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Abstract

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a serine/threonine 

kinase that belongs to the DYRK family of proteins, a subgroup of the evolutionarily conserved 

CMGC protein kinase superfamily. Due to its localization on chromosome 21, the biological 

significance of DYRK1A was initially characterized in the pathogenesis of Down syndrome 

(DS) and related neurodegenerative diseases. However, increasing evidence has demonstrated a 

prominent role in cancer through its ability to regulate biologic processes including cell cycle 

progression, DNA damage repair, transcription, ubiquitination, tyrosine kinase activity, and cancer 

stem cell maintenance. DYRK1A has been identified as both an oncogene and tumor suppressor in 

different models, underscoring the importance of cellular context in its function. Here, we review 

mechanistic contributions of DYRK1A to cancer biology and its role as a potential therapeutic 

target.
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Introduction

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a highly 

conserved kinase encoded on chromosome 21 in the Down syndrome critical region 

(DSCR). The DSCR contains a set of genes on the long arm of chromosome 21 

(21q22.13–22.2) (1) that are associated with the Down syndrome (DS) phenotype (2). 

The Drosophila homolog of DYRK1A, minibrain (mnb), was identified as a contributor 

to postembryonic neurogenesis (3). In this report, the authors identified mnb as a novel 

serine/threonine protein kinase with significant homology to eukaryotic kinases that are 

known regulate cell growth and division; as such, they hypothesized that altered neuroblast 

proliferation observed in mnb kinase family mutants was due to a similar involvement in 

cell cycle regulation. Subsequent studies in mice demonstrated that complete loss of Dyrk1a 
is embryonically lethal, while Dyrk1a haploinsufficiency leads to intellectual disability, 

microcephaly, and growth defects, underscoring its critical role in neurologic development 

(4, 5). DYRK1A overexpression has also been implicated in neurodevelopmental delays, 

cognitive deficits, and motor impairment (6). These studies suggest that the impact of 

DYRK1A on various pathologies may occur in a dose-dependent fashion, whereby both 

under- and overexpression can drive disease. Cancer as a disease entity exemplifies this 

dynamic nature of DYRK1A and the heterogeneity of its function within different, and 

occasionally the same, cell types. In this review, we will discuss DYRK1A’s structure, 

function, regulation, and role in cancer.

Domain Composition of DYRK1A

The DYRK family of kinases is evolutionarily conserved and divided into two categories: 

class I (DYRK1A and DYRK1B) and class II (DYRK2, DYRK3, and DYRK4) (7) (Figure 

1). A key feature of DYRK family members is their ability to autophosphorylate tyrosine 

residues, rendering them catalytically active to phosphorylate other substrates on serine and 

threonine residues, hence the nomenclature of a dual-specificity kinase (8, 9). Class I DYRK 

proteins were historically defined by their putative nuclear localization signals (NLS), which 

precede the catalytic domain (10). They both contain a C-terminal PEST domain (11) and 

a WD-repeat domain, which binds the scaffolding protein DDB1 and CUL4 Associated 

Factor 7 (DCAF7) (12). This binding motif is critical for regulating nuclear localization of 

DYRK1A and maintaining protein levels (13). However, the presence of a NLS is in fact not 

unique to class I DYRKs, as both DYRK2 and DYRK4 have been shown to have NLS in 

subsequent loss-of-function studies (14, 15). Class II DYRKs also contain a NAPA domain 

that mediates autophosphorylation, although they lack the PEST domain (16).

DYRK1A is composed of three major domains (9). First, the DYRK homology (DH) 

box is essential for stabilizing tertiary structure in the N-terminus of autophosphorylated 

DYRK1A (9). Second, the conserved catalytic domain is required for kinase activity. 

Autophosphorylation of the critical activation-loop residue tyrosine 321 (Tyr321) within 
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this domain takes place during or shortly after translation (8, 9, 17). Mutations in Tyr321 

dramatically reduce the catalytic activity and impacts the overall function of its orthologs 

(9, 18). Third, DYRK1A has a PEST domain that facilitates DYRK1A degradation (10). In 

addition, DYRK1A contains a N-terminus NLS and a second within the catalytic domain 

(10), a C-terminal histidine repeat that promotes protein localization into nuclear speckles 

(19), and a Ser/Thr rich sequence that seems to regulate catalytic activity (20).

