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PET enables noninvasive imaging of regional in vivo cancer biology. By
engineering a radiotracer to target specific biologic processes of rele-
vance to cancer (e.g., cancer metabolism, blood flow, proliferation, and
tumor receptor expression or ligand binding), PET can detect cancer
spread, characterize the cancer phenotype, and assess its response to
treatment. For example, imaging of glucose metabolism using the
radiolabeled glucose analog '®F-FDG has widespread applications to
all 3 of these tasks and plays an important role in cancer care. However,
the current clinical practice of imaging at a single time point remote
from tracer injection (i.e., static imaging) does not use all the information
that PET cancer imaging can provide, especially to address questions
beyond cancer detection. Reliance on tracer measures obtained only
from static imaging may also lead to misleading results. In this 2-part
continuing education paper, we describe the principles of tracer kinetic
analysis for oncologic PET (part 1), followed by examples of specific
implementations of kinetic analysis for cancer PET imaging that high-
light the added benefits over static imaging (part 2). This review is
designed to introduce nuclear medicine clinicians to basic concepts of
kinetic analysis in oncologic imaging, with a goal of illustrating how
kinetic analysis can augment our understanding of in vivo cancer biol-
ogy, improve our approach to clinical decision making, and guide the
interpretation of quantitative measures derived from static images.
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Molecular imaging with PET quantifies emissions from radio-
pharmaceuticals designed to measure specific biologic processes
in vivo. As a method that measures absolute radionuclide concentra-
tion, PET is an inherently quantitative imaging modality. Indeed, the
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SUV of '8F-FDG, obtained as a measure of tracer uptake at a single
time point (static) in standard clinical practice, has found widespread
clinical acceptance in oncology (/,2). The quantitative capabilities of
PET, however, extend well beyond simple static uptake measures.
PET can quantify important features of radiopharmaceutical kinetics
such as tissue delivery, retention, and release back to the blood that
provide a more comprehensive picture of in vivo cancer biology and
can improve clinical decision making (3).

This 2-part series is intended for nuclear medicine trainees and
practitioners not familiar with pharmacokinetic principles and tracer
kinetic analysis. Part 1 provides the rationale for kinetics analysis in
PET cancer imaging, along with a framework for modeling, quanti-
fying, and interpreting PET tracer kinetics. Part 2 illustrates specific
implementations of kinetic analysis for cancer PET, the added bene-
fits over standard clinical static imaging, and cases in which kinetic
principles can guide the interpretation of static PET images to
avoid pitfalls related to single-time-point imaging of a dynamic
process (4). We focus on methods and examples relevant to com-
mon oncologic applications, with an emphasis on '®F-FDG as the
currently most commonly used radiopharmaceutical for PET cancer
imaging. We also discuss additional examples of other illustrative
or emerging cancer imaging probes.

This review is intended to serve as a primer for kinetic analysis in
oncology. For those wanting a more detailed review of these topics,
including the underlying mathematic principles, we refer readers to
more comprehensive references (5—/0). Additionally, this review
focuses on dynamic imaging and kinetic analysis. We do not, there-
fore, discuss static measures of '*F-FDG uptake beyond SUV, such
as metabolic tumor volume and total lesion glycolysis; these topics
are more thoroughly discussed in other sources (/7).

WHY DO KINETIC MODELING?

After injection into the bloodstream, radiopharmaceuticals undergo
a series of complex molecular interactions with tissues. The resulting
image represents the combination of several key steps from injection
to uptake in cancer cells, including the following (Fig. 1) (12,13):
delivery to the tumor by regional blood flow; transit across the tumor
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FIGURE 1. (Top) Depiction of movement of tracer (green diamond) from

vasculature to its intracellular tumor target (maroon V). Tracer is delivered
to tumor via regional blood flow; travels from capillary, through interstitial
space, and into cell, where it interacts with its target in this example; and
may also follow reverse path. Static PET image represents summation of
tracer in each of these steps in tissue. For kinetic analysis, compartments
are constructed that represent key states of tracer (e.g., reversible compart-
ment representing tracer in interstitial space and in cell, and bound com-
partment representing tracer engaging with target. Rate constants (K, ko,
ks, and ky) represent transfers between compartments (defined in Table 1),
which may depict multiple tracers moving through multiple barriers.

capillary membranes and through the interstitial fluid; transport into
the cell, often by specific membrane transporters; binding to target
molecules (e.g., tumor receptors) or trapping after enzymatic alter-
ation (e.g., '®F-FDG conversion to '*F-FDG-6-phosphate ['*F-FDG-
6-P] by hexokinase); and release from the cell by disassociation from
the binding target or by reverse enzymatic alteration that no longer
traps the molecule (e.g., conversion of '*F-FDG-6-P back to '®F-
FDG by glucose-6-phosphatase).

This complex series of steps cannot be fully characterized by
imaging at a single time point remote from tracer injection. Time-
resolved PET imaging can, however, be performed continuously
from the start of tracer injection to provide a dynamic series of
images that fully capture all steps in radiopharmaceutical delivery,
retention, and release (Fig. 1). By capturing the time course of tis-
sue uptake and applying pharmacokinetic models that represent
radiopharmaceutical pharmacology and biochemistry, PET can
quantify specific biologic phenomena—for example, transport and
metabolic rate—that cannot be measured by simple static imaging
and SUV (3). So why go through the additional time and complex-
ity of dynamic imaging and tracer kinetic analysis, given the ease
and efficiency of taking a single snapshot sometime later after
injection? There are several reasons.

The first is that tracer kinetic parameters provide biologic insights
related to the radiopharmaceutical target and the disease process (8).
For example, dynamic 'F-FDG can measure both the rate of delivery
of glucose to cancers and the rate of its metabolism. Demonstrating a
balance or imbalance between substrate delivery and use may predict
important outcomes such as therapeutic response and survival (/4).

