of biological interpretation, there are technical reasons that make 

aggregating peptides to a protein level measure attractive for quantification. In quantitative 

proteomics, our ability to find differences is affected by three parameters: 1) the size of the 

biological effect, 2) the biological and technical variability, and 3) the number of hypothesis 

tests that are made within the experiment. Thus, it is important to consider how summarizing 

peptide quantities at the protein level will affect these three parameters. By aggregating 

peptides mapping to a protein coding sequence into a single measure, especially by common 

methods that average or sum peptide measurements, outliers or noisy signals are suppressed. 

For example, we observe more variability in the peptide level values compared to the protein 

level values in technical replicate injections of cerebrospinal fluid (CSF) digests (Figure 

2). In the case of replicate measures, the reduction in variability is viewed as a positive 

outcome. Additionally, by aggregating to a single protein measure we reduce the number of 

hypotheses tested, therefore making the analysis more sensitive to finding changes in protein 

abundance.

Another reason to aggregate to a protein level has been to reduce the amount of missing 

data. With data-dependent acquisition the sampling is stochastic, leading to more missing 

data at a peptide level if the same precursor is not selected in all the experimental runs. 

This missing data can have serious implications for the quality of quantitative data. One 

method to combat this problem is sample multiplexing by isobaric labeling, such as 

tandem mass tagging peptides. Evaluating large, multiplexed experiments in comparison 

to label-free approaches, the pattern of the missing data appears to be very distinct, but 

the macrostructure overall is similar in regard to the relationship between abundance and 

missing data.(8) These multiplexing methods are still limited in the number of samples that 

can be uniquely tagged, combined, and analyzed at once, and while multiple batches of 

samples can be acquired, the same peptides are less frequently sampled in different batches 

compared to proteins.(9)

Interestingly, protein groups with greater numbers of peptides observed tend to be 

statistically different less often than protein groups with fewer peptides (Figure 3). Despite 

the different types of proteomics data, the difference in scale of the data, and using 

either a sum-based or reference-based quantification, the fold-change consistently trends 

towards zero. The loss in quantitative significance in proteins with greater coverage is 

initially counterintuitive. While the decreased magnitude of change can still be statistically 

significant, it doesn’t mean those differences are representative of every peptide measured 
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from that protein. Greater peptide coverage will likely span more proteoforms, meaning 

a measured peptide quantity could be derived from multiple proteoforms containing that 

peptide. Unless all those proteoforms change similarly among conditions, aggregating more 

peptides to a single protein value can average away the biological effect. Conversely, if 

coverage is low, differences in peptides specific to a subset of proteoforms may or may not 

be captured. If a value is reported at a protein level it makes these differences difficult to 

compare across studies since the peptides measured may be important for interpreting the 

results.

The problem of reducing the biological effect when aggregating peptide quantities into a 

single protein value is analogous to single cell versus bulk tissue analysis. It is well known 

that tissues are heterogeneous and that you could have a large change occurring in a single 

cell or a small change occurring across all cells -- these would be indistinguishable in a 

bulk analysis but clearly very different results biologically. By averaging the results from 

bulk tissue, the ability to assess the degree of heterogeneity on the effect will be lost. 

Furthermore, differences could disappear entirely in the bulk sample because the effect on 

each cell could be very different. The same is true with reporting protein level quantities 

from peptides. A change might only be reflected in a proteoform that is best reflected in 

the quantity of a single peptide. By aggregating the peptides into a single protein level 

measurement this difference will be 1) misinterpreted as an effect of the entire protein or 2) 

averaged away and missed entirely.

Limitations of assuming a single quantity per protein coding gene

The fact that many proteins we are detecting are modified cannot be ignored. The estimate 

of an average of 100 proteoforms per protein coding gene may seem large until one 

investigates just how many modified peptides have been detected for most proteins.(4) 

Some notable examples can be seen with clinical biomarkers derived from post-translational 

modification which are further described below. These examples highlight that just because 

peptides map to a protein coding sequence, it does not mean that the peptides will be present 

at the same quantity in a biological system. To the extent this is true, statistical power will be 

reduced in connecting phenotype to proteomic data.