Regulation of DYRK1A

Transcriptional Regulation—Several proteins have been identified as upstream 

regulators of DYRK1A expression. RE1-silencing transcription factor (REST), also known 

as neuron-restrictive silencer factor (NRSF), is a zinc finger protein that acts as a master 

repressor of neuronal genes in differentiated non-neuronal tissues (21). REST activates 

DYRK1A transcription by binding to a neuron-restrictive silencer element located in 

the DYRK1A promoter region (22). In a negative feedback loop, DYRK1A can then 

phosphorylate REST, leading to its degradation (22). Using a transgenic mouse model of 

Dyrk1a overexpression, DYRK1A was found to interact with the SWI/SNF complex, which 

can bind REST, affecting its expression and dysregulating neuronal gene expression (23). 

However, this may not entirely be mediated by DYRK1A kinase activity. Separately, in 

embryonic stem cells and mice that model partial trisomy 21, REST was reported to be 

downregulated in a DYRK1A dose-dependent fashion (24). Consequently, the increase in 

DYRK1A expression and downregulation of REST was associated with a reduction in 

expression of pluripotency regulators and enhanced endoderm and mesoderm differentiation.

Myocyte-specific enhance factor 2D (MEF2D) is a transcription factor initially determined 

to be essential for muscle differentiation in both embryogenesis and adult regeneration 

(25) but was also found to promote post-mitotic neuronal survival (26). Of note, MEF2D 

upregulates DYRK1A expression in glioblastoma cells through a MEF2D responsive 

element in the promoter region of DYRK1A (27). The same group demonstrated that 

DYRK1A phosphorylates MEF2D at Ser251 and that increased DYRK1A expression or 

activity is inversely correlated with MEF2D transcriptional in HEK293 and U87MG cells, 

which was phenocopied by expression of phosphomimetic and phosphodeficient Ser 251 

alleles (28). This phosphorylation event results in dissociation of MEF2D from DNA 

and decreased transactivation, demonstrating another negative feedback mechanism of a 

transcriptional activator.

Additionally, a recent kinase-focused CRISPR screen in KMT2A-rearranged B-cell acute 

lymphoblastic leukemia (B-ALL) cells identified a dependency on DYRK1A (29). ChIP-Seq 

revealed that the KMT2A-AFF1 fusion complex directly binds the DYRK1A promoter 

and regulates its transcription. Notably, DYRK1A expression levels were lower in KMT2A-

rearranged B-ALLs than in other B-ALL subtypes. The authors also demonstrated 

that chemical inhibition of DYRK1A suppressed the growth of B-ALL cells with this 

rearrangement.

While the exact interplay between DYRK1A and its upstream transcriptional regulators 

requires investigation in the context of cancer. Several of these regulators are involved in 

tissue specific differentiation and drive a negative feedback mechanism after activation of 
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DYRK1A expression. These regulators also demonstrate conflicting oncogenic and tumor 

suppressor roles in a cell-dependent context; for example, REST promotes central nervous 

system tumors yet is reported to have anti-tumor properties in lung, breast, and colon cancer 

(21).

Regulation via Ubiquitin—Beyond transcriptional regulation, DYRK1A levels are also 

tightly controlled at the protein level through ubiquitination. SCFβTrCP, an E3 ubiquitin 

ligase that promotes neuronal development by targeting REST for degradation in embryonic 

and neural stem cells (30), has also been shown to ubiquitinate and promote degradation of 

DYRK1A in HEK293 cells (31). As expected, DYRK1A protein levels negatively correlate 

with SCFβTrCP throughout the cell cycle, contributing to increased DYRK1A levels in G0/G1 

and decreased levels in S and G2/M. Similar to DYRK1A, SCFβTrCP has also been found to 

act in an oncogenic or tumor suppressor role in different cancers depending on its substrates 

(32), perhaps reflecting an antagonistic relationship between the two proteins, although this 

remains to be examined.

Another E3 ubiquitin ligase, TRAF2, which has been implicated in inflammation-mediated 

tumor growth (33), facilitates K63-linked ubiquitination of DYRK1A, promoting its 

translocation to a number of subcellular structures including membranous vesicles such as 

endosomes (34). Once localized to an endosome, DYRK1A can phosphorylate Sprouty2 at 

the Thr75 residue thereby negatively regulating endocytosis and recycling of EGFR thereby 

leading to its stabilization; this in turn promotes growth of glioma cell lines. Moreover, 

TRAF2 knockdown phenocopies EGFR degradation seen with DYRK1A knockdown in 

these cell lines. As such, loss of DYRK1A signaling by genetic and pharmacologic 

approaches slowed growth of glioma cell lines, which could not be rescued by TRAF2 

overexpression.