Second, tracer kinetic analysis provides more precise interpreta-
tions of PET images. For example, for '®F-FDG PET, tracer remains
in the blood at notable concentrations for several hours after injection.
As such, static tumor images at the typical 1-h-postinjection time
point reflect a mixture of unmetabolized '®F-FDG exchanged with
the blood and '®F-FDG-6-P trapped by tumor glucose metabolism
(the biologic target of 'SF-FDG). Static PET imaging cannot

distinguish between '®F-FDG and '®F-FDG-6-P since both have the
same positron-emitting isotope detected by the scanner. Dynamic
imaging and kinetic analysis, however, can use the time course of
radioactive '8F-FDG in the blood (plasma) and the total '*F-FDG
plus '8F-FDG-6-P in the tissue to infer the rate of intracellular '8F-
FDG-6-P accumulation and provide a much more specific estimate of
tumor glucose metabolism (/2,73). This ability can have important
implications in the clinic and clinical trials—for example, for measur-
ing therapeutic response (/4—16).

Third, kinetic principles can help avoid pitfalls in interpreting stan-
dard clinical static uptake images. For example, the persistence of
8F_FDG in the blood after injection leads to ongoing trapping of
tracer as '8F-FDG-6-P over time. For tumors with high glucose meta-
bolic rates, SUV can increase over 30% in as little as 15min at 1h
after injection (/7). Variability of uptake time in serial scans can there-
fore considerably confound the assessment of therapeutic response
both in the clinic and in clinical trials (/4,18). Kinetic analysis avoids
this pitfall and can inform static imaging correction schemes.

These points illustrate that static uptake measures (e.g., SUV)
provide a clinically practical, albeit limited, approximation of infor-
mation carried by radiopharmaceutical uptake kinetics. Furthermore,
the optimum timing of imaging and the optimum approach to
uptake quantification are not necessarily the same for all tracers and
all tumors. Particularly, in the development and early testing of a
new radiotracer, or the application of an existing tracer to a new
tumor or treatment, initial testing should focus on dynamic imaging
and rigorous kinetic characterization to guide image interpretation
and clinical translation (3,13). Through detailed kinetic analysis,
tracer uptake can be characterized to guide the development of
rational simplified protocols more amenable to the clinic. An under-
standing of tracer kinetics is necessary before protocol simplifica-
tion to avoid or mitigate pitfalls of the simplified approaches
discussed above (8). A recent example can be seen in the develop-
ment of a novel radiotracer for imaging poly[adenosine diphos-
phate-ribose] polymerase expression in ovarian cancer, in which a
study of tracer kinetics helped determine the nature of tracer reten-
tion in patients and guided the approach to static imaging (/9).
Even when reasonable static imaging approximations are possible,
dynamic acquisition and full kinetic analysis can still yield impor-
tant clinical data and biologic insights not possible with static imag-
ing. Such examples are highlighted in part 2 of this review.

PET KINETIC ANALYSIS: PRINCIPLES AND REQUIREMENTS

Overview

Figure 2 illustrates the conceptual framework for dynamic PET
imaging (top) and kinetic modeling or analysis (middle). An impor-
tant difference from standard clinical imaging is the need to collect
dynamic volumetric 4-dimensional (3 spatial dimensions and time)
imaging data over time. Key patient data obtained during scanning
include the measurement of the time-varying target tissue uptake
curves (time—activity curves), as well as data on tracer clearance from
the plasma. Target tissue uptake curves are obtained from direct
dynamic imaging, whereas plasma clearance curve can be measured
by blood sampling, image analysis, or a hybrid of both methods (8).

The middle of Figure 2 provides an overview of the approach to
kinetic analysis. The plasma clearance curve serves as an input—or
driving function—to a model describing tracer pharmacokinetic
behavior in the tissue of interest (5,9). A set of parameters describes
quantitative tracer kinetic features that include tracer delivery to the
tissue, retention or trapping in tissue, and efflux back to the blood.
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FIGURE 2. (Top) Data are acquired at single bed position (left) and reconstructed into multiframe
dynamic images (middle), on which regions of interest are drawn to create time-activity curves
(right). Blood time-activity curve peaks early in scan (red arrow, corresponding to early dynamic
frames), whereas tumor activity peaks later (blue arrow, corresponding to later dynamic frames).
(Middle) In this schematic overview of the approach to kinetic analysis, raw whole-blood
time—activity curve must be partitioned into plasma vs. red blood cell activity and corrected for
metabolites to obtain plasma time-activity curve, which is then used as input to kinetic modeling
process. Dynamic tissue time—activity curves act as standard of truth against which model estimates
are compared in iterative process of kinetic parameter estimation. (Bottom) Kinetic parameter esti-
mation (model-generated tissue curve) improves through model optimization as iterations increase.

single anatomic area of interest for the dura-
tion of the scan. Given the limited axial
field of view of PET scanners—typically
16-25 cm—the investigator must choose
the most ideal axial position to image. If all
sites of interest are not contained in a single
axial field of view, the investigator must
select the optimal area to scan, with the
inclusion of some lesions at the expense of
others. Additionally, if an image-derived
input function is to be used, the imaging
axial field of view should also include a
large arterial blood pool—for example, the
aorta—to measure the blood time—activity
curve in a location ideally just upstream of
the organ or lesion of interest (20).

After the patient is positioned in the scan-
ner, the radiotracer is injected and imaged
continuously for a period that is dictated by
radiotracer kinetics. Although a sharp bolus
injection is often ideal for modeling, other
protocols may be better suited for certain
applications: for example, a bolus-plus-infu-
sion protocol (27). Additionally, for extended
studies (e.g., hour-long studies), motion cor-
rection may be needed if the patient shifts
during the scan (22,23).

