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Targeted protein degradation: mechanisms, strategies and
application
Lin Zhao1, Jia Zhao1, Kunhong Zhong2, Aiping Tong 2✉ and Da Jia 1✉

Traditional drug discovery mainly focuses on direct regulation of protein activity. The development and application of protein
activity modulators, particularly inhibitors, has been the mainstream in drug development. In recent years, PROteolysis TArgeting
Chimeras (PROTAC) technology has emerged as one of the most promising approaches to remove specific disease-associated
proteins by exploiting cells’ own destruction machinery. In addition to PROTAC, many different targeted protein degradation (TPD)
strategies including, but not limited to, molecular glue, Lysosome-Targeting Chimaera (LYTAC), and Antibody-based PROTAC
(AbTAC), are emerging. These technologies have not only greatly expanded the scope of TPD, but also provided fresh insights into
drug discovery. Here, we summarize recent advances of major TPD technologies, discuss their potential applications, and hope to
provide a prime for both biologists and chemists who are interested in this vibrant field.
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PROTEIN DEGRADATION PATHWAYS: PROTEASOMAL AND
LYSOSOMAL PATHWAYS
Protein homeostasis, also known as proteostasis, refers to a highly
complex and interconnected process used by cells to maintain
concentration, conformation, and subcellular localization of
proteins.1 It comprises a large set of pathways that control
protein synthesis, folding, protein transport, and disposal.2 In
eukaryotic cells, damaged proteins or organelles can be cleared by
proteasomes or lysosomes.3,4 The two pathways are independent
but inter-connected with each other.5 In general, proteasomes
eliminate short-lived proteins and soluble misfolded proteins by
the ubiquitin–proteasome system (UPS).6,7 In contrast, lysosomes
are responsible for degradation of long-lived proteins, insoluble
protein aggregates, even entire organelles, macromolecular
compounds, and intracellular parasites (e.g. certain bacteria) via
endocytosis, phagocytosis, or autophagy pathways.8–13

Proteasomes are part of the UPS responsible for degradation of
proteins that are damaged, unfolded, and useless.14 In addition to
proteasomes, the UPS also compromises various ubiquitin ligases
and de-ubiquitinating enzymes (DUBs).15 The 76-residue ubiquitin
protein is attached to proteins via a lysine isopeptide bond as a
post-translational modification (PTM) through sequential reaction
involving three enzymes: a Ub activating enzyme(E1), a Ub
conjugating enzyme(E2), and a Ub ligase (E3)16,17 (Fig. 1). E1 binds
to the ubiquitin molecule in an ATP-dependent manner and then
transfers it to E2 via an interaction with E2. Next, E3 catalyzes the
transferring of the ubiquitin molecule from E2 to substrates.18 The
repeated action of these three enzymes lead to the polyubiqui-
tination of the substrate. There are eight different polyubiquitin
chains (seven lysine residues: K6, K11, K27, k29, k33, K48, k63 and
one methionine residue) depending on the residue number of the

ubiquitin molecule that is conjugated.19 Among them, K48 and
K63 linkages are the most abundant and account for ~80% of total
linkages in mammalian cells. Proteins marked with K48-linked
ubiquitin chains are often targeted to proteasome for degrada-
tion; in contrast, K63-linked chains do not function in proteasomal
degradation, but play a pivotal role in regulating lysosome
functions and inflammatory response.
Lysosomes are the primary degradative compartments of the

cells, and receive their degradation substances via endocytosis,
phagocytosis, or autophagy20 (Fig. 2). Following endocytosis,
some cell surface proteins are recycled to the plasma membrane
or other organelles, whereas others are marked with K63-linked
ubiquitin chains and sorted into the endosomal sorting complex
required for transport (ESCRT) complex degradation pathway.21–24

Phagocytosis is a specific form of endocytosis by which cells
engulf microbial pathogens or other large particles.25 Finally,
autophagy is an evolutionarily conserved process that cells use to
remove unnecessary or dysfunctional intracellular organelles and
proteins through a lysosome-dependent manner. Targeted
organelles and proteins are wrapped into a double membrane-
bound vesicle, known as autophagosome.26 The autophagosome
then fuses with lysosomes to break down the contents.27,28

Targeted protein degradation (TPD), via the proteasomal and
lysosomal pathways, represent a novel tool to explore cellular
pathways and a promising therapeutic approach.29 The concept of
TPD was first proposed in 1999 (Fig. 3). Most TPD strategies, such
as PROTACs,30,31 molecular glues,32 degradation tags (dTAGs),33

trim away,34 and specific and non-genetic inhibitors of apoptosis
protein-dependent protein erosive agents (SNIPERs),35 rely on the
UPS and mainly target intracellular proteins. Lysosome-dependent
TPD strategies could degrade membrane proteins, extracellular
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Fig. 1 Protein degradation via the ubiquitin-proteasome system (UPS). Proteins undergo ubiquitin-dependent degradation by a suite of three
enzymes. E1 interacts with E2, and transfers the ubiquitin molecule to E2. E2 interacts with E3-binding substrate and transfers the ubiquitin
molecule to the substrate. Repetition of these processes results in polyubiquitination of the substrate, which is subsequently degraded by the
26S proteasome