A recent study reported that p53 activation leads to degradation of DYRK1A and subsequent 

downregulation of EGFR-ERK signaling, leading to cellular senescence in vitro and in 

vivo (35). It was also shown that MDM2, a p53 transcriptional target and ubiquitin ligase, 

directly binds DYRK1A and promotes its polyubiquitination. MDM2 can also bind p53 

in a negative feedback loop; however, the use of Nutlin-3a, which selectively disrupts 

MDM2-p53 binding but not MDM2-DYRK1A binding, led to p53 activation and increased 

MDM2 expression, ultimately causing DYRK1A degradation. Moreover, a single study in 

embryonic neuronal cells proposed that DYRK1A phosphorylates p53 at Ser15 (36) to 

cause cell cycle arrest. While this does invoke the possibility of DYRK1A as a regulator of 

p53 signaling, further studies are needed to more precisely define the relationship between 

DYRK1A and p53 in different cellular contexts.

Contributions of DYRK1A to normal and malignant cell growth

DYRK1A is associated with a multitude of tumors (Table 1), where it acts by modifying 

proteins that play key roles in cellular processes such as cell cycle, DNA damage repair, 

pre-mRNA splicing, transcription, angiogenesis, and protein stability (Figure 2).

DYRK1A contributes to cell cycle regulation—The DREAM (dimerization partner, 

RB-like, E2F and multi-vulval class B) complex is a group of proteins that assemble in G0 
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to repress cell cycle dependent gene expression and cell cycle progression (37). In addition, 

a critical component of the multi-vulval class B (MuvB) subunit of the DREAM complex 

is LIN52, which was shown to be phosphorylated by DYRK1A at Ser28 (38). Inhibition 

of DYRK1A or expression of a phosphodeficient allele of LIN52 (Ser28Ala) disrupted the 

assembly of the DREAM complex and significantly reduced the ability of cells to enter 

quiescence. Moreover, overexpression of a kinase-inactive allele of DYRK1A (Lys188Arg) 

led to increased proliferation of U2OS cells, while overexpression of a wild-type allele 

reduced proliferative capacity by half. This interplay between DYRK1A and the DREAM 

complex may not be limited to quiescence; co-expression of oncogenic HRAS with either 

DYRK1A Lys188Arg or LIN52 Ser28Ala, both of which have dominant-negative activity, 

was also associated with reduced cellular senescence. Furthermore, DYRK1A-mediated 

DREAM complex assembly contributes to ovarian cancer dormancy as DYRK1A inhibition 

reduced spheroid viability and restored sensitivity to chemotherapy targeting actively 

proliferating cells, suggestive of cells exiting quiescence (39).

Cyclins are another set of critical DYRK1A substrates. For example, DYRK1A has been 

shown to prolong G1 by phosphorylating and degrading cyclin D1 (40), and sustained 

phosphorylation of cyclin D1 and p27Kip1 by DYRK1A in neuroblastoma and neural stem 

cells decreased proliferation and increased differentiation (41).

DYRK1A also orchestrates early lymphopoiesis through phosphorylation of cyclin D3 

(42). Highly proliferative lymphoid precursor cells known as large pre-B cells and double-

negative (DN) thymocytes normally enter quiescence to facilitate maturation into small 

pre-B cells and double-positive (DP) thymocytes, respectively. In the absence of DYRK1A, 

B and T cell maturation are halted at the large pre-B cell and DN thymocyte stages, 

diminishing the production of small pre-B cells, DP thymocytes, and more differentiated 

lymphocytes. In this context, DYRK1A promotes quiescence through phosphorylation of 

cyclin D3, at Thr283, which resides in a phosphodegron motif conserved across all D-

type cyclins, thereby leading to its ubiquitination and proteasomal-mediated degradation. 

Consequently, loss or inhibition of DYRK1A impaired quiescence and maturation of large 

pre-B cells and DN thymocytes through de-repression of E2F-mediated gene transcription 

in a cell cycle-dependent manner (42). Though this mechanism was paralleled in both 

B and T cell lineages, curiously it was not seen in myeloid cells. Although DYRK1A-

deficient lymphocyte precursors had impaired ability to enter quiescence, they had reduced 

proliferation compared to control cells and accumulated in G2/M, suggesting a concomitant 

late cell cycle defect.