Dynamic imaging data either are collected
in list mode, to be parsed into time bins
(hereafter referred to as frames) after acqui-
sition, or are directly binned into sinograms
with predetermined frame durations. Most
current dynamic imaging protocols parse
the data into short (5-10 s for typical '8F
tracers) frames early after injection to capture
the fast dynamics of the tracer in both larger
blood vessels and the smaller vasculature
within organs. After the initial bolus, frame

Using the plasma clearance curve as input into the kinetic model, the
kinetic parameter set—typically in the form of a set of differential
equations—can be mathematically integrated to generate a simulated
(model-generated) tissue curve. This curve is then compared with
the measured tissue curve from patient imaging to estimate the good-
ness of fit, typically assessed with the x> function. The process of
parameter estimation involves iterative guesses of the parameter val-
ues toward the goal of minimizing the difference (x* value) between
the model-generated and measured blood curve from a predefined
goal. This process is known as optimization of the model fit to the
measured data (Fig. 2, bottom), and the parameter values that yield
the closest fit of the model to the measured PET data are reported as
kinetic parameter estimates—the goal of kinetic analysis.

Data Acquisition

Dynamic data are typically acquired at a single bed position
over time to measure the time course of tracer uptake and generate
4-dimensional datasets of time-varying regional tracer concentra-
tion (Fig. 2, top).

To capture the time course of radiotracer uptake for the tissues
of interest, the PET axial field of view is typically centered over a
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durations are typically lengthened (1-5 min)

to decrease image noise when count rates are
lower and the kinetics are no longer as rapidly changing (Fig. 2, top).
Each frame is then individually reconstructed (8).

To be compared and used for kinetic analysis, all time-activity
curves must be calibrated to be in common units for either SUV (typi-
cally mg/mL) or activity concentration (e.g., Bg/mL) (8,9). This cali-
bration happens naturally for image-derived blood clearance and
tissue curves but requires cross calibration between a well counter
and the PET scanner for plasma curves obtained by blood sampling.
Arterial blood sampling, commonly used for brain PET imaging and
kinetic analysis, is less common for oncologic PET since, first, large
blood-pool structures such as the heart and aorta are frequently in the
dynamic imaging field and, second, oncologic patients often undergo
serial scans and toxic systemic therapy that make arterial sampling a
challenge. What often works well is a hybrid approach using image
analysis of a large blood-pool structure (e.g., aorta or ventricle) and
venous blood samples to determine fractional radioactivity in red cells
versus plasma and parent radiotracer versus labeled metabolites (8).

Kinetic Model Formulation
The next step in kinetic analysis requires a model, typically a
compartmental model. Model formulation needs to encompass the
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TABLE 1
Parameters of Interest for Typical Oncologic Models

Model type

Parameter of interest

Microparameters
1-tissue-compartment model
2-tissue-compartment model

K4 (blood-tissue transfer constant), k» (tissue-blood transfer content),
K1, ko, k3 (representing substrate-target binding or metabolism rate constant),

k4 (off-binding or metabolic degradation rate constant)

Macroparameters
Vr (1-tissue compartment) Vr = Ki/ko

Vr (2-tissue compartments)

K; Ki = Kiko/(ko + ka)
Typical units

K rate constant mL/min/cm?®

k rate constant 1/min

Vr mL/cm?®

V1 = (Ki/kz) X (1 + [ka/ka)])

complexity of biology and biochemistry in living systems but, at
the same time, meet the challenge of estimating each facet of
in vivo biology given the spatial, temporal, and statistical limita-
tions of the 4-dimensional datasets measured by PET (5,9,10,24).
As such, compartmental models used for PET typically represent
only the key, rate-limiting, steps that determine the time course of
tracer uptake: tracer delivery, metabolism, or target binding.
Radiotracer biochemistry and pharmacology investigated during
preclinical development and early human trials should inform
model design to yield model parameters of clinical and biologic
interest that can be estimated with reasonable accuracy and pre-
cision (/0,24). In interpreting the parameter estimates yielded
by kinetic analysis, it is important to consider the biologic com-
plexity of the processes underlying the parameter estimates and
the influence of common factors such as tissue perfusion, cellu-
lar density, and possible drug effects on the kinetics of the PET
tracer (Fig. 1).

In compartmental models for PET, the plasma clearance curve
(plasma time—activity curve) serves as the input (driving function)
to one or more tissue compartments. Compartments are virtual
constructs representing tracer label present between the key steps
that mediate tracer delivery, retention, and release (10,24). A tis-
sue compartment can represent whole tissue, tumor cells, a subcel-
lular location, or, frequently, a biochemical state associated with a
particular cell type. For example, '®F-FDG tissue kinetics are typi-
cally modeled as having 2 compartments (/3,25,26). The first is a
free or reversible compartment representing '3F-FDG delivered to
all components of tissue outside the blood vessels (cells and inter-
stitial space) but not trapped by phosphorylation. The second is a
trapped compartment for '®F label retained in the cell as '*F-FDG-
6-P. This compartment consists of '®F-FDG that has been phos-
phorylated by hexokinase and is retained inside cells, unless it is
released to the reversible '8F-FDG compartment via dephosphory-
lation by glucose-6-phosphatase. In typical model illustrations,
compartments are indicated by boxes, and transfers to and from
the blood and between compartments are illustrated by arrows.
The blood, considered a driving function for PET kinetic analysis,
represents systemic delivery and clearance from the total-body
blood pool. The driving function is not a compartment and is
assumed to be unaffected by incremental tracer delivery to or

clearance from the tissue. In this formalism, each arrow indicates
a physical or biochemical transition and represents a difference
equation (as an approximation of a differential equation) describ-
ing mass transit. Parameters of interest for typical oncologic mod-
els are described below and summarized in Table 1.

Figure 3 illustrates the 1-tissue-compartment and 2-tissue-compart-
ment models most commonly used for PET oncologic radiotracers
(top and middle, respectively) and an '8F-FDG kinetic model as a
specific implementation of a 2-compartment model (bottom). In PET
nomenclature, the plasma input curve serves as the driving function
for the model and does not count as a compartment by convention,
although in other fields such as drug pharmacology, the blood or
plasma clearance curve is an important focus of kinetic analysis and
is included as a compartment (27).

