1 |
1 |
3 |
Radial glia cells are candidate stem cells of ependymoma |
Taylor MD, Gilbertson RJ |
Cancer Cell |
2005 |
551 |
34.44 |
USA |
2 |
3 |
1 |
Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups |
Pajtler KW, Pfister SM |
Cancer Cell |
2015 |
321 |
53.5 |
Germany |
3 |
5 |
2 |
C11orf95-RELA fusions drive oncogenic Nf-kappa B signalling in ependymoma |
Parker M, Gilbertson RJ |
Nature |
2014 |
272 |
38.86 |
USA |
4 |
7 |
4 |
Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma |
Witt H, Pfister SM |
Cancer Cell |
2011 |
244 |
24.4 |
Germany |
5 |
9 |
7 |
Cross-species genomics matches driver mutations and cell compartments to model ependymoma |
Johnson RA, Gilbertson RJ |
Nature |
2010 |
219 |
19.91 |
USA |
6 |
10 |
25 |
Natural simian-virus-40 strains are present in human choroid-plexus and ependymoma tumors |
Lednicky JA, Butel JS |
Virology |
1995 |
206 |
7.92 |
USA |
7 |
14 |
14 |
Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics |
Modena P, Sozzi G |
Journal of Clinical Oncology |
2006 |
160 |
10.67 |
Italy |
8 |
15 |
15 |
Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma |
Mendrzyk F, Lichter P |
Clinical Cancer Research |
2006 |
156 |
10.4 |
Germany |
9 |
16 |
29 |
Molecular genetic analysis of ependymal tumors: Nf2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas |
Ebert C, Von Deimling A |
American Journal of Pathology |
1999 |
154 |
7 |
USA |
10 |
18 |
34 |
Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma |
Chan AS, Chung LP |
American Journal of Surgical Pathology |
1998 |
151 |
6.57 |
Hong Kong |
11 |
31 |
35 |
Erbb receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease |
Gilbertson RJ Ellison DW |
Clinical Cancer Research |
2002 |
123 |
6.47 |
USA |
12 |
35 |
13 |
Molecular staging of intracranial ependymoma in children and adults |
Korshunov A, Pfister SM |
Journal of Clinical Oncology |
2010 |
119 |
10.82 |
Germany |
13 |
44 |
51 |
Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups |
Hirose Y, Feuerstein BG |
American Journal of Pathology |
2001 |
98 |
4.9 |
USA |
14 |
57 |
24 |
Identification of microRNAs as potential prognostic markers in ependymoma |
Costa FF Soares MB |
Plos One |
2011 |
80 |
8 |
USA |
15 |
63 |
20 |
A prognostic gene expression signature in infratentorial ependymoma |
Wani K, Aldape K |
Acta Neuropathologica |
2012 |
78 |
8.67 |
USA |
16 |
74 |
28 |
An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma |
Atkinson JM, Gilbertson RJ |
Cancer Cell |
2011 |
71 |
7.1 |
USA |
17 |
78 |
49 |
Differential expression and prognostic significance of sox genes in pediatric medulloblastoma and ependymoma identified by microarray analysis |
De Bont JM, Pieters R |
Neuro-Oncology |
2008 |
69 |
5.31 |
Netherlands |
18 |
80 |
54 |
Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival |
Lukashova-Von Zangen I, Roggendorf W |
Acta Neuropathologica |
2007 |
66 |
4.71 |
Germany |
19 |
85 |
78 |
Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma |
Reardon DA, Look AT |
Genes Chromosomes & Cancer |
1999 |
65 |
2.95 |
USA |