DYRK1A has also been reported to phosphorylate the ubiquitin ligase CDC23, which 

mediates mitotic protein degradation, at Ser588 in the glioblastoma cell line U251 (43). In 

this model, DYRK1A inhibition decreased Ser588 phosphorylation, impairing APC complex 

assembly, thus preventing degradation of cyclin B and subsequently causing hyperactivation 

of CDK1. Indeed, DYRK1A inhibition promoted tumor growth and the fraction of Ki67-

positive cells in this study.

Taken together, DYRK1A has diverse, non-redundant roles in the cell cycle by regulating 

the balance between cell cycle entry and quiescence, with substrates including LIN52, cyclin 
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D1, cyclin D3, and CDC23. However, the ability of DYRK1A to promote or inhibit tumor 

growth and survival in these roles depends on the cellular context. Nevertheless, given the 

fundamental importance of cell cycle regulation in cancer biology, DYRK1A remains a 

promising target.

DYRK1A contributes to the DNA damage response—Recent studies have shed light 

on the role of DYRK1A in DNA damage response and apoptosis. Activated Forkhead 

box proteins (FOXO) proteins affect the cell cycle and proliferation in colon cancer, 

glioblastoma, osteosarcoma, acute myeloid leukemia, and head and neck squamous cell 

carcinoma (HNSCC) (44). As a transcription factor, FOXO1 plays a critical role in 

activating genes related to cell proliferation and apoptosis. During the G2/M phase, FOXO1 

acts as a DNA damage sensor and slows cell cycle progression to accommodate DNA 

repair or trigger apoptosis (45). DYRK1A phosphorylates FOXO1 at Ser329 in humans 

(orthologous to Ser326 in mice) and promotes its nuclear export and degradation (46, 47). 

When DYRK1A activity is ablated in normal pre-B cells, this increases the expression 

of FOXO1 transcriptional targets such as GADD45A, CCNG2, and BCL2L11 to cause 

a G2/M halt in response to cell cycle dysregulation and DNA damage accumulation 

without substantially increasing apoptosis; however, loss of both FOXO1 and DYRK1A 

activity preferentially kills B-ALL cells through increased sensitivity to replicative stress 

(46). Moreover, DYRK1A inhibition was found to sensitize leukemic cells to conventional 

chemotherapies that induce genotoxic stress.

Quantitative mass spectrometry revealed interactions of DYRK1A with numerous proteins 

involved in DNA damage repair, including RNF169, an E3 ubiquitin ligase that is an 

essential component of the cellular response to DNA double-stranded breaks (DSB) (48–51). 

DYRK1A was found to be recruited to sites of DNA damage through this interaction with 

RNF169. Moreover, knockdown of DYRK1A conferred increased sensitivity to ionizing 

radiation in colony formation assays (48). DYRK1A has also been linked to the DNA 

damage response via its phosphorylation of Sirtuin 1 (SIRT1) at Thr522, resulting in 

deacetylation of p53 in U2OS cells (52). Thus, there is accumulating evidence for the role of 

DYRK1A in regulating DNA damage through several distinct substrates.

DYRK1A regulates transcription and cell signaling—DYRK1A has been reported 

to regulate transcription through kinase dependent and independent interactions with RNA 

polymerase II (RNAPII) (53). ChIP-Seq data in T98G and HeLa cells revealed that 

DYRK1A is recruited to the promoters of ribosomal biogenesis and translation regulation 

and that its biding sites are enriched for the palindromic TCTCGCGAGA sequence. This 

study also revealed that DYRK1A phosphorylates the carboxy-terminal domain (CTD) 

of RNAPII at Ser2 and Ser5. A reduction in phosphorylation of these two residues 

by DYRK1A knockdown was found to impair the ability of RNAPII to associate with 

promoters. More recently, Lu et al demonstrated that DYRK1A contains a histidine-rich 

domain (HRD), which allows it to form phase-separated liquid droplets in vitro and in 

cells, thereby promoting highly efficient hyperphosphorylation of the RNAPII CTD (54). 

Deletion of the HRD reduced both CTD phosphorylation and co-immunoprecipitation of 

RNAPII, though did not affect DCAF7 co-immunoprecipitation. However, another group 
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reported that DCAF7 promotes DYRK1A-RNAPII interaction and is essential for myogenic 

differentiation and expression of key myogenic genes, including MYH2, CAV3, and MYOG 
(55), suggesting that there may be multiple mechanisms by which DYRK1A localizes to 

RNAPII in subcellular compartments.