Amyloid-beta is a peptide derived from the amyloid precursor protein gene.In Alzheimer’s 

disease a series of cleavage events lead to several shorter soluble forms of amyloid precursor 

protein (sAPPα, sAPPβ), C-terminal fragments (AICD50, CTF 83, CTF 89, CTF 99, p3) 

and amyloid-beta peptides, which contribute to forming the characteristic plaques observed 

in the brains of diseased individuals.(10) The amyloid-beta peptides can be variable lengths 

depending on specific cleavage site, but commonly occur as a peptide of either 40 or 

42 amino acids.(11) In addition to the widely known amyloid-beta 40 and amyloid-beta 

42 peptides, over 20 additional amyloid-beta proteoforms have been detected in samples 

of Alzheimer’s brain samples arising from endogenous cleavage and post-translational 

modifications.(12,13) Knowing that the amyloid precursor protein is heavily processed, it 

is difficult to determine the origin of many of its tryptic peptides - whether they are derived 

from an unprocessed amyloid precursor protein, or from one of many processed forms.
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If we aggregate all the tryptic peptide measures, we are assuming they are all derived 

from the unprocessed state, which may not be the most accurate assumption for peptides 

mapping to amyloid precursor protein. If we look at data from tryptic peptides, we see that 

some biologically relevant differences would not be accurately represented if our peptide 

measures are combined to a singular protein level (Figure 4). Specifically, in tryptic peptides 

mapping to the region of the amyloid beta sequence we observe a different abundance 

profile compared to tryptic peptides mapping to other regions of the protein. In addition to 

amyloid beta, phosphorylated tau proteoforms in the cerebrospinal fluid of patients have also 

gained acceptance as diagnostic biomarkers of disease.(14) Additional studies indicate that 

specific tau phosphosites may be better indicators of disease progression, emphasizing the 

importance of distinguishing between different pTau isoforms and proteoforms.(15,16)

Ambiguity due to modified or processed protein biomarkers is not a problem unique to 

Alzheimer’s disease, but rather is general to human biology and therefore human disease. 

The products of processing a precursor protein into polypeptides are important markers 

in diabetes. C-peptide and insulin are both derived from proinsulin, with C-peptide being 

a valuable measure of insulin secretion and therefore pancreatic beta cell function.(17) 

Proglucagon is processed to form up to nine different polypeptide products, including the 

better-known glucagon and GLP1. Both polypeptides have distinct roles in metabolism, 

and both are drug targets for diabetes and obesity.(18) Additional examples of this type of 

processing can be found in the kallikrein-kinin system and coagulation pathways.(19) While 

these examples are well studied, we should not assume that these types of modifications 

leading to unique biologically relevant proteoforms are uncommon among other less studied 

proteins.

When interpreting bottom-up proteomics data we are only able to make conclusions about 

the peptides we detect, not the proteoforms from which they originate. For example, a 

study of cerebrospinal fluid in Parkinson’s disease found that specific tryptic peptides are 

differentially abundant in affected individuals compared to healthy, age-matched controls. 

Specifically, peptides in the C-terminal or N-terminal regions of granin family proteins 

were found to be decreased in Parkinson’s.(20) Importantly, the granin family of proteins is 

known to play a role in regulating secretion and delivery of peptides and neurotransmitters 

and are known to be processed into a number of derived bioactive peptides (Figure 5). As 

demonstrated in figure 5, if we sum all peptide measures that map to the protein coding 

sequence of secretogranin 2, then we miss the differences between experimental groups 

for several of the individual peptides. Instead, aggregating peptides to a single measure 

per protein coding sequence only accurately reflects the peptide level measurements if 

all peptides are in agreement (Figure 5). In contrast, if we look at peptides detected and 

quantified from GAPDH protein in the same CSF experiment we observe the same trend 

across peptides. Interestingly, GAPDH has been observed not to have many proteoforms by 

top-down analysis.(21) Although there are known proteoforms, from the peptides we detect 

we cannot conclude that only one proteoform of GAPDH is present in our samples. Instead, 

we can only conclude that all the peptides we detect share the same abundance trend.