Fig. 2 Protein degradation via three distinct lysosome pathways. (1) Cell surface proteins arrive at endosome after endocytosis. They could be
degraded by lysosome, or transported to the plasma membrane or other cellular organelles for recycling. (2) In the phagocytic pathway, cells
engulf large extracellular particles, such as invading pathogens and dead cells, and then degrade them by lysosome. (3) Misfolded or
aggregated proteins, damaged organelles, and intracellular pathogens, are removed by the autophagy–lysosome pathway. There are three
different forms of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy
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proteins, and protein aggregates, thus greatly expanding the
range of substrates. In this review, we first provide a simple
introduction of protein degradation mechanisms. We will then
summarize recent advances in developing various TPD technol-
ogies, and highlight their potential applications in disease
treatment. Interested readers are encouraged to read other
excellent reviews that cover other aspects of the field.36–41

TARGETED PROTEIN DEGRADATION VIA PROTEASOME
In the canonical ubiquitination pathway, ubiquitin is conjugated to
target proteins by an E1-E2-E3 enzymatic cascade (Fig. 1). As the
E3 ligase is responsible for recognizing substrates and its family
number greatly exceeds E1 and E2, the UPS-based TPD strategies
utilize E3 ligases as targeting proteins for degradation.42 PROTAC
and molecular glue are two major technologies that rely on the
UPS for the degradation of protein of interest (POI), and will be the
focus of our discussion (Table 1). Additionally, many PROTAC-
based technologies, including selective androgen receptor degra-
der (SARD)43,44, Hydrophobic tagging (HyT),45–47 TF-PROTAC,48

dual-PROTAC,49 and selective estrogen receptor degrader
(SERD),50–54 have recently emerged (Table 1).

PROTAC
A PROTAC molecule comprises an E3-recruiting ligand, a POI-
targeting warhead, and a flexible linker linking the two ligands

(Fig. 4a). The addition of PROTAC promotes the formation of the
POI-PROTAC-E3 ternary complex, induces ubiquitination of the POI
and subsequent degradation via the UPS.37,55,56 Crews and
Deshaies groups developed the first PROTAC molecule in 2001.31

The protein-targeting chimeric molecule 1 (Protac-1) was synthe-
sized to recruit target protein methionine aminopeptidase-2
(MetAP-2) to the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex,
and subsequently degraded31(Fig. 3). The Protac-1 contains two
domains: one domain consists of a phosphopeptide derived from
IkBα (IPP) and binds to SCF, and the other domain, composed of
ovalicin, interacts with MetAP-2.31 Subsequently, the same group
demonstrated that a chimeric molecule consisting of the IκB
phosphopeptide and small-molecules could be used to degrade
the estrogen receptor (ER) and androgen receptor (AR), which
promote the growth of breast and prostate cancers, respectively.57

In 2008, Crews’s group reported the first example of small
molecule-based PROTAC58 (Fig. 3). This PROTAC, consisting of
nonsteroidal androgen receptor ligand (SARM), a MDM2 ligand
targeting ubiquitin ligase murine double minute 2 (MDM2), and a
PEG-based linker, was used to degrade androgen receptor (AR).58

In comparison with peptide-based PROTACs, small molecule
PROTACs are more readily taken up by cells and more likely to
be developed into drugs.59 In addition to MDM2, multiple other E3
ligases have been harnessed in the PROTAC technology, including
cereblon (CRBN),60 Von-Hippel-Lindau (VHL),61 and cell inhibitor of
apoptosis protein (cIAP).62

Fig. 3 Representative events in the TPD development. Purple: technologies related with UPS-based technologies; light blue: technologies
related with the endosome-lysosome pathway; dark blue: technologies related with the autophagy-lysosome pathway

Table 1. Different TPD technologies

Degradation pathways Degradation system Technologies Refs.

Targeted protein degradation via
proteasome

ubiquitin–proteasome system (UPS) PROTAC 31,58

Molecular glue 69

Double-mechanism degrader 71

PROTAC-based technologies: SARD, HyT, TF-PROTAC, dual-
PROTAC, SERD

43–54

Targeted protein degradation via
lysosome

endosome-lysosome system LYTAC 81,82

Bispecific Aptamer Chimera 79

AbTAC 86

GlueTAC 88

autophagy-lysosome system AUTAC 93,94

ATTEC 96,97

AUTOTAC 80

CMA-based degrader 105
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PROTACs afford multiple advantages compared with traditional
small molecule inhibitors.63 First, PROTACs greatly expand the
range of druggable proteins. More than 4000 disease-associated
proteins have been identified. Among them, only ~400 proteins
have been successfully exploited in current therapies. Many of
them could not be targeted by traditional inhibitors due to their
structural complexity, off-target effects and so on. Second,
traditional inhibitors only block part of the protein’s function,
while PROTACs degrade the protein, thus eliminating all its
functions. Third, traditional kinase inhibitors often lead to drug
resistance via mutations or overexpression of drug targets, but
PROTACs could minimize drug resistance from long-term selection
pressure by degrading target proteins. Last, PROTACs are active in
a substoichiometric and catalytic manner, which allows them to
function at low concentrations, thereby reducing possible toxic
side effects.