DYRK1A also regulates transcription factors that control cell signaling. Nuclear factor of 

activated T-cells (NFAT) is phosphorylated by DYRK1A and subsequently exported from 

the nucleus, preventing transactivation (56–58). Impaired NFAT nuclear export leads to a 

more invasive phenotype of the breast cancer cell line 4T1 (59) through upregulation of the 

metalloproteinase ADAMTS1 (60). Increased levels of DYRK1A in DS also contributes to 

the development of acute megakaryoblastic leukemia (AMKL) through inhibition of NFAT 

signaling (61).

The transcription factor Signal Transducer and Activator of Transcription 3 (STAT3) 

is another DYRK1A substrate that regulates tumor proliferation. Constitutive activation 

of STAT3 has been reported in many cancers, including hematologic malignancies and 

solid tumors (62, 63), and correlates with a poor prognosis (64). Canonically, STAT3 is 

activated by JAK-mediated phosphorylation at Tyr705, resulting in its dimerization and 

translocation to the nucleus to activate transcription (65, 66). DYRK1A phosphorylates 

STAT3 at Ser727 (67, 68), a residue conserved in both humans and mice, and several 

studies show that phosphorylation of STAT3 at Ser727 is critical for STAT3 activity, 

including non-canonical mitochondrial pathways (69–71). Aberrant STAT3 activation due 

to hyperactivation of upstream tyrosine kinases, and overexpression of stimulatory receptor-

ligand interactions promote tumor progression (72, 73). In a mouse model of DS, DYRK1A 

overexpression enhances STAT3 activity and promotes astrogliogenesis (74). In non-small 

cell lung cancer (NSCLC), DYRK1A inhibition decreases STAT3 activity and decreases 

NSCLC proliferation due to impaired EGFR/MET signaling (75). Recently, phosphorylation 

of STAT3 Ser727 by DYRK1A has been linked to survival of B-ALL tumor cells through 

maintenance of canonical Tyr705 signaling and by reducing cellular stress induced by 

reactive oxidative species (ROS) (46).

In a recent study, Li et. al examined the activity of B-cell activating factor (BAFF) in 

autoimmunity and B-ALL (76). They report that BAFF promotes non-canonical NF-kB 

signaling in a DYRK1A-dependent manner. Specifically, DYRK1A phosphorylates TRAF3, 

a protein involved in ubiquitin mediated degradation of a noncanonical NF-kB inducing 

kinase, at Ser29 and facilitates B-cell tumor development.

DYRK1A in angiogenesis—In 2009, Ryeom and colleagues proposed that DYRK1A 

and DSCR1, which contribute to calcium homeostasis, control angiogenesis, providing a 

potential explanation for the decreased incidence of solid tumors in people with DS (77). 

Another study found that inhibition or silencing of DYRK1A in primary endothelial cells led 

to decreased intracellular Ca2+ influx in response to VEGF and reduced downstream NFAT 

activation (78). Such modulation of Ca2+/NFAT signaling by DYRK1A was discovered to be 

mediated through VEGF receptor 2 (VEGFR2) stability. Moreover, Dyrk1a haploinsufficient 

mice showed defects in developmental retinal vascularization, providing additional evidence 

that DYRK1A influences the angiogenic response (78). Finally, the kinase activity of 
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DYRK1A is required for vascular formation in zebrafish via regulation of calcium signaling 

(79).

DYRK1A regulates tyrosine kinases involved in tumor growth—Major tyrosine 

kinase substrates of DYRK1A that drive tumor growth include c-MET and EGFR (75, 80). 

DYRK1A is upregulated in both pancreatic ductal adenocarcinoma (PDAC) and non-small 

cell lung cancer (NSCLC), where it has been associated with tumor growth and maintenance 

by modulating the activity of several downstream pathways. For example, DYRK1A 

expression is correlated with c-MET levels in the PANC-1 pancreatic cells, and DYRK1 

knockdown led to reduced proliferation, suggesting that it may be a therapeutic target (80). 

In EGFR wild-type NSCLC cells, DYRK1A knockdown also decreased proliferation (75).

Like c-MET, EGFR degradation is also inhibited by DYRK1A(34). During adult neural 

progenitor cell division, DYRK1A inhibits EGFR degradation via phosphorylation of 

Thr75 on Sprouty2, a regulator of receptor tyrosine kinase turnover (81). In glioblastomas, 

increased DYRK1A expression correlated with increased EGFR levels, and inhibition of 

DYRK1A impaired self-renewal capacity in EGFR dependent glioblastoma cells (82). 