While bottom-up proteomics is arguably the most common method for characterizing 

protein mixtures, alternative methods are gaining interest. These include methods that use 
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antibodies and aptamer affinity to recognize a specific protein or protein domain.(22–24) 

These methods usually rely on either a single affinity reagent or paired reagents per protein 

coding gene. It should be noted that any method that constrains complex proteoforms 

into a single quantitative value per protein coding gene may miss many of the underlying 

differences. Even assays that use multiple affinity reagents or many tryptic peptides to 

different domains or modified sites of a protein will likely provide an undersampling of 

the proteoform species in the sample. For example, the microtubule-associated protein tau 

is often measured using antibodies that represent phosphorylation at threonine 181 and one 

that measures so called “total-tau”. However, at least 95 post-translational modifications 

have been discovered on tau with potentially many 100s of possible proteoforms resulting 

from the combinations.(16)

The examples given are just a subset of possible causes of differential peptide signals that 

would generally get aggregated to a singular value. Genomic sequence variation can lead to 

differing peptide sequences in the population.(25–27) The detection of this sequence variation 

by bottom-up methods relies on examining individual peptide precursors and fragments. All 

possible sequence variation and modifications can occur in numerous combinations, further 

complicating the interpretation of bottom-up data (Figure 1). Thus, even the measurement 

of every unmodified and modified tryptic peptide along the predicted protein coding gene 

sequence using either a mass spectrometer or a sequence specific affinity reagent can’t put 

Humpty Dumpty back together again.

Outlook and Future directions

Over the years, this challenge that not all peptides from the same gene or protein group have 

the same differential abundance has been an important area of research. The approach of 

several proposed methods focuses on the exclusion of peptide measurements from inclusion 

in the aggregate protein quantity if they are outliers from other peptide measurements 

mapping to the same protein coding gene.(28–33) While these all demonstrate improved 

protein concentration estimates, they still only report a single protein quantity and ignore 

peptides that do not agree with that single value. If those outlier peptide measurements 

are discarded, then true biological signals may be lost. Alternatively, signal could be kept 

and a weighted distribution applied across all matching isoforms.(34) Another approach 

taken in previous methods is to try and identify the specific proteoforms present based 

on peptide quantification across conditions.(35–38) These methods are tolerant to having 

multiple proteoforms present in a sample, however, once a molecule is digested to peptides it 

is impossible to track the peptide-protein molecule relationship.

While the challenge of aggregating peptide measurements may not be solved yet, one thing 

that is apparent is that we should no longer blindly merge all peptides into a single gene 

level quantity. A solution to the presence of discordant peptides could be to keep all peptides 

as independent measurements because it is impossible to accurately merge peptides without 

detailed knowledge of all proteoforms in the sample. While remaining as true to the acquired 

data as possible, this strategy may prove to be difficult for interpretation of experiments 

because the role of individual tryptic peptides in biology may be difficult to infer, especially 

in less studied systems. Additionally, reduced statistical power for differential abundance 
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testing on tens of thousands of peptides compared to thousands of protein groups will 

also likely result in fewer significant differences. However, there has been recent work 

towards integrating top-down proteomics with bottom-up proteomic measurements.(39) This 

strategy could provide higher resolution information about the protein quantity resulting 

from specific proteoforms present in a sample, which then can be used to determine how 

peptides could be combined to more accurately reflect those proteoforms present.

An alternative approach could be to combine peptides that both map to the same gene and 

co-vary across a diverse set of biological groups or conditions, without designating them 

as specific proteoforms. We need the ability to generate multiple “peptide groups” for each 

protein group -- resulting in 1 to N quantities for each protein where N is the number 

of peptides. This grouping would require a method that minimized variance and multiple 

testing while maximizing the biological effect. This approach would not require knowing 

which proteoforms were present but would still capture quantitative differences observed 

at the peptide level that would otherwise be eliminated by combining those differences 

with non-changing peptides within the same gene product. However, this approach could 

be heavily dependent on having multiple conditions with enough biological replicates and 

high reproducibility. Additionally, the approach may not be suitable for proteins with low 

peptide coverage.(35) Regardless of how we choose to analyze and report our proteomics 

data, if peptides are aggregated to a protein quantity, it should be transparent which peptides 

were used, how they were combined, and the individual peptide quantities should remain 

accessible. Furthermore, for a specific “protein” it is critical that the same peptides are used 

to create the protein level quantity for all samples as different peptides will likely reflect 

different combinations of proteoforms.

While bottom-up proteomics is still the preferred method for characterizing proteomes due 

to its coverage, robustness across diverse protein physiochemical properties, sensitivity, 

and quantitative capabilities -- there remain challenges. Moving forward we will need new 

or repurposed methods, tools, and datasets to better interpret peptide level measurements. 