Molecular glue
Molecular glue facilitates the dimerization or colocalization of two
proteins via forming a ternary complex.64,65 They can regulate a
variety of biological processes, such as transcription, chromatin
regulation, protein folding, localization, and degradation. The first
examples of molecular glue are cyclosporin A (CsA) and FK506,
which are used as immunosuppressants.66 Mechanistic studies
reveal that CsA and FK506 induce the formation of cyclophilin-
CsA-Calcineurin and FKBP12-FK506-Calcineurin complexes,
respectively, giving rise to the term “molecular glues”.66 Subse-
quently, another immunosuppressive agent rapamycin was also
discovered as a molecular glue by stabilizing the FKBP12-
rapamycin-FRB (mTOR) ternary complex.67 In addition to immu-
nosuppression, rapamycin and its analogs also exhibit antifungal,
antitumor, and antiaging activities.
Molecular glue degraders induce the interaction between a

ubiquitin ligase and a POI, leading to POI ubiquitination and
subsequent degradation68 (Fig. 4b). Although both molecular
glues and PROTACs harness the UPS for protein degradation, they
have several distinctions (Fig. 4). First, PROTACs are heterobifunc-
tional degraders that simultaneously interact with the E3 ligase
and the POI; in contrast, molecular glue degraders could interact
with only the ligase (more frequently) or the POI, and induce/
stabilize their interactions. Second, molecular glues do not have a
linker, making them smaller molecular weight, increased oral
bioavailability, and improved cellular permeability, relative to
PROTACs. Last, molecular glues are more difficult to design,
although rational design strategies are emerging.
Examples of molecular glue degraders include thalidomide,

lenalidomide, and pomalidomide.69 Interestingly, they have been

approved by the FDA for the treatment of various types of tumors
long before their functional mechanisms were elucidated. Years
later, it was discovered that this class of compounds exert
antitumor activities by acting as molecular glues70 (Fig. 3). They
induce the interactions between E3 ligase, cereblon, and its
transcription factor substrates IKZF1/3, leading to the degradation
of IKZF1/3.69 With more drug-like properties, it is conceivable that
molecular glues will receive more attentions from both academia
and pharmaceutical industry.

Double-mechanism degrader
Treatment of complicated diseases, such as cancer, often require
more than one targets. Yang et al reported that a small molecule,
GBD-9, that can target both bruton tyrosine kinase (BTK) and G1 to
S phase transition 1 (GSPT1)71 (Fig. 5). BTK, a tyrosine kinase and a
key regulator of the BCR (B-cell receptor) pathway, is up-regulated
in a variety of lymphoma cells.72 GSPT1, a translation termination
factor, is involved in regulation of mammalian cell growth.73

Interestingly, GBD-9 retains the characteristics of both a PROTAC
and a molecular glue.71 The designer balanced the activities of
PROTACs and molecular glues by modulating the length of the
linker of BTK PROTACs. It appears that GBD-9 acts as a PROTAC to
promote the degradation of RTK and, at the same time, as a
molecular glue to promote the degradation of GSPT171 (Fig. 5). As
a consequence, GBD-9 displays stronger anti-proliferative effect in
multiple cancer cell lines than ibrutinib, a small molecule BTK
inhibitor. Future work will be needed to further illustrate the
functional mechanism of GBD-9. As both PROTACs and molecular
glues have strength and limitation, it will be excited to see more
examples that can harness the strength of both strategies.

TARGETED PROTEIN DEGRADATION VIA LYSOSOME
Lysosomes mediate the intracellular degradation of proteins and
organelles in three different ways: endocytosis, phagocytosis, or
autophagy74 (Fig. 2). Cells bring extracellular material or mem-
brane proteins in via endocytosis.75 In phagocytosis, cells bind and
engulf viruses, bacteria, or other large particles.25 Autophagy is a
highly conserved cellular process in which misfolded or aggre-
gated proteins, damaged organelles, and intracellular pathogens,
are removed.26,27 There are three forms of autophagic pathways:
macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA).26 During macroautophagy, dysfunctional pro-
teins or organelles are recognized by autophagy receptors and
selectively enclosed in autophagosomes.76 Autophagosomes are
then fuse with lysosomes and their contents are degraded. In
microautophagy, lysosomes directly engulf autophagic cargo and

Fig. 4 Schematic representation of PROTAC and Molecular Glue. a A PROTAC molecule consists of an E3 ligase-targeting ligand, a linker, and a
POI-binding ligand. It simultaneously binds to the POI and the E3 ubiquitin ligase, and induces the polyubiquitination and degradation of the
POI. b Molecular glue induces the interaction between a POI and an E3 ubiquitin ligase via binding to the E3 ubiquitin ligase, as illustrated, or
the POI. Relative to PROTAC molecules, molecular glues do not have a linker and have a lower MW
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lead to its degradation.77 In CMA, proteins are selected by
chaperones, targeted to lysosomes, and directly translocated
across the lysosome membrane for degradation. CMA has two
unique features. First, CMA degrades only certain proteins, but not
organelles. Second, the formation of autophagosomes is unne-
cessary in CMA.78

With the intensive research in the endosome-lysosome and
autophagosome-lysosome degradation pathways, TPD strategies
via the lysosomal pathway, such as LYTAC, AbTAC, ATTEC, AUTAC,
bispecific aptamer chimeras, and AUTOTAC have emerged in
recent years39,79,80 (Fig. 6 and Table 1). In contrast with
proteasome-based TPD, which can only degrade certain intracel-
lular proteins, lysosome-based TPD have potential to remove
proteins aggregates, damaged excess organelles, membrane, and
extracellular proteins.