To illustrate the formulation of a kinetic model, we start with the
simple 1-tissue-compartment model (Fig. 3, top), which describes
tracers that are only reversibly transported into and out of tissues.
Such models have been used to estimate tissue perfusion (K;) using
82Rb or '3O-water (28-31), as described in part 2. This simple
model includes only transfer from the blood into the tissue com-
partment (K, [mL/min/cm®]) and efflux from the tissue compart-
ment back into the blood (k,, [1/min]) (28). To illustrate how the
model’s graphic depiction relates to the model’s mathematic for-
mula, we consider the arrows leading into the tissue compartment
(blood-to-tissue transport described by K; applied to the plasma
time-activity curve, C,) and out of the tissue compartment (efflux
described by k) applied to the compartment activity concentration
(Cg) of the single tissue compartment over a small time increment
(A?). The 1-tissue-compartment model reversible compartment dif-
ference equation is as follows:

ATC['R :Kl Cp_kch.
The blood concentration is typically measured in Bg/mL, and the
compartment concentrations are considered as Bg/cm® of tissue,
or, if density is known or estimated, Bq/g of tissue.

A common convention is to use an uppercase K to represent a
parameter that can be related directly to a physical quantity (5,9).
For example, K; for ’O-water is equal to tissue blood flow (perfu-
sion, typically described in units of mL/min/cm® of tissue) (28),
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FIGURE 3. Kinetic model for generic 1-tissue-compartment model (top),
generic 2-tissue-compartment model (middle), and 2-tissue-compartment
model for '®F-FDG (bottom). Barriers encountered by radiotracer as it
moves between compartments are also noted.

which can be measured by a variety of other methods that include
both imaging and nonimaging approaches. Those parameters that
originate in a compartment are typically assigned a lowercase & and
have time constant units, typically 1/min. The lowercase k parame-
ters are critical to model optimization but are often hard to relate to
measurable quantities. However, when referenced to uppercase K
parameters, the k parameters can describe steady-state kinetic fea-
tures that can be related to measurable quantities. For example, the
volume of distribution for a I-tissue-compartment model, often
termed V7 represents the ratio of tracer in the compartment com-
pared with the blood at equilibrium, and is given by K/k, (mL/cm®).
For 'O-water, V7 is interpreted as tissue water, a quantity that can
be readily measured by drying tissue samples and that can provide
an indirect estimate of tumor cellularity in some cases such as breast
cancer (28,32). In practice, most oncologic radiopharmaceuticals
have biochemical or molecular targets that retain the tracer in or on
cancer cells. This requires a second tissue compartment to describe
radiopharmaceutical interaction with the specific metabolic or binding
target (Fig. 3, middle). The 2-tissue-compartment model includes,
similar to the 1-tissue-compartment model, delivery to (K; [mL/
min/cm’]) and efflux from (k, [1/min]) a reversible compartment.
However, in addition, the model includes the rate of substrate-to-
target binding or metabolic conversion (k3 [1/min]) leading from
the reversible compartment to a second bound or trapped tissue
compartment. The second compartment can also have an efflux
pathway (k4 [1/min]) from the bound or trapped second compart-
ment back to the reversible first compartment.

For illustration purposes, we consider the difference equation
for the 2-tissue-compartment model in comparison to the 1-tissue-
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compartment model equation. The reversible compartment now
has 2 source of input (plasma transport, described by Kj, and
bound or trapped compartment efflux, described by k4) and 2 paths
for efflux (to the plasma, described by k5, and to the trapped or
bound compartment, described by k3), resulting in the following
2-tissue-compartment model reversible compartment difference
equation:
ACg

Tt :Kl Cp+k4C3*(k2+k3)CR.

For many metabolized tracers used in oncology, including 'F-
FDG in most tumors (2,33,34), the second compartment is largely
irreversible (k4 equal to or close to 0). In this case, overall tracer
uptake and retention are best described by a metabolic flux cons-
tant (K;) representing the rate at which the tracer moves from the
blood to its trapped stated in tissue, for example, '*F-FDG-6-P for
8F_FDG PET. By considering equilibrium concentrations, K; can
be expressed as a combination of K7, k,, and k;:

(K1 - k3)

K= L5
(ko + k3)

K; is often called a macroparameter, comprising individual rate
parameters (microparameters). It is denoted with a capital K similar
to K; to indicate that it has the same units as K; (mL/min/g), and it
can be related to real-life measurements, such as cellular glucose
consumption for '3F-FDG. The rate of metabolism of the native
(traced) substance can be estimated by multiplying K; by the
plasma concentration of the substance (wmol/mL) to provide a
metabolic rate (wmol/min/cm®) (9), as is described in more detail
for '8F-FDG below.

For completeness, we note that if both compartments of the
2-tissue-compartment model are fully reversible (k; # 0), as is the
case for some tumors signaling receptors that serve as drug targets,
then V7 is a more biologically or clinically relevant parameter to
described specifically retained tracer. The 2-compartment model,
Vy, differs from the 1-compartment model in that it includes both
the reversible compartment and the bound compartment, the latter
of which carries relevant information regarding tracer binding to its
intended target. The 2-tissue-compartment model V7 is given by ...

Vr = (Ki/ky) X (1 + [k3 /ka)).

In this case, V7 (mL/cm®) indicates an equilibrium partition
coefficient ratio of tissue concentration (wmol/cm?®) to blood
concentration (pmol/mL) that can be related to real-world meas-
ures. This approach is a mainstay of neuroreceptor imaging but
is somewhat less common for cancer applications. One limita-
tion for cancer target binding studies, unlike most noncancer
brain studies (27), is the lack of an appropriate reference tissue
for nonspecific radioligand binding. Nevertheless, V' can be a
useful measure to, for example, guide the dosing of receptor-
targeted cancer drugs (35).