Datasets with known differences in peptide measurements will be crucial for validating 

any new approaches that are proposed to deal with peptide level differences. Additionally, 

improved data visualization tools are necessary to better distinguish changes inclusive of 

conserved domains, known PTMs, and structural features within a protein coding gene in 

the context of a global proteome. Finally, a compiled reference or “atlas” of experimentally-

observed proteoforms presents a major opportunity for future algorithm development, which 

the Human Proteoform Atlas recently framed.(40) As the technology has advanced, so too 

has our ability to obtain robust measurements across many samples without lots of missing 

data. We now need to move towards understanding why these peptide measurements may be 

different instead of simply forcing our data into a format in which it may not be best served 

and instead into a format in which it fits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effect of proteoforms on possible peptide detection.
A single protein coding gene can be modified to give rise to dozens or many thousands 

of proteoforms, including those harboring multiple modifications. After proteolysis, 

proteoforms yield peptides that may be missed in bottom-up proteomics database searching 

and data processing.
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Figure 2. Technical variability is reduced when peptide measurements are combined to a protein 
measurement.
A human cerebrospinal fluid sample digest was analyzed by DIA-MS with 8 m/z staggered 

windows (4 m/z after demultiplexing). The relationship between a) peptide quantities, or 

b) summed protein quantities across two replicate instrument runs are plotted, with each 

peptide colored according to calculated percent coefficient of variation. The distribution of 

% coefficient of variation for c) peptides and d) summed protein quantities between replicate 

instrument runs, with the median % coefficient of variation for each indicated by the dashed 

line.
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Figure 3. The effect size on the protein level is minimized for proteins with greater numbers of 
peptides.
An isobaric-labeled dataset associated with the Clinical Proteomics Tumor Analysis 

Consortium (CPTAC),(41) consists of 181,389 peptides mapped to 10,495 unique protein 

identifiers; proteins ranged from having 1 to 563 peptides associated with them. The a) log2 

fold-change and b) log10 p-value is based on a comparison of tumor residual disease. The 

second dataset is label free and smaller, based on a Calu-3 cell culture experiment, also 

publicly available (MSV000079152).(42) This dataset has 15,953 unique protein identifiers, 

with proteins represented by 1 to 311 peptides. In this dataset the a) log2 fold-change and 

b) log10 p-value is based on a Middle East Respiratory Syndrome (MERS) infection to a 

sham control. Protein sum-based quantification sums all peptide measures per protein coding 

gene. For b) and d) the red line indicates the significance cutoff corresponding to p=0.05, 

with significantly different proteins falling below the line. Figures are truncated to 50 for 

ease of visualization.
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Figure 4. Differential abundance profiles of tryptic peptides mapping to amyloid precursor 
protein.
Hippocampus tissue from four experimental groups of patients were analyzed by DIA-MS; 

Control/No Neuropath with normal cognitive function and no neuropathologic changes 

of Alzheimer’s disease including no amyloid accumulation, Control/Neuropath with 

normal cognitive function and intermediate or severe level of neuropathologic changes 

of Alzheimer’s disease, Sporadic AD with dementia and intermediate or severe level 

of neuropathologic changes of Alzheimer’s disease, and Autosomal dominant AD with 

dementia and intermediate or severe level of neuropathologic changes and an autosomal 

dominant mutation. For all unique peptides mapping to the amyloid precursor protein 

sequence, peptide measures are normalized to the mean and the mean & standard error 

are plotted by group. Based on known protein processing we see that the two peptides with 

large differences map to the amyloidogenic Aβ polypeptide.
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Figure 5. Abundance profiles of tryptic peptides mapping to a) GAPDH and b) SCG2 proteins in 
cerebrospinal fluid.
Three groups of human cerebrospinal fluid samples were analyzed by DIA-MS: Alzheimer’s 

disease, Parkinson’s disease, and healthy age and sex-matched controls. Unique peptides 

mapping to the proteins a) GAPDH and c) SCG2 report quantitatively on their relative 

expression ratios. The protein-level display integrates the mean values from all peptide-level 

results (box-and-whisker plot at left), with the expression ratio for each individual peptide 

and the group shown in the bar graphs at right. b) GAPDH has been observed as three 

proteoforms which form homo-tetramers from human cell lines including HEK-tsa. Intact 

mass spectra of the monomeric form reveal a canonical form, a persulfide-modified form, 

and a glutathione-modified form. Reported masses represent average masses and ppm mass 

error from the calculated theoretical average mass. d) SCG2 is proteolytically processed to 

produce several peptides, has a sulfotyrosine, and can be phosphorylated at several serine 

residues.
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