LYTAC
LYTAC is a novel technique to induce the degradation of
extracellular and membrane proteins via the endosome-
lysosome pathway81,82 (Fig. 7). As extracellular and membrane
proteins comprise 40% of the encoded proteins and are key
contributors to neurodegenerative diseases, autoimmune diseases
and cancer, LYTAC is a good complement to PROTACs. LYTAC
molecules can simultaneously bind the extracellular domain of a
membrane protein, or an extracellular protein, and a lysosome-
targeting receptor (TLR) residing on the cell surface (Fig. 7). The
formation of a ternary complex leads to protein internalization via
clathrin-mediated endocytosis, and the POI is subsequently
degraded.
The first reported LYTAC molecule is based on cation-

independent mannose-6-phosphate receptor (CI-MPR), also
known as IGF2R81 (Fig. 7). CI-MPRs facilitate intracellular trafficking
of lysosomal enzymes, which are modified by N-glycans capped
with mannose-6-phosphate (M6P).83 Low pH in late endosomes
leads to the dissociation of lysosomal enzymes and CI-MPR.
Whereas the former is targeted for lysosomal degradation, CI-MPR
is transported to the Golgi apparatus and cell surface for
recycling.83 This natural process is harnessed to generate the first
LYTAC molecules, which consist of a small molecule or antibody
fused with synthesized a CI-MPR-targeting ligand, poly-M6Pn.81

This LYTAC strategy has shown promises in degradation multiple
therapeutically relevant proteins. For example, a LYTAC molecule
derived by covalently conjugating poly-M6Pn to the EGFR
antibody, cetuximab, was shown to specifically degrade EGFR in
a variety of cell lines.81 In addition, conjugation of poly-M6Pn with
anti-PD-L1 antibody led to a significant decrease of PD-L1 at the
cell surface.81

Whereas the expression of CI-MPR is ubiquitous, the expression
of certain LTRs is tissue specific. Molecules that target tissue-
specific LTRs could induce the degradation of target proteins in
specific tissues. Asialoglycoprotein receptor (ASGPR) is a liver-
specific LTR.84,85 The ASGPR-based LYTAC molecule is made by the
fusion of antibodies with N-acetylgalactosamine (GalNAc), that
target ASGPR82 (Fig. 7). Co-culture experiments demonstrate that
this LYTAC technology specifically targets cells that express
ASGPR.82 With initial success of CI-MPR- and ASGPR-based LYTAC,
the search for other LTRs is warranted.

Bispecific aptamer chimera
Similar to LYTAC, Bispecific Aptamer Chimera also mediates the
degradation of POI via the endosome–lysosome pathway79

(Fig. 7). In contrast with LYTAC, Bispecific Aptamer Chimera
utilizes DNA aptamer targeting CI-MPR and the transmembrane
POI (Fig. 7). The Han team designed the first Bispecific Aptamer
Chimera molecule named A1-L-A2, in which A1 and A2 specifically
bind to CI-MPR and a POI, and L stands for a linker DNA.79 The
aptamer chimeras could shuttle membrane proteins, such as
receptor tyrosine kinase MET and PTK-7, to lysosomes for
degradation.79 At the same time, the aptamer chimeras had no
significant effect on the levels of non-targeting proteins. Overall,
this method provides a powerful, efficient, and versatile platform
to induce the degradation of membrane proteins. Nucleic acid
aptamers have many advantages relative to antibodies, including
simple preparation, precise synthesis, and stability.

AbTAC
Antibody-based PROTAC (AbTAC) is another emerging TPD
technology that induces the degradation of extracellular and
membrane proteins86 (Fig. 8). Compared to conventional PROTAC,
AbTAC can target membrane proteins, thus, greatly extending the
potential substrates of current TPD strategies. Although bearing
the name of PROTAC, AbTAC is more closely related with LYTAC.
AbTAC utilizes bispecific antibodies, with one arm targeting a cell-
surface POI, and the other arm targeting a transmembrane E3
ligase, such as RNF4387 (Fig. 8). The addition of AbTAC molecule
induces the complex internalization and subsequent lysosomal
degradation of the POI.
Similar to LYTAC, AbTAC also mediate the TPD of cell-surface

POI by harnessing the endosome–lysosome pathway (Figs. 6–8).
However, the mechanism of action of AbTAC is less clear than that
of LYTAC. Particularly, it is unknown whether the intracellular
region of a POI is ubiquitinated prior to endocytosis; if it does, how
the ubiquitination contribute to the complex internalization.
Furthermore, it remains unknown whether RNF43 could be

Fig. 5 Schematic representation of a double-mechanism degrader. The molecule binds to one E3 ubiquitin ligase, and can degrade two
different POIs via distinct mechanisms
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recycled and re-used like LYTAC receptors, CI-MPR and ASGPR. In
addition to RNF43, additional membrane receptors need to be
identified for the development of AbTAC technology.