To further illustrate the nature of compartmental models, we high-
light the model most widely used for '®F-FDG (Fig. 3, bottom) (25).
BF_FDG can be modeled with an irreversible 2-tissue-compartment
model in tumors with absence of glucose-6-phophorylase and there-
fore a k, of 0. As a glucose analog, '®F-FDG is relatively permeable
to normal capillaries throughout the body, and after transiting the
interstitial fluid, '*F-FDG enters the cell through membrane glucose
transporters. This series of steps is described by the 1-tissue delivery
parameter, K, which reflects a complex combination of blood flow,
capillary permeability, interstitial transport, and membrane transport
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that has a modest correlation with blood flow in many tumors (32).
Once inside the cell, '®F-FDG can either leave the cell through the
same bidirectional transporters (k;) or become phosphorylated to
8F_-FDG-6-P by hexokinase (ks), the same enzyme that converts
glucose to glucose-6-phosphate. '8F-FDG-6-P cannot be metabolized
to the next step in glycolysis and is not transported out of the cell
unless the phosphate group is cleaved by glucose-6-phosphatase
(36). Administered '8F-FDG that enters the glucose metabolic path-
way is therefore effectively trapped in the cell for the duration of
imaging for most types of cancer, although several normal tissues
that actively make glucose or consume glycogen (liver, brain, mus-
cle) and some tumors (well-differentiated hepatocellular cancer)
have finite glucose-6-phosphatase activity to convert 3F-FDG-6-P
back to '8F-FDG (k4) (25,33). The first tissue compartment repre-
sents any unmetabolized '8F-FDG in tissue that is outside the vascu-
lar space, whereas the second compartment represents '*F-FDG-6-P
trapped in the intracellular space. '®F-FDG mimics glucose up to the
common rate-limiting step of phosphorylation conversion glucose-6-
P/'8F-FDG-6-P. The K; for '8F-FDG therefore describes the rate of
glucose metabolism through hexokinase, including glucose transport
from the plasma to cancer cells. Multiplying the '®F-FDG K; by the
plasma glucose measured at the time of imaging (pumol/mL) pro-
vides an estimate of the tumor metabolic rate of glucose in pwmol/
min/cm® of tissue. This estimate comes with a note of caution that
the transport and hexokinase kinetics of glucose and '8F-FDG are
not identical (26,34), particularly in cancer (37), leading some to
describe estimates of tumor glucose metabolism from dynamic
I8F_FDG PET as the “metabolic rate of glucose assessed by !8F-
FDG,” or MR'®F-FDG (I3).

Parameter Estimation

As seen in Figure 2, the process of kinetic parameter estimation
involves iterative adjustment of the kinetic model parameters from
biologically reasonable starting guesses to values that optimize the
model’s fit to the measured tissue curves. This optimization is done
by comparing the model-generated tissue time—activity curve with
the PET-measured patient tissue time—activity curve at each itera-
tion and then making adjustments to the parameters until an accept-
able fit is achieved. To match the measured tissue curves, the
model-generated curves need to include the contribution of circu-
lating blood in the small vessels and capillaries that are present in
all living tissue but are below PET spatial resolution. As such, total
activity concentration (Cror; Bg/mL) in each image voxel or the
tissue volume of interest (VOI) is a mixture of the tissue compart-
ment time—activity curves (Cz and Cp for 2-tissue-compartment
models) and the whole-blood time-activity curve (Cuporesiood)
(5,9), noting the contribution of whole blood to the image, whereas
the driving function uses the plasma time-activity curve. The con-
tribution of the blood to the total tissue time—activity curve can be
included in the kinetic model using a fractional blood fraction vol-
ume parameter (V3p), assumed to be a constant fraction across the
time scale of the imaging study using the following formula (for a
2-tissue-compartment model), with the convention that C’7o7 indi-
cates the model-generated time—activity curve versus the measures
time—activity curve, Cror:

C,TOT: VBXCWholeBlood+(1 - VB)X(CR“FCB).

Using the units described in Table 1, the model generates tissue
compartment curves having units of Bg/cm?, the same as measured
by PET systems. If a density correction were used with resultant
tissue compartment curves having units of Bq/g, the model output

must be multiplied by tissue density (g/mL) to have comparable
data for the model and measured data. Most use the approximation
of unit water density (1 g/mL), but tissues such as lung and bone
may require more accurate density corrections. Other formulations
consider models on a purely volumetric basis (7,27), avoiding this
issue and performing separate density corrections when needed to
compare parameter estimates with in vitro assays, which are typi-
cally done on a tissue weight basis.

During parameter estimation, the compartment activity concen-
trations, Cr and Cp, are generated by the model and Cyoreiood 18
provided either by an image-based input function from a blood-
pool structure or from the whole-blood activity measured by blood
sampling. The blood volume parameter V' can be measured using
imaging methods such as '!CO PET that label red blood cells
(38); however, this adds complexity and radiation dose to onco-
logic imaging protocols and is infrequently used in clinical prac-
tice and clinical research. Alternatively, V'3 can be estimated as a
parameter as part of the kinetic modeling. This estimation may
pose a challenge for highly permeable tracers for which the early
tissue uptake curve has a strong contribution from both blood pool
and tissue delivery (V3 and K, parameters), and estimates of the 2
parameters may vary with one another (32). In addition to adding a
blood volume component to match PET-measured tissue curves,
model-generated Cror curves are integrated over the same time
intervals as the patient imaging protocol to have the model mimic
the imaging process as closely as possible. Most kinetic analysis
approaches assume that the measured blood and tissue time—activity
curves are corrected for physical isotope decay. It is also possible to
directly include physical decay in the compartmental model for those
cases in which the physical decay constants are close to pharmaco-
logic transfer constants (e.g., '*O-water studies (32)) to avoid pitfalls
during the model integration step in the kinetic analysis.

Parameter estimation requires adjustment, or optimization, of
the parameter set to minimize the difference between the model-
generated curve (Cro7) and the measured curve (Crop), typically
known as the x* function (39):

X = (Cror1 —Cror)* /w1 + (Cror, — Crom)* /wa+
(C,TOTL_CTOTL)Z/WL"',

where the numbers 1, 2 ... L indicate the time bins starting from
the first time bin at the start of tracer injection to the last time bin
(bin L) collected during scanning. The w’s are weights applied to the
square of the model-versus-measured time—activity curve difference
for each time bin. These weights are typically calculated to be pro-
portional to the statistical uncertainty of the PET measurement for
the time point. This approach reduces the influence of noisy time
bins with large statistical variability that typically occurs in short
early time bins used to measure the rapidly changing time—activity
curve early after injection and late time bins that are impacted by
physical decay of the tracer isotope. These weights can have a signif-
icant impact on model performance and can be tuned to optimize
estimates of the parameters identified as being most important for
specific applications (39).