Conversely, in NSCLC, inhibition of DYRK1A reduced the levels of EGFR and MET, 

and consequently sensitized cells to AZD9291, an EGFR tyrosine kinase inhibitor (75). Of 

note, EGFR signaling is also required for Kras oncogene driven carcinogenesis in PDAC 

(83). Further studies have shown that EGFR cooperates and activates the AKT and STAT3 

signaling pathways that together promote Kras driven oncogenic signals (83). As DYRK1A 

increases EGFR stability, these observations suggest an important tumor-inducing role of 

this pathway in PDAC as well.

DYRK1A regulates cancer stem cell-like properties—Recent data have shown that 

DYRK1A regulates the cancer stem cell population (84). Lee and colleagues discovered 

that DYRK1A-mediated phosphorylation of inhibitor of DNA binding 2 (ID2) at Thr27 

blocks the ID2-VHL interaction and leads to HIF2α stabilization and cancer cell stemness 

in glioma (85). Downregulation of DYRK1A was found to increase HIF2α, suggesting 

that DYRK1A can act as a tumor suppressor in this setting. Similarly, DYRK1A induced 

cancer stem cell (CSC) differentiation by downregulating CDK5-SOX2 in the glioma 

line U251 (86). Conversely, DYRK1A inhibition in gliomas limited self-renewal capacity 

through decreased EGFR stability (82). DYRK1A may also induce stemness through 

REST (87), suggesting it can also function as an oncogene in gliomas. These data 

highlight DYRK1A’s context and tumor-dependent action within cancers of the same 

origin. Beyond gliomas, DYRK1A can induce FGF2 to repress differentiation and promoted 

CSC self-renewal capacity in oropharyngeal squamous cell carcinoma (OSCC) Notably, 

DYRK1A inhibition abrogates CSC maintenance, increases sensitivity to chemotherapy, and 

suppresses migration of OSCC (88).

DYRK1A and splicing—DYRK1A localizes to nuclear speckles and phosphorylates 

several key splicing factors including SRSF1, SRSF2, SRSF6, and SF3B1 (19, 89–93). 

Several studies have shown that DYRK1A modulates alternative splicing in neurobiology; 

for example, DYRK1A promotes alternative splicing of Tau through modulation of SRSF1 

and SRSF2 (90, 94). New data from Abdel-Wahab and colleagues demonstrate that 
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venetoclax-resistant AML cell lines have enhanced sensitivity to DYRK1A and CDC2-like 

kinase (CLK) inhibition, possibly through SR proteins (95). Further effort into elucidating 

DYRK1A’s impact in this process deserves special attention. (96).

Prospects for targeting DYRK1A

Given the multifaceted roles of DYRK1A in the phenotypes of DS, neurodegenerative 

diseases, and cancer, there has been significant interest in the development of potent and 

selective DYRK1A inhibitors (Table 2). In this section, we will review select DYRK1A-

targeting therapies tested in cancer.

Natural compounds that inhibit DYRK1A—Several small molecules, including natural 

products, have been investigated for their ability to inhibit DYRK1A. For example, a clinical 

trial conducted in 2018 showed that epigallocatechine gallate (EGCG), a potent catechin 

found in green tea, improved visual recognition memory and working memory performance 

in patients with DS (97). While being a potent DYRK1A inhibitor in vitro, EGCG also 

binds and inhibits p38-regulated/activated protein kinase (PRAK)(98). EGCG has been 

tested both in vitro and in vivo in several cancers, including hepatocellular carcinoma, 

pancreatic cancer, prostate cancer, breast cancer, melanoma, head and neck cancer, and 

digestive cancers (99). In head and neck cancer, EGCG treatment was found to decrease 

cellular proliferation due to the suppression of the Notch pathway, while in triple negative 

breast cancer, EGCG induces apoptosis by scavenging ROS. However, EGCG has several 

disadvantages for in-vivo usage such as poor bioavailability and heterogeneous effects on 

signaling pathways.

Another widely used DYRK1A inhibitor for in vitro and in vivo studies has been a β-

carboline alkaloid named harmine, an ATP-competitive inhibitor that was initially assayed 

for activity in Parkinson’s disease (100). Harmine has been tested in multiple cancer 

subtypes, including breast, pancreatic, HNSCC and ovarian cancer and has been shown to 

effectively reduce tumor progression in mice (101). Although harmine is a potent DYRK1A 

inhibitor, it also targets other DYRKs and monoamine oxidase (MAO-A), resulting in 

side effects that limit its therapeutic potential (102). To overcome this limitation, several 

derivatives of harmine are being synthesized that are more selective for DYRK1A (103, 

104).