GlueTAC
Recently, another lysosome-based strategy, termed GlueTAC, has
been developed to degrade cell-surface proteins88 (Fig. 9).
GlueTAC utilizes three major technologies to facilitate the
degradation. First, nanobodies are used to replace conventional
antibodies to facilitate cell penetration. Second, covalent interac-
tion is introduced between nanobodies and antigen to overcome
relatively low binding affinity and to minimize off-target effects.
Third, a cell-penetrating peptide and lysosome-sorting sequence
(CPP-LSS) is conjugate to the nanobodies to promote the
internalization and lysosomal degradation89,90 (Fig. 9). To demon-
strate the effectiveness of GlueTAC, the authors developed a
GlueTAC molecule targeting PD-L1.88 This GlueTAC molecule is
more effective in reducing the level of PD-L1 in cells and inhibiting
tumor growth in immunodeficient mice, in comparison with FDA-
approved antibody against PD-L1, Atezolizumab.88

Whereas GlueTAC represent another exciting approach in
degrade cell-surface proteins, several issues need to be consid-
ered. First, the safety. GlueTAC introduces unnatural amino acids
in nanobodies and creates covalent bonds between nanobodies
and antigens. Thus, the safety of GlueTAC molecules need to be
carefully assessed. Second, the nanobodies do not have heavy
chains and cannot bind to FcRn.91,92 The half-life of GlueTAC also
needs to be determined.

AUTAC
In addition to the endosome–lysosome pathway, the
autophagy–lysosome pathway provides another avenue for
TPD93,94 (Fig. 6 and Table 1). Nucleotide 8-nitrocyclic guanosine
monophosphate (8-nitro-cGMP) is an important signaling mole-
cule in cells to mediate the recruitment of autophagosomes.95 This
property of 8-nitro-cGMP was used for the development of
autophagy-targeting chimera (AUTAC) (Fig. 10). An AUTAC
molecule consists three parts: a cGMP-based degradation tag, a
linker, and a small molecule ligand for a POI or an organelle.93 An
AUTAC molecule triggers K63-linked polyubiquitin, and

Fig. 6 Summary of lysosome-dependent protein degradation strategies. A Schematic representation of LYTAC and other degradation
technologies via the lysosomal pathway. B LYTAC molecules and Bispecific Aptamer Chimeras degrade membrane proteins and extracellular
molecules by engaging a POI and a lysosome-targeting receptor (LTR). AbTAC utilizes a membrane E3 ligases, RNF43, for the degradation of
membrane proteins, via a lysosome-dependent manner. GlueTAC utilizes a lysosome-sorting sequence (LSS) to promote the lysosomal
degradation. AUTAC, ATTEC and AUTOTAC promote the formation of POI-specific autophagosomes, and subsequently the degradation of the
POI via lysosomes. CMA-based degrader harness chaperone-mediated autophagy, rather than macroautophagy, for protein degradation
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subsequent lysosome-mediated degradation (Fig. 10). In contrast,
a PROTAC molecule induces K48-linked polyubiquitin and
proteasome-mediated degradation.
In addition to cytoplasmic proteins, cellular organelles such as

mitochondria could be degraded via AUTAC.93 Mitochondrial
dysfunction is associated with many aging-related diseases, and
the removal of dysfunctional or damaged mitochondria may
ameliorate these diseases. Takahashi et al developed a molecule
known as AUTAC4, which promotes mitophagy of fragmented
mitochondria.93 AUTAC4 utilizes a 2-phenylindole derivative,
which is a ligand for a transporter on the outer mitochondrial
membrane, as a mitochondria binder. The treatment of AUTAC4
was shown to restore mitochondrial membrane potential and ATP
production.93 These results indicate broad applications of AUTAC,
and it is expected to see more interesting applications of AUTAC,
such as the degradation of protein aggregates.

ATTEC
Similar to the autophagy-based AUTAC, autophagosome tethering
compound (ATTEC) functions by tethering the POI to the
autophagosome96,97 (Figs. 6 and 11). Whereas AUTAC recruits
autophagosomes for degradation, ATTEC binds to LC3, one of the
key proteins of autophagosome.98,99 Lu and coworkers discovered
a set of small molecules that are capable binding of LC3 protein
and pathogenic mutant huntingtin proteins.96 Remarkably, these
molecules can distinguish wild-type and mutant huntingtin
proteins,96 which are identical except for the length of the
polyglutamine (polyQ) stretch. Mutant huntingtin protein has at
least 36 glutamines. The longer the polyQ stretch, the earlier
symptoms typically appear.100 The researchers proposed that
these molecules recognize the conformation of the expanded
polyQ stretch in the mutant protein and distinguish them from the
wild-type protein.97 By specifically recognizing the mutant