Model optimization methods seek to efficiently adjust model
parameters to reach the smallest possible x? value. Since the dif-
ferential equations that define most models do not have a closed-
form solution, nonlinear optimization approaches are used (e.g.,
Marquardt-Levenberg algorithm) (39). Most nonlinear estimation
algorithms require initial parameter estimates (starting guess) and
parameter range limits to constrain the search to parameter values
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that are within biologically possible ranges. These values are typi-
cally taken from preclinical and other early tracer studies and
guided by the expected biology (40,41). Even with appropriate
weighting, good starting guesses, and appropriate parameter limits,
nonlinear optimization algorithms applied to standard PET data
are susceptible to local minima, overfitting, sensitivity to noise,
and parameter covariance (39). As a result, some kinetic parame-
ters may not be able to be estimated independently of each other
or with reasonable precision (8). As such, it is possible, and per-
haps likely, that not all model parameters can be reliably esti-
mated, and the model should therefore be mathematically tested
before implementation and use.

Mathematic Testing and Validation

Model forms are typically chosen on the basis of the known
biology and pharmacology of the radiopharmaceutical and the
biology of the tissue and target. However, since all models require
some simplification of complex in vivo conditions, it can be diffi-
cult in some cases to select the correct model. In such cases, a
series of mathematic calculations and simulations based on mea-
sured time—activity curves can be used to test the ability of the
model to estimate relevant parameters. The ultimate goal of a
kinetic model is to estimate relevant macroparameters (e.g., flux
or V7) and microparameters (e.g., k, or k3) accurately (i.e., recover
the true value of the parameter without bias) and precisely (i.e.,
recover the same value with repeat testing). More complex models
with a greater number of parameters will undoubtedly improve the
overall fit of a model to the tissue time—activity curve. However,
more complex models may result in overfitting such that kinetic
parameters are poorly determined, precluding reliable quantifica-
tion of the underlying biologic process. To account for a trade-off
between goodness of fit and model complexity, several statistical
tests have been developed, including the Akaike information crite-
rion (42), model selection criterion (MSE), and Schwartz criterion,
in which a penalty is given for the number of parameters included
in the model (43). These criteria quantify the fit of a model with
consideration of model complexity to offer an easy means of com-
parison among candidate models (44).

Additional mathematic tests and simulation approaches have
been developed to study the ability of a model to estimate parame-
ters under realistic imaging conditions (39). Through such rigorous
mathematic testing, the ability of a model to quantify relevant biol-
ogy can be optimized (9,41). These approaches include sensitivity
analysis, identifiability analysis, and simulations that can provide
expectations for the bias, precision, and covariance of the esti-
mated parameters (9). Sensitivity and identifiability analyses use
closed-form calculations based on typical model parameter values
and resulting tissue time-activity curves. Sensitivity analysis esti-
mates the model’s ability to estimate each parameter on the basis
of its impact on the model-generated tissue curve. If a small
change in a parameter induces a large change in model output, that
parameter is likely to be estimated accurately; conversely,
parameters that have a low impact on the generated tissue
curve cannot be estimated accurately. Identifiability analysis,
including both analytic calculations and mathematic simula-
tions, can estimate the ability to measure parameters indepen-
dently. This analysis may reveal that some microparameters,
although needed for overall parameter estimation, cannot be reli-
ably estimated independently of other parameters. An example
of this is discussed in part 2 (4) in the context of *F-FDG and
3'-deoxy-3'-'8F-fluorothymidine ('F-FLT), where studies show
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that only K; and K; (and not &, and k3) can be accurately estimated
for typical cancer imaging conditions.

Simulations are particularly helpful to mimic the typical statisti-
cal noise encountered in the PET-measured tissue time—activity
curves. By adding noise to idealized time—activity curves, the pre-
cision and bias of the parameter estimates can be estimated. Such
estimates are key for interpreting kinetic analysis results and relat-
ing them to cancer biologic properties and clinical outcomes (9).
Several existing kinetic analysis software packages include esti-
mates of parameter precision as part of their analysis.

Since PET kinetic modeling seeks to quantify relevant biology,
the kinetic model should ideally be validated against independent
measures of the biologic characteristic of interest. For instance, for
a tracer that measures receptor expression, correlation of uptake
measures with in vitro tissue expression of that receptor on excised
tissue can be used for validation. For '8F-fluoroestradiol, PET uptake
has been shown to correlate well with tissue estrogen receptor expres-
sion as measured by a quantitative radioligand binding assay (45) and
by immunohistochemistry, with both qualitative and semiquantitative
measures on immunohistochemistry (46,47). As the latter measure is
used in the clinic to direct therapy, validation against this marker
facilitates clinical translation (46), noting that '8F-fluoroestradiol has
recently been granted Food and Drug Administration approval. The
radiolabeled thymidine analog '®F-FLT has also been validated as
a measure of tumor proliferation through correlation with Ki-67, a
protein that is expressed only during cellular proliferation. Studies
have shown a good correlation between FLT K; values versus tis-
sue assays of percentage of cells with Ki-67, supporting clinical
relevance (48). Ultimately, though, for translation into the clinic,
PET uptake measures must be tested in the context of clinical care.
Carefully designed clinical trials are required to test the added
value of PET to the prediction and improvement of clinical out-
comes, as described in part 2.

Alternative Approaches to Lesion Identification

Traditional approaches to PET kinetic analysis often use tissue
time—activity curves derived from the average activity in VOIs to
help reduce the statistical noise in the curve compared with single-
voxel curves. This approach generates a single set of parameter
values for each region drawn and represents an average of biologic
properties across the VOI. Whereas maximum uptake in a voxel is
often used for semiquantitative static measures (e.g., SUV ),
kinetic analysis typically uses mean uptake in a VOI, which is
more robust to differences in image noise. In addition to simple
geometric shapes (e.g., a sphere), VOIs can be drawn using thresh-
old or edge-based methods (49), using a peak VOI for more het-
erogeneous lesions (50), or mapping to an atlas of regions of
interest for neurologic applications (57,52). As an alternative to
VOI-based methods, voxel-based methods generate 3-dimensional
images of tracer kinetic parameters, called parametric images, that
better reflect the spatial distribution of tissue properties and tumor
heterogeneity than do VOI-based approaches (53,54). Voxel-based
analysis, however, is associated with more statistical uncertainty
in the tissue time—activity curves, which can lead to consider-
able noise in the parametric image. Methods that consider the
4-dimensional PET image as a combination of a common set of
fundamental tissue time—activity curves—for example, mixture
analysis, wavelet decomposition, and others—can mitigate this
challenge and add computational efficiency (55,56). When suc-
cessful, this approach can improve the precision with which

THE JOURNAL OF NUCLEAR MEDICINE * Vol. 63 + No.3 + March 2022



parameters are estimated and dramatically improve parametric
image quality (Fig. 4 (57)).

Interpreting Kinetic Parameter Estimates

Part 2 of this review provides several examples of how kinetic
parameter estimates can offer unique insights into the clinical biol-
ogy of cancer that can help guide treatment selection and evaluate
therapeutic efficacy. Some common themes apply to these inter-
pretations. For the most part, parameters that quantify tracer deliv-
ery and retention yield the most reliable and clinically important
measures that provide information on delivery of drugs and
metabolic substrates (K;), metabolic flux through rate-limiting
steps (K;), and drug target availability and binding (2-compart-
ment V7). Although (lowercase) k-type microparameters are
important for tracer kinetic insights and model optimization,
these parameters are theoretic constructs of compartmental
models influenced by in vivo native metabolite concentrations
that are often not easily measured directly (see, for example,
early studies of !'!C-labeled glucose and thymidine (41)).
Additionally, in some cases, microparameters are not reliably
estimated independently of other variables, especially in the
context of the heterogeneity (58) common in cancer imaging.
Therefore, new cancer radiopharmaceuticals—or new applica-
tions of existing tracers—require rigorous studies of kinetics
in preclinical and early clinical studies to determine the utility
and validity of tracer kinetic parameters as measures of cancer
biology and tools for guiding clinical practice.

Once established and validated, kinetic models may be used to
gain insight into the composition of a static PET image obtained at
any single time point. That is, kinetic analysis can predict the con-
tribution of the different pools of tracer pharmacologic state to the
total image signal. This is exemplified for '®F-FDG in Figure 5,
showing how an understanding of '®F-FDG kinetics can provide
insight into how to interpret SUVs. Using a 2-compartment kinetic
model to generate curves based on the range of kinetic constants
seen in breast cancer (/4), Figure 5 depicts the contribution of the
free (‘8F-FDG) and trapped ('*F-FDG-6-P) components of the '3F
label detected in tumor tissue. For tumors with low SUVs, uptake
reflects a nearly equal mix of free and trapped '3F-FDG, even late
after injection. As such, SUVs for tumors with modest uptake
(SUV < 3-4) reflects a nearly equal—and confusing—mix of
transport and tissue distribution (reversible tissue '*F-FDG) and
glucose metabolism (!®F-FDG-6-P). However, for tumors with a

FIGURE 4. (A) MRI demonstrates contrast enhancement in recurrent right
frontal glioma, with viable tissue predominately seen posteriorly. (B) Summed
20- to 60-min 2-[''C-11]thymidine PET image demonstrates relatively high
background uptake of tracer throughout brain, with mildly increased tracer
uptake in enhancing portion of recurrent glioma. (C) 2-[''C-11]thymidine K;
parametric image from mixture analysis demonstrates increased contrast of
tumor compared with normal brain, underscoring benefits of kinetic analysis.
(Modified with permission of (57).)
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FIGURE 5. Representative low-flux and high-flux lesions in plots of indi-
vidual components of model curve. Radiotracer is freely exchanged in
first compartment but is trapped in second compartment. Major con-
tributor of uptake in low-flux lesion is reversible (first) compartment,
whereas trapped (second) compartment is major contributor of uptake
in high-flux lesion.

high SUV, most of the label is in the form of *F-FDG-6-P by 60
min after injection, and the 60-min SUV provides a reasonable
indication of tumor glucose metabolism. This insight has several
important implications: first, changes in uptake with treatment
should be interpreted carefully for tumors with low baseline
uptake, as they may reflect changes in tracer delivery or tissue dis-
tribution as a side effect of therapy rather than changes in tumor
health and viability as indicated by glucose metabolism. Similarly,
low '8F-FDG uptake may also impact the precision and interpreta-
tion of posttherapy uptake measures in treated tumors, which often
carries prognostic information that can be measured more accu-
rately by kinetic measures such as K; than by static measures such
as SUV (/4).

Another insight from kinetic analysis is the variable behavior of
static SUV measures over time after injection. Low-uptake tumors
will have flat or even declining uptake since the free 'SF-FDG
component will follow the decline in plasma activity due primarily
to renal clearance of '3F-FDG, an observation that may be misin-
terpreted as glucose-6-phosphatase activity (not included in the
Fig. 5 simulated data, which had a k4 of 0). Highly glycolytic
tumors with high '8F-FDG uptake, as indicated by high SUVs,
will have increasing SUVs over time because of increased trapping
of '8F-FDG, confounding comparison of serial scans when uptake
time is variable (/8). These illustrations provide a clinically rele-
vant example of the benefit of kinetic analysis, including providing
insights into how to interpret the static imaging uptake measures
most often used in the clinic.