The natural compound inhibitor L41, a type of leucettine, has potent activity against 

DYRK1A(105) as well as CLK. L41 has been found to decrease memory impairments and 

neurotoxicity in mice treated with Aβ25–35 peptide that represents a non-transgenic model 

that mimics Alzheimer’s disease (AD)-like toxicity (106). Indeed, L41 displays effective 

activity (IC50=40nm) against U251 cells in vitro (43).

Race to develop selective inhibitors—Synthetic DYRK1A inhibitors Methyl 9-

anilinothiazolo (5,4-f)quinazoline-2-carbimidates 1 and 2, commonly known as EHT 5372 

and EHT 1610, have been shown to inhibit DYRK1A in neurologic disease (107) and in 

cancer. In PANC-1 tumor cells, EHT 5372 induced exit from quiescence and entry into 

the cell cycle while also increasing DNA damage and apoptosis (108). Exposure of murine 

pre-B cells to EHT 1610 recapitulated the phenotype seen upon Dyrk1a silencing, including 
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loss of pre-B cell colony formation (42), and EHT 1610 also demonstrated anti-tumor 

activity in models of B-ALL (46). Moreover, treatment of KMT2A-rearranged B-ALL cell 

lines with EHT 1610 inhibited their proliferation similar to what was observed with genetic 

inhibition of DYRK1A using CRISPR (29). A more recent derivative of EHT 1610, FC162, 

displayed similar effects on B cell growth (105, 109).

CLK inhibitors target alternative splicing but demonstrate off-target effects on DYRK1A 

due to similarities in structure between their respective catalytic kinase domains (110, 

111). CX-4945 (Silmitasertib), an orally bioavailable CLK inhibitor, exerts its effects 

through multiple survival pathways (112) and notably displays potent DYRK1A inhibition 

(IC50=6.8nm). Thus far, CX-4945 has demonstrated efficacy across multiple tumor cell 

lines, including lymphoid, myeloid, and gastric tumor cells (113–117). Preliminary data 

from a phase Ib/II trial using CX-4945 with gemcitabine and cisplatin for patients 

with locally advanced or metastatic cholangiocarcinoma revealed improved outcomes 

(118). Furthermore, clinical trials in medulloblastoma (NCT03904862), multiple myeloma 

(NCT01199718, NCT00891280), and basal cell carcinoma (NCT03897036) are underway.

Finally, a number of other selective inhibitors have been reported though structure-based 

discovery (119–123). From these advanced studies, it appears that we are close to 

identifying clinically viable compounds for multiple indications, including metabolic, 

neurologic, and oncologic disorders.

It should be highlighted that most DYRK1A inhibitors also target DYRK1B, which 

is upregulated in many cancers and is considered to be tumorigenic (124). Similar to 

DYRK1A, DYRK1B regulates cell proliferation, cell cycle and has been shown to regulate 

ROS levels in response to stress (108). Due to the similar function and upregulation of these 

two DYRKs in cancer, it is unclear whether the effect mediated by these inhibitors is due 

to reduced activity of DYRK1A or DYRK1B. Development of more selective compounds 

and genetic studies to target each homolog individually are needed to clearly establish the 

activities of these two genes to cancer.

Summary

DYRK1A is linked to many cellular processes, including proliferation, self-renewal, DNA 

damage, transcriptional regulation, apoptosis, ubiquitination, cancer stem cell maintenance, 

and alternative splicing. However, DYRK1A can promote or inhibit tumor growth based on 

cancer subtype and stage. Since DYRK1A is a potent regulator of quiescence, DYRK1A 

inhibition in cancer has the potential to trigger relapse of dormant cancer cells. To exploit 

this possibility, one strategic therapeutic option might be to administer a DYRK1A inhibitor 

in parallel with chemotherapy. In this light, combination chemotherapy could enable 

targeting dormant cancer cells by pushing them out of quiescence and into cell cycling; this 

has recently been demonstrated in pre-clinical studies of B-ALL (46). Additionally, recent 

studies have shown that DYRK1A can enhance sensitivity to radiation, and thus DYRK1A 

inhibition may offer a novel approach to radiosensitization (48, 49). Future studies must 

address ongoing issues with DYRK1A as a potential therapeutic target in cancer, including 

distinguishing off-target/on-target effects of inhibitors in vivo, characterizing the effects 
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of DYRK1A inhibition in normal tissues, elucidating redundant and non-redundant roles 