Fig. 7 Schematic representation of LYTAC and Bispecific Aptamer Chimera. LYTAC is composed of a small molecule or an antibody conjugated
to a ligand that binds to lysosome-targeting receptors (LTRs), such as CI-MPR and ASGPR. Whereas CI-MPR is ubiquitously expressed in all
human tissues, ASGPR is only expressed in liver. Thus, ASGPR-base LYTAC could achieve liver specific protein degradation. CI-MPR or ASGPR is
endocytosed along with LYTAC molecules and the POI. Whereas the POI is degraded by lysosomes, CI-MPR, or ASGPR is recycled to the plasma
membrane for re-use. Bispecific Aptamer Chimera utilizes DNA aptamer to target the LTR and POI

Fig. 8 Schematic representation of AbTAC. AbTAC utilizes recombinant bispecific antibody to recruit a membrane protein and a membrane-
bound E3 ligase, RNF43. The POI is likely degraded via the lysosomes, but not by the proteasomes. However, the exact mechanisms remain to
be established
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huntingtin protein, ATTEC provides new possibility for the
treatment of Huntington disease. Furthermore, it will be interest-
ing to determine whether these ATTEC molecules can be used for
other polyQ diseases, such as dentatorubral pallidoluysian atrophy
and Machado-Joseph disease.101

Recently, Lu and colleagues further extend the application of
ATTEC by developing small molecules targeting Lipid droplets (LD-
ATTEC), the fat-storage organelles in cells.97 These compounds
bind LC3 protein as well as Lipid droplets, and can reduce the

number of Lipid droplets at micromolar concentrations. Further-
more, they can rescue LD-related phenotypes in two independent
mouse models.97 Collectively, these studies demonstrate that
ATTEC could harness the autophagy-lysosome pathway for the
degradation of proteins and non-protein materials.

AUTOTAC
The autophagy cargo receptor p62/SQSTM1 functions to bridge
polyubiquitinated cargo and autophagosomes.102 Polyubiquitinated

Fig. 9 Schematic representation of GlueTAC. GlueTAC consists of a covalently-modified nanobody, a Cell-penetrating peptide (CPP), and a
lysosome-sorting sequence. The nanobody is responsible for targeting POI, and the CPP induces endocytosis of the GlueTAC-POI complex and
subsequent lysosomal degradation

Fig. 10 Schematic representation of AUTAC. AUTAC molecules consist of a POI-targeting warhead, a linker, and a cGMP-based degradation
tag. The degradation tag recruits autophagosomes to degrade cytoplasmic proteins and cellular organelles
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cargos bind to the UBA domain of p62, leading to a conformational
change in p62. Such a conformation change exposes the LIR motif of
p62, and prmotes its interaction with LC3 on the autophagic
membrane. Ji et al. designed the AUTOphagy-TArgeting Chimera
(AUTOTAC) platform that bypasses the requirement of ubiquitin80

(Fig. 11). AUTOTAC molecules consist of a module that interacts with
the ZZ domain of p62, and a POI-targeting module.80 The addition
of AUTOTAC molecules bridges the POI and p62, independent of
ubiquitin on the POI. AUTOTAC promotes the oligomerization and
activation of p62, leading to the degradation of the POI by the
autophagy–lysosome pathway (Fig. 11).
AUTOTAC can mediate the targeted degradation of not only

monomeric proteins, but also aggregation prone proteins. Using
murine models expressing human pathological tau mutants, Ji
et al demonstrated the AUTOTAC could effectively remove
misfolded tau.80 In contrast, the proteasome-based technologies,
such as PROTAC and molecular glue, are usually ineffective in
dealing with the misfolded proteins. In addition to Tau, AUTOTACs
could also efficiently remove multiple oncoproteins, such as
degrading androgen receptor (AR).80

CMA-based degrader
In chaperone-mediated autophagy, heat shock protein 70 (HSC70)
recognizes soluble protein substrates with KFERQ sequence.103

The HSC70-substrate complex then binds to lysosomal associated
membrane protein 2A (LAMP2) on the lysosomal membrane, and
the substrate is then translocated to lysosome lumen for
degradation.104 Thus, a chimera peptide containing the KFERQ
sequence and a targeting protein-binding sequence could be
exploited to degrade pathogenic or misfolded proteins. CMA-
based degraders include three functional domains: a cell
membrane penetration sequence, a POI-binding sequence, and
a CMA-targeting motif105 (Fig. 12). Upon the addition to the cells, a
CMA-based degrader first enters the cell, then binds to the target
protein via the POI-binding sequence, and finally transports to the
lysosomes for degradation.105 Indeed, this strategy has been
shown to reduce the levels of mutant huntingtin protein, PSD-95,

death-associated protein kinase 1 (DAPK1), as well as α-
synuclein.105,106

To become an effective therapeutic strategy, CMA-based
degraders need to overcome at least two major hurdles. First,
the stability of the degrader. Second, the delivery efficiency.
Overall, whereas the CMA-based degraders represent a new
approach in TPD, they face great challenges that are not seen by
other TPD technologies, such as PROTAC and LYTAC.