ALTERNATIVE APPROACHES TO ESTIMATING TRACER
KINETICS: GRAPHICAL ANALYSIS AND OTHER
MODEL-FREE APPROACHES

Although compartmental analysis provides a rigorous approach
to studying tracer kinetics, these methods have some undesirable
properties. Most notably, compartmental models require nonlinear
optimization to estimate kinetics parameters, a computationally
demanding task often associated with bias, covariance, and a lack
of precision in parameter estimates (9). This limitation spurred the
development of alternative approaches to estimating selected
kinetic parameters—such as metabolic flux and V'7—by linear esti-
mation methods. Linear estimation—for example a simple line fit
to 2-dimensional data—has closed-form solutions that typically do
not require iterative optimization. Unlike nonlinear approaches,
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these approaches are computationally efficient, not dependent on
starting guesses, and generally tolerant to statistical noise in the
data (39).

The most popular approaches to radiotracer imaging, often
called graphical analysis, exploit the fact that most clinically rele-
vant PET tracers distribute fairly quickly into target tissues and
settle into a period of exponential blood or plasma clearance, typi-
cally 20-40 min after injection. This quick distribution results in a
pseudo steady-state when, even though blood and tissue curves
change over time, tissue tracer uptake kinetics are driven largely
by rate-limiting steps of metabolism or target binding in the second
bound or trapped tissue compartment and not by transport and early
tissue distribution. This process can be understood using the 2-tis-
sue-compartment model illustrated in Figure 3. Early after injec-
tion, when there is a rapid rise and early fall in the plasma
time—activity curve, target tissues will largely exchange tracer back
and forth with the blood in the first, reversible, tissue compartment
reflecting early tracer delivery. Once this transient period has
passed, and the plasma clearance curve settles into more stable—
typically exponential—clearance, the reversible compartment
comes into a pseudo equilibrium with the blood. Tracer uptake
then reflects steady-state tracer movement into the second compart-
ment, which represents trapped metabolic products or reversible
target binding. Seminal works by Patlak and Logan (59,60) rec-
ognized that these conditions lead to a late linear relationship
between time-varying tissue-to-blood uptake ratios and meas-
ures of plasma tracer availability, which can be customized to
yield flux (K, Patlak analysis) or V7 (Logan analysis) estimates
from a simple line fit (Fig. 6), at some time after tracer injection.
Although an underlying model is not required for graphical
methods, knowledge of tracer pharmacology and kinetics in the
target tissue is key to ensuring that the assumptions of the cho-
sen graphical method are satisfied.

Because of the popularity of '®F-FDG PET (a trapped tracer) for
oncology, Patlak analysis is often used to describe flux into tissue
for cancer imaging applications. The irreversible uptake of '*F-FDG
in most malignancies lends itself to evaluation with Patlak analysis
(Fig. 6A), which can be understood in the context of the compart-
mental model illustrations in Figures 3 and 5, where the steady rise
in the trapped compartment ('*F-FDG-6-P) time-activity curve
over time, together with a fall in both the plasma and the
reversible-compartment time—activity curves, lead to an increase in
the tissue-to-blood ratio over time in those tissues with active glu-
cose metabolism by hexokinase (i.e., k&3 > 0). When plotted in Pat-
lak space, later time points, after the tracer has mostly reached
pseudo steady state (with the first compartment reaching steady
state), can be fit to a line in which the slope estimates the flux
(K;'®F-FDG) and the intercept reflects the ¥y of the first tissue
compartment plus the vascular space (i.e., the Patlak does not
completely correct for blood volume) (59). For trapped tracers with
labeled metabolites, modifications to this graphical method have
been proposed (61). For tracers that bind targets reversibly (i.e., no
appreciable trapping), Logan graphical analysis may be used. If
blood input data are available, the original Logan graphical analysis
method (Fig. 6B) may be used to calculate the macroparameter V7
(60). These graphical methods provide computational advantages
(8) that lend themselves well to parametric imaging and other clini-
cally relevant approaches. Specifically, these graphical methods do
not suffer from noise amplification (62) and can even be applied to
raw scan data before reconstruction (63). A limitation of these
approaches is that although they provide robust estimates of
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FIGURE 6. Graphical methods of data analysis, including Patlak (A) and
Logan (B) plots, where Cpjasma is blood time-activity curve and Crissue i
tissue time—activity curve. t = time.

macroparameters specific to the tracer and its target cancer biology,
they do not provide estimates of other key measures, such as drug
or substrate delivery (K;). Additionally, the reparametrized x- and
y-axes constructed for linear estimation are not independent of
each other, and as such, measures of variability of the estimated
macroparameter are difficult to obtain (62).

Other model-free approaches to estimating kinetics have been
proposed that include the consideration of tracer uptake curves
as a combination of exponential clearance curves (64), recog-
nizing clearance as a key pharmacologic property highly rele-
vant to drug therapy. An alternative approach leverages the
residue method of Zierler and Meier (65) as an alternative to
compartmental analysis for PET oncology tracers (66). The
approach uses linear regression to estimate regional tracer
delivery (tracer flow) and retention (tracer tissue residue). This
approach has the advantage of being a linear estimation method
that is computationally efficient and robust, well suited to para-
metric imaging. Advances in imaging data science, including
radiomics and artificial intelligence, offer the promise of new
approaches to 4-dimensional PET image analysis that may yield
new insights, as demonstrated by a recent study applied to
locally advanced breast cancer (67).

CONCLUSION

Through kinetic analysis of dynamic PET imaging, specific inter-
actions between the radiotracer and tissue can be quantified. Kinetic
measures may better capture relevant biology to inform patient man-
agement. In the initial development of a kinetic model, both biologic
and mathematic factors must be considered. A kinetic model should
be able to accurately estimate kinetic parameters that have biologic
relevance. Once a model is thoroughly tested, imaging protocols
may be optimized to eliminate the burden of imaging on the patient
and staff and possibly decrease scan time. Static imaging protocols
may also be developed and optimized to enable translation into a
busy clinic. Of course, the ultimate utility of a radiotracer lies in its
application, whether in research or clinical care. In part 2, we will
discuss such applications and emphasize cases that provide examples
for '8F-FDG and other oncologic tracers, as well as the benefits of
kinetic analysis over static approaches.
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