of DYRK1A and DYRK1B in malignancy, and optimizing the pharmacokinetics of small 

molecule inhibitors. In this review, we summarized studies from various types of cancer that 

implicate DYRK1A in their pathogenesis and persistence. Additional studies are needed to 

validate many of the cell-specific findings; however, the emerging importance of DYRK1A 

in cancer biology warrants the ongoing development of novel, selective, and clinically 

efficacious inhibitors.
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Figure 1: Domain composition of the DYRK proteins.
DYRK1 contains a DCAF7 binding domain, a nuclear localization site (NLS) at the N-

terminus, a DYRK homology box (DH), and a proline, glutamate, serine, threonine (PEST) 

region. DYRK1A contains a second NLS within the catalytic domain, a histidine repeat 

(H), and serine/threonine (S/T) repeats near the C-terminus. DYRK2, DYRK3, and DYRK4 

contain a NAPA domain, DH, and catalytic domain. DYRK2 and DYRK4 also have an 

N-terminus NLS.
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Figure 2: Known DYRK1A substrates.
Targets of DYRK1A include proteins involved in cell cycle regulation, DNA damage 

response, transcription and cell signaling regulation, angiogenesis, tyrosine kinase 

regulation, cancer stem cell (CSC) properties, and alternative splicing.
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Table 1.

Summary of the role of DYRK1A in different cancers.

Cancer Role Signaling Pathway References

DS-AMKL tumor-promoting NFAT (61)

ALL tumor-promoting FOXO1, STAT3 (46)

AML tumor-suppressing c-Myc (125)

Glioblastoma both REST, RNA Polymerase II, EGFR, ID2, cyclin B (21, 53, 82, 85, 126)

Neuroblastoma tumor-promoting p27 and cyclin D1 (41)

PDAC tumor-promoting c-MET (80)

Ovarian tumor-promoting MuvB, DREAM (39)

NSCLC tumor-promoting STAT3, EGFR, c-MET, Mcl-1 (75, 127)

Bladder tumor-promoting FGF2 (128)

Osteosarcoma both DREAM, SIRT1 (38, 52)

Cervical tumor-suppressing RNF169, 53BP1 (49)

HNSCC tumor-promoting FGF2, FOXO3A (88, 129)

Epithelial cancer in individuals with DS tumor-suppressing NFAT (59)

DS-AMKL = Down syndrome-acute megakaryoblastic leukemia; PDAC = pancreatic ductal adenocarcinoma; NSCLC = non-small cell lung 
cancer; HNSCC = head and neck squamous cell carcinoma.
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Table 2.

DYRK1A inhibitors described in cancer studies

DYRK1A Inhibitors Class of compound Cancer/Disease tested in
Natural/
Synthetic References

harmine β-carboline

In vitro: colon, gastric, pancreatic, lung, liver, 
breast ovarian, glioblastoma; In vivo: glioma, 

HNSCC natural (82, 129, 130)

L41 Leucettine In vitro: glioblastoma natural (43)

licocoumarone flavonoid In vitro: PDAC natural (131)

EGCG Polyphenol Clinical trials: colon cancer and prostate cancer natural (132, 133)

Lamerallins Chromenoindole
In vitro: leukemia, prostate, melanoma, colon, 

ovarian, renal, glioma, breast, NSCLC synthetic (134, 135)

INDY benzothiazol In vitro: ovarian, glioblastoma synthetic (39, 82)

Meriolins Pyrimidinylindol/azaindol In vitro: glioma synthetic (136)

Meridianins Pyrimidinylindol/azaindol
In vitro: breast, cervical, ovarian leukemia, 

HNSCC synthetic (137–139)

EHT 1610 Thiazolo[5,4-f]quinazoline In vitro/in vivo: B-ALL synthetic (46)

EHT 5372 Thiazolo[5,4-f]quinazoline In vitro: pancreatic cancer synthetic (108)

FC 162 Thiazolo[5,4-f]quinazoline In vitro: neuroblastoma synthetic (105)

pyrido[3,4-
g]quinazoline 

derivatives pyrido[3,4-g]quinazoline
In vitro: colon, breast, neuroblastoma, 

osteosarcoma synthetic (140)

AnnH-75 β-carboline In vitro: cervical cancer, neuroblastoma synthetic (141)

Compound 34 pyrrolopyrimidine
In vivo: glioblastoma
In vitro: osteosarcoma synthetic (120)
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