APPLICATION OF TARGETED PROTEIN DEGRADATION IN
DISEASE TREATMENT
The last few years have seen explosive growth in the field of
TPD.107 Currently, about ten TPD molecules are in the cancer
clinical trials.108 In addition to cancer, many TPD molecules show
great promising for the treatment of neurodegenerative diseases,
inflammatory diseases, or viral infection.

Cancer
Multiple TPD molecules (mostly based-on the PROTAC technol-
ogy) have shown potential therapeutic effects in cancer clinical
trials and preclinical studies.109 Due to the space limitation, we can
only highlight a few examples. The estrogen receptor (ER) is a
master regulator of gene expression, and is critical for the
pathogenesis of breast cancer.110–112 ARV-471 is a PROTAC
molecule developed by Arvinas and specially target ER.113 In
preclinical experiments, ARV-471 leads to efficient ER degradation
and significantly reduces tumor burden in xenograft models.113

Now in phase II clinical trial, ARV-471 can be given either as a
single agent or in combination with a CDK4/6 inhibitor. In clinical
experiments, ARV-471 shows good oral bioavailability and
favorable tolerability.
In addition to ARV-471, ARV-110 is another PROTAC small

molecule entering phase II clinical trial.108 ARV-110 selectively
targets androgen receptor (AR) and leads to its degradation. ARV-
110 is developed as a potential treatment for prostate cancer, the
second most common malignancy in men after lung cancer.108

Fig. 11 Schematic representation of ATTEC and AUTOTAC. An ATTEC molecule simultaneously binds LC3 and a POI, while an AUTOTAC
molecule binds p62 and a POI. The binding induces the formation of autophagosomes, and subsequent fusion between autophagosomes and
lysosomes lead to the POI degradation
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Most notably, ARV-110 shows great efficacy in patients whose
tumors harbored the AR T878X/H875Y (T878X= T878A or T878S)
mutations and are resistant to currently available AR-targeted
therapies. These results further emphasize that TPD has become a
promising approach in pharmaceutical industry by targeting these
“undruggable” targets.
Signal transducer and activator of transcription 3 (STAT3) is

constitutively activated in a variety of human cancers.114–118

Small-molecule inhibitors targeting the STAT3 SH2 domain have
selectivity problems and show very limited clinical activity.
Recently, a potent and specific PROTAC degrader of STAT3, SD-
36, was developed.119,120 SD-36 is made of analog of CRBN ligand
lenalidomide, a linker and the STAT3 inhibitor SI-109.121 SD-36
efficiently and rapidly degrades STAT3 in leukemia and lymphoma
cell lines. Interestingly, SD-36 is highly selective for STAT3 among
all the STAT proteins. Furthermore, SD-36 also achieves a robust
and long-lasting STAT3 degradation in multiple xenograft mouse
models.119

BCL-XL, a member of the BCL-2 family, protects cancer cells
from programmed cell death.122,123 Small molecule inhibitors
targeting the BCL-2 class proteins, such as ABT263 (BCL-2 and
BCL-XLdual inhibitor) and ABT199 (BCL-2 selective inhibitor), have
been developed.124 However, these molecules often have
significant side effects, thus limiting their utility. Recently, a
potent BCL-XL PROTAC molecule, DT2216, was developed by
conjugation ABT263 with a VHL ligand.125,126 DT2216 leads to
robust BCL-XL degradation in tumor cells. It also displays reduced
side effects relative to ABT263, likely due to the low expression of
VHL in platelets. Interestingly, DT2216, although binding to BCL-XL
and BCL-2 with similar affinity, does not induce the degradation of
BCL-2.

Neurodegenerative diseases
Neurodegenerative diseases (NDs) are a group of disorders
characterized by progressive motor or cognitive impairment.127

NDs, including Alzheimer’s disease (AD), Parkinson’s disease (PD),
and Huntington disease (HD), are closely associated with insoluble
aggregates formed by protein misfolding.128 Misfolded proteins
often display unusual protein-protein interactions (PPIs) that are
unrelated with their normal functions.129,130 Traditional drug
discovery is often based on modulating the functions of target
proteins. As a result, novel drug discovery modes, such as TPD, are

urgently needed in order to develop therapeutic approaches for
NDs.131,132

In 2016, Chen and Li groups reported a PROTAC molecule targeting
tau protein, the first attempt to apply the PROTAC technology for the
treatment of NDs.133 The PROTAC molecule they designed is a
chimera construct made of a tau-binding peptide, a linker, a VHL-
binding peptide, and a cell-penetrating peptide.133 This molecule
leads to a significant degradation of tau and reduced neurotoxicity of
Aβ. Another polypeptide PROTAC for AD was developed by Jiang
et al., who used a CRLKeap1-binding sequence.134 This molecule also
successfully achieved tau protein degradation.

Inflammatory diseases
In addition to cancer and neurodegenerative diseases, the reach
of TPD has extended to inflammatory diseases and immuno-
oncology. IRAK-4 (interleukin-1 receptor-associated kinase 4) is a
member of the IRAK kinase family and involved in Toll-like
receptor (TLR) and IL-1R signaling pathways.135 Upon TLR
activation, IRAK-4 is recruited to form the Myddosome complex,
which subsequently leading to the phosphorylation of other
members of the IRAK family, such as IRAK1 and IRAK2.136 In
addition to its enzymatic activity, the scaffolding role of IRAK-4 in
TLR signals is also well established.137 In comparison with
conventional inhibitors, IRAK-4 degraders provide great advan-
tages by eliminating both enzymatic and non-enzymatic functions
of IRAK-4. Indeed, multiple IRAK-4-targeting PROTAC molecules
have been developed, with one entering phase I clinical trials to
treat autoimmune diseases.138–140

BTK is an established target in both inflammation and cancer.141

Although BTK inhibitors have been proved and used in the clinic
to treat different hematological cancers, such as leukemia and
lymphoma, the appearance of BTK mutations renders these drugs
less effective. These challenges could be uniquely addressed by
BTK degraders as these molecules may degrade both wide-type
and mutant BTK proteins.142,143 Two BTK PROTACs are currently in
a phase I trial for the treatment of B cell malignancies and
autoimmune diseases.107

Viral infection
Viral infection poses a great challenge in global health. SARS-CoV-
2 is one of the worst examples, which have infected over 400
million individual and killed 5.7 million worldwide.144,145 TPD

Fig. 12 Schematic representation of CMA-based degrader. CMA-based degrader consists of three modules: a CMA-targeting module, a cell-
penetrating peptide, and a POI-targeting module. After the CMA-based degrader entering the cell, it binds the POI and induces chaperone-
mediated autophagy
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could represent a novel antiviral therapeutic approach. One of the
first successful examples is used for the degradation of hepatitis C
virus (HCV) NS3/4A protease. de Wispelaere et al.146 showed that
telaprevir (the HCV protease inhibitor)-based PROTACs could
inhibit HCV in a cellular infection model. Currently, there are great
interests in the development of PROTACs that target SARS-CoV-2
across academia and industry.107 In addition to PROTAC,
technologies targeting the autophagy–lysosome pathway, such
as AUTAC and ATTEC, could be also used to eliminate key viral
proteins.132

SUMMARY AND OUTLOOK
The past two decades have seen the birth and boom of the TPD
technologies. PROTAC and molecular glue are the most advanced
TPD technology. Both are based on the ubiquitin-proteasome
system and useful for the degradation of intracellular proteins. In
the past 5 years, technologies harnessing the second degradation
pathway in cells have emerged and quickly developed. These
technologies can be further divided into two groups based on their
degradation mechanisms. LYTAC, Bispecific Aptamer Chimeras,
AbTAC, and GlueTAC, degrade extracellular and membrane
proteins by harnessing the endosome-lysosome pathway. In
addition, technologies targeting the autophagy-lysosome pathway,
such as AUTAC, ATTEC, AUTOTAC, and CMA chimeras, can degrade
misfolded proteins, protein aggregation, or damaged organelles.
Multiple PROTAC molecules, including cancer drug candidates

ARV-110 and ARV-471, have shown great promising in clinical
trials. Nevertheless, the PROTAC technology, as a whole, still faces
many challenges. First of all, pharmaceutical properties. PROTAC
molecules often face the challenges of cell permeability and oral
bioavailability due to their large size. Molecular glues are smaller
and have some advantages over PROTAC molecules; however,
they are more difficult to rationally design. Second, the repertory
of E3 ubiquitin ligase. Human genome encodes more than 600 E3
ubiquitin ligases, and only a few of them (VHL, CRBN, IAPs, and
MDM2) have been utilized to degrade target proteins. Third,
toxicity. PROTAC could result in more toxicity than small molecular
inhibitors because they degrade entire targeted proteins, rather
than solely inhibit them.
Relative to PROTAC and molecular glue, the development of

lysosome-based TPD technologies is still in the infancy stage. We still
have much to learn about the specific mechanism of each
technology. As an important intracellular organelle, lysosomes
regulate many important cellular and physiological functions in
addition to protein degradation, such as the metabolism and
homeostasis. It is unclear whether “hijacking” lysosomal degradation
pathway will affect the body as a whole. Expanding the repertory of
lysosome-targeting receptors, which currently include CI-MPR and
ASGPR only, is much needed for LYTAC and similar technologies.
Further characterization of AUTAC, ATTEC, and AUTOTAC molecules,
including systematic study their structure−activity relationship and
understanding of their modes of action, is necessary. These efforts
will help to develop the autophagy-based technologies as a general
method for protein degradation, analogous to PROTAC. Current
CMA-based degraders are mostly limited by cell membrane
permeability and stability, and their small-molecule forms may
overcome these obstacles. Lysosome-based technologies have
greatly broadened the spectrum of targets by PROTAC and
molecular glue, and a surge of interest in this field is definitely
expected. Despite these challenges, TPD technologies, undoubtedly,
will not only provide powerful tools for biomedical research, but
hold great promise for future drug